常用的固化剂种类及材料特性总结

常用的固化剂种类及材料特性总结
常用的固化剂种类及材料特性总结

常用的固化剂种类和性能

环氧树脂是线型的热塑性树脂,本身不会硬化,且不具有任何使用性能,只有加入固化剂,使它由线型结构交联成网状或体型结构,形成不溶不熔物,才具有优良的使用性能;并且固化产物的性能在很大程度上取决于固化剂,因此。固化剂是环氧树脂结合剂中的一个重要组成部分。

凡能和环氧树脂的环氧基及羟基作用,使树脂交联的物质,叫做固化剂,也叫硬化剂或交联剂。

根据固化所需的温度不同可分为加热固化剂和室温固化剂两类。如果根据化学结构类型的不同,可分为胺类固化剂,酸酐类固化剂,树脂类固化剂,咪唑类固化剂及潜伏性固化剂等。按固化剂的物态不同可分为液体固化剂和固体固化剂两类。

常用的固化剂种类和性能

固化后环氧树脂的性能,特别是耐热性和力学强度,主要是由固化剂来提供,不同固化制成制品的耐热性和力学强度相差较大。

环氧树脂常用固化剂材料特性及配方环氧树脂本身是一个线性结构的化合物,性能很稳定,必须与固化剂一块使用才能具有实用价值。因此固化剂是环氧树脂在使用过程中必不可少的重要组成部分。环氧树脂的固化剂种类很多,常见的有:脂肪胺类、脂环胺类、芳香胺类、酸酐、聚酰胺类、改性胺类、潜伏性类、树脂类、叔胺类。

由于固化剂的不同会直接影响制品的工艺过程及制品的物理化学性能,所以根据应用的场合来加以选择这些环氧树脂固化剂是十分重要的。如固化工艺是常温固化还是加温固化?制品要求是硬质的还是软质的?是要求耐高温的还是低温的?使用环境是潮湿的还是干燥的?不同的场合使用的固化剂有所不同。总之要根据实际情况选择合适的固化剂,以便发挥出所用环氧树脂体系的最好的性能

1、脂肪多元胺

乙二胺EDAH2NCH2CH2NH2分子量60活泼氢当量15无色液体每100份标准树脂用6-8份性能:有毒、有剌激臭味,挥发性大、粘度低、可室温快速固化。用于粘接、浇注、涂料。该类胺随分子量增大,粘度增加,挥发性减小,毒性减小,性能提高。但它们放热量大、适用期短。一般而言它们分子量越大受配合量影响越小。长期接触脂肪多元胺会引起皮炎,它们的蒸汽毒性很强,操作时须十分注意。

二乙烯三胺DETAH2NC2H4NHC2H4NH2分子量103活泼氢当量无色液体每100份标准树脂用8-11份。固化:20℃2小时+100℃30分钟或20℃4天。性能:适用期50克25℃45分钟,热变形温度95-124℃,抗弯强度1000-1160kg/cm2,抗压强度1120kg/cm2,抗拉强度780kg/cm2,伸长率%,冲

击强度尺-磅/寸洛氏硬度99-108。介电常数(50赫、23℃)功率因数(50赫、23℃)体积电阻

2x1016Ω-cm常温固化、毒性大、放热量大、适用期短。

三乙烯四胺TETAH2NC2H4NHC2H4NHC2H4NH2分子量146活泼氢当量无色粘稠液体每100份标准树脂用10-13份固化:20℃2小时+100℃30分钟或20℃7天。性能:适用期50克25℃45分钟,热变形温度98-124℃,抗弯强度950-1200kg/cm2,抗压强度1100kg/cm2,抗拉强度780kg/cm2,伸长率%,冲击强度尺-磅/寸洛氏硬度99-106。常温固化、毒性比二乙烯三胺稍低、放热量大、适用期短。

四乙烯五胺TEPAH2NC2H4(NHC2H4)3NH2分子量189活泼氢当量27棕色液体每100份标准树脂用11-15份性能同上。

多乙烯多胺PEPAH2NC2H4(NHC2H4)nNH2浅黄色液体每100份标准树脂用14-15份性能:毒性较小,挥发性低、适用期较长、价廉。

二丙烯三胺DPTAH2N(CH2)3NH(CH2)3NH2分子量131活泼氢当量26浅黄色液体每100份标准树脂用12-15份性能同TETA。

二甲胺基丙胺DMAPA(CH3)2N(CH2)3NH2低粘度透明液体每100份标准树脂用4-7份毒性较大,具有固化和催化两个反应,粘附性能良好,柔性也好,适用期长。

二乙胺基丙胺DEAPA(C2H5)2N(CH2)3NH2分子量130活泼氢当量65低粘度透明液体每100份标准树脂用4-8份固化:60-70℃4小时。性能:适用期50克25℃4小时,热变形温78-94℃,抗压强度920-1050kg/cm2,抗拉强度480-640kg/cm2,冲击强度尺-磅/寸洛氏硬度90-98。介电常数(50赫、23℃)功率因数(50赫、23℃)中温固化、低温性能好。

三甲基六亚甲基二胺TMD(H2N)2(C6H9)(CH3)3无色液体冷固化,适用期长,毒性小。每100份标准树脂用21份固化:80℃1小时+150℃2小时。性能:适用期400克25℃50分钟或50℃10分钟,马丁耐热92℃,抗弯强度1150kg/cm2,冲击强度20Kg-cm/cm2tgδ(23℃,100C/S)表面电阻Ω(300V)体积电阻9x1015Ω.cm(300V)中温固化、低温性能好。

二已基三胺H2N(CH2)6NH(CH2)6NH2?。

已二胺改性物AMINE248分子式不详透明液体粘度25℃1000-3000cps每100份标准树脂用4-8份常温-100℃固化。毒性较小、柔性好。

已二胺加合物CH-2、L2505分子式不详胺值160-210低粘度透明液体每100份标准树脂用65份。

CH3胺值400-500低粘度透明液体每100份标准树脂用60份。

已二胺HDAH2N(CH2)6NH2分子量116活泼氢当量29无色片状结晶熔点42℃每100份标准树脂用12-15份毒性大,能常温固化但不好。适用期较短。

三甲基已二胺分子量158每100份标准树脂用20-25份固化:20℃2小时+100℃30分钟或20℃7天。性能:适用期50克25℃45分钟,热变形温度105℃,抗弯强度1150kg/cm2,抗拉强度

650kg/cm2,伸长率%,冲击强度尺-磅/寸。介电常数(50赫、23℃)功率因数(50赫、23℃)体积电阻9x1015Ω-cm?。

二乙胺DEAHN(C2H5)2分子量73活泼氢当量73无色液体每100份标准树脂用12份具有固化和催化两个反应。

聚醚二胺H2N(CH2)nO(CH2CH2O)mNH2。

2、脂环多元胺

二氨甲基环已烷1。3BACC260(H2NCH2)2C6H8棕色液体每100份标准树脂用18份该环状多元胺在常温下不能完全固化,需进行后固化80-150℃,得HDT达150℃左右。常需加促进剂:叔胺、亚磷酸三苯酯、水杨酸、甲酚等。

孟烷二胺MDA(CH3)(H2N)C6H8 C(CH3)2NH2分子量169活泼氢当量浅黄色液体每100份标准树脂用6-22份加温固化80-130℃2小时-30分钟适用期50克25℃长8-16小时。热变形温度148-158℃抗弯强度1050-1190kg/cm2,抗压强度710kg/cm2,抗拉强度610kg/cm2,伸长率%,冲击强度尺-磅/寸洛氏硬度105。粘度低、适用期长。加热迅速固化,毒性小。

氨乙基呱嗪AEPH2NC2H4N2C4H9分子量129活泼氢当量43无色液体每100份标准树脂用13-23份常温-200℃固化3天-30分钟适用期50克25℃30分钟,热变形温度100-120℃抗压强度

590kg/cm2,抗拉强度610kg/cm2,伸长率%,冲击强度尺-磅/寸洛氏硬度95-105。可常温固化、放热量大、适用期短,耐冲击性好。

六氢吡啶HHPNC5H11分子量85活泼氢当量85无色液体每100份标准树脂用5-7份。

异佛尔酮二胺IPDA(CH3)2 C6H3(CH3)(CH2NH2)分子量169活泼氢当量无色液体每100份标准树脂用24份固化80℃4小时+150℃4小时、常温24小时。性能:适用期400克25℃75分钟或50℃10-15分钟,马丁耐热135℃,(热变形温度149℃)抗弯强度1250kg/cm2,冲击强度

17Kg-cm/cm2抗张强度730 kg/cm2,断裂伸长δ(25℃,100C/S)表面电阻大於1012Ω(1000V)体积电阻大於1016Ω.cm(1000V)介电常数(50赫23℃)功率因数(50赫23℃)中温固化、低温性能好。

二氨基环已烷DAHM(NH2)2 C6H4分子量112无色液体活泼氢当量28每100份标准树脂用14-16份固化常温7天、70℃、2小时。

二氨甲基环已基甲烷DAMHMC-260[(NH2)(CH3)C6H4]2CH2分子量232活泼氢当量58无色液体每100份标准树脂用33份固化80℃2小时+150℃2小时热变形温度130-150℃抗弯强度

1070kg/cm2,抗张强度770 kg/cm2,介电常数(50赫23℃)功率因数(50赫23℃)体积电阻大於2x1016Ω.cm。

二氨基环已基甲烷DACHM[(NH2)C6H4]2CH2分子量206活泼氢当量熔点40℃每100份标准树脂用30份固化60℃3小时+150℃2小时。

3、脂肪芳香多元胺

间苯二胺m-PDAMPD(NH2)2C6H4分子量107活泼氢当量白色结晶(黑色固体?)熔点62℃每100份标准树脂用14-16份固化60℃2小时+150℃2小时适用期500克50℃小时热变形温度150℃抗弯强度1050kg/cm2,抗压强度710kg/cm2,抗拉强度540kg/cm2,伸长率%,冲击强度尺-磅/寸洛氏硬度108。介电常数(50赫23℃)功率因数(50赫23℃)耐热、耐腐蚀性优,电性能好,毒性小。因是固体,使用不方便,与树脂加热混合时需注意防止凝胶。

间苯二甲胺MXDA(NH2CH2)C6H4分子量135活泼氢当量无色液体每100份标准树脂用16-18份固化常温24小时+70℃1小时或常温4天。适用期100克25℃50分钟热变形温度130-150℃抗弯强度1200kg/cm2,抗压强度1030kg/cm2,抗拉强度720kg/cm2,伸长率%,介电常数(50赫23℃)功率因数(50赫23℃)体积电阻大於2x1016Ω.cm可常温固化耐热、耐腐蚀性优,电性能好,毒性小。固化温度低、粘度低、毒性小,适用期长、耐溶剂性好。它易吸收空气中的二氧化碳是造成制品气泡的原因。

二氨基二苯基甲烷DDMHT-972DEH-50[(NH2)(CH3)C6H4]2CH2分子量196活泼氢当量49白色结晶长期暴露在日光下呈褐色熔点89℃每100份标准树脂用25-30份固化60℃2小时+150℃2小时。适用期500克50℃3小时热变形温度145-150℃抗弯强度1190kg/cm2,抗压强度710kg/cm2,抗拉强度550kg/cm2,伸长率%,冲击强度尺-磅/寸洛氏硬度106。介电常数(50赫23℃)功率因数(50赫23℃)体积电阻大於1015Ω.cm耐热、耐腐蚀性优,电性能好,毒性小。耐热、机械强度高。因是固体,使用不方便,与树脂加热混合时需注意防止凝胶。

二氨基二苯基砜DDSHT-976[(NH2)C6H4]2SO2分子量248活泼氢当量62熔点175℃每100份标准树脂用35-40份固化130-150℃3天-2小时。适用期500克130℃小时通常以BF3-胺络合物为促进剂(用量为%)热变形温度175-190℃抗弯强度1220kg/cm2,抗压强度710kg/cm2,抗拉强度580kg/cm2,伸长率%,冲击强度尺-磅/寸洛氏硬度110。耐热、耐腐蚀性优,电性能好,毒性小。反应慢。耐热175℃。

间氨基甲胺MAMA(NH2)(CH2NH2)C6H4分子量123活泼氢当量熔点38℃每100份标准树脂用14-18份固化130-150℃3天-2小时。断裂伸长率高。

联苯胺(NH2)C6H4 C6H4(NH2)。

4-氯邻苯二胺CPDA(NH2)2C6H3CL。

苯二甲胺三聚体GY-51CH-2粘度60℃2000-6000cps每100份标准树脂用30-60份固化常温-60℃7天-1小时。毒性低。

WA-060CH-3粘度60℃6000-10000cps每100份标准树脂用30-60份固化常温-60℃7天-1小时。

苯二甲胺三聚体衍生物粘度25℃5cps、40cps、100cps每100份标准树脂用25-30份固化常温-60℃7天-1小时。粘度低。毒性低。

双苄胺基醚(H2NCH2C6H4)2O每100份标准树脂用30-60份可室温固化,适用期长,放热低,热变形温度68℃。

间苯二胺与二氨基二苯基甲烷混合物60-75%MPDA与40-25%DDM混合熔融,在常温下呈液态。40:60的二氨基二苯基甲烷与间苯二胺混合物熔点为25℃,每100份标准树脂用20份,在40℃经5小时便使环氧树脂固化。如加磷酸三苯酯和苯酚混合物则在20℃9小时即固化。热变形温度150℃抗弯强度1150kg/cm2,冲击强度17Kg-cm/cm2抗张强度560 kg/cm2,断裂伸长洛氏硬度105-110介电常数(50赫23℃)功率因数(50赫23℃)。

间苯二胺和二氨基二苯基甲烷及甲苯二胺混合物间苯二胺:二氨基二苯基甲烷:甲苯二胺

=30-70:10-50:5-35的混合物是种稳定的液体。例50份间苯二胺,30份二氨基二苯基甲烷,20份甲苯二胺(间位:对位=80:20)100℃混合得到的液体,稳定期达9个月。每100份标准树脂用份固化80℃2小时+140℃2小时。冲击强度115Kg-cm/cm2,洛氏硬度105。

邻甲苯二胺、间甲苯二胺和二氨基二苯基甲烷混合物它们比例为26:14:60时,在23℃48小时不析出,与环氧树脂在23℃时45分钟凝胶。

二氨基二苯基甲烷及异佛尔酮二胺混合物40-30%DDM与60-70%IPDA混合熔融,在常温下呈液态。当40%DDM与60%IPDA混合时每100份标准树脂用25份混合物,热变形温度130-155℃理学抗弯强度1160kg/cm2,介电常数(50赫23℃)功率因数(50赫23℃)。

4、酸酐类

苯酮四羧酸二酐BTDA熔点227℃每100份标准树脂用27-48份固化:150-200℃24小时。热变形温度240-290℃抗弯强度560-700Kg/cm2冲击强度-2.7Kgcm2洛氏硬度100-117。

甲基内次甲基四氢邻苯二甲酸酐MNAHT906DQ19128又名甲基纳迪克酸酐黄色液体粘度138cps 每100份标准树脂用72-90份固化:100-200℃2-4小时。适用期500克25℃5-6天(加促进剂)热

变形温度150-175℃抗弯强度950Kg/cm2抗压强度1240Kg/cm2抗拉强度680Kg/cm2伸长率%冲击强度0.48ft-1b/in(2.6Kg-cm/cm2)洛氏硬度111介电常数(50Hz23℃)功率因数(50Hz23℃)体积电阻2x1016Ω-cm粘度低、浸润性好,使用寿命长。

四氢邻苯二甲酸酐THPAHT909RXE-H70酸酐熔点100℃每100份标准树脂用52-70份固化:

150-200℃24小时。毒性低、挥发性小、工艺性好。

甲基四氢邻苯二甲酸酐MTHPASYG-8401HY-905HK-021TCG-1156KZ-5217MCDMHAC浅黄液体,比重:,折射率:,粘度:50-80cps,酸值:81-85凝固点小於-15℃闪点大於130℃每100份标准树脂用52-70份固化:60-70℃脱泡100℃2小时+150-200℃2-10小时。抗弯强度抗冲强度cm2剪切强度弯曲模量拉伸模量热变形温度128℃击穿电压49KV/mm介质损耗1KC3x10-3介电常数体积电阻85℃常用促进剂有苄基二甲胺、DMP-30、三乙醇胺、2-乙基-4甲基咪唑、苄基咪唑等,用量为%。

内次甲基四氢邻苯二甲酸酐NA647酸酐又名纳迪克酸酐白色粉末每100份标准树脂用80-100份。

戊二酸酐GA白色粉末每100份标准树脂用50-80份。

聚壬二酸酐PAPA白色粉末熔点57℃每100份标准树脂用70-90份固化:170℃17小时。

二氯代顺丁烯二酸酐DCMA白色粉末每100份标准树脂用38份。

六氯内次甲基四氢邻苯二甲酸酐HETHT912CA又名氯茵酸酐氯桥酸酐白色粉末熔点165℃每100份标准树脂用100-180份固化:100℃1小时+200℃1-2小时适用期500克120℃30分钟(加促进剂)热变形温度145-190℃抗弯强度1150Kg/cm2抗压强度1390Kg/cm2抗拉强度820Kg/cm2伸长率%冲击强度-0.4ftin洛氏硬度111。

桐油酸酐308液体每100份标准树脂用100-200份。

甲基六氢邻苯二甲酸酐MHHPA液体每100份标准树脂用70-80份固化:80℃4小时+120℃4小时。

乙二醇双偏苯三酸酐酯TME粘度:102cps每100份标准树脂用56份固化:150℃1小时+180℃4小时,使用期3-4天。

邻苯二甲酸酐PAHT901EPADQ19121白色粉末熔点128℃每100份标准树脂用30-40份固化:100-200℃12-6小时,使用期长。热变形温度110-152℃抗弯强度1120Kg/cm2抗压强度1550Kg/cm2抗拉强度830Kg/cm2伸长率%冲击强度2.5Kg-cm/cm2洛氏硬度100介电常数(50Hz23℃)功率因数(50Hz23℃)。

偏苯三酸酐TMA白色粉末熔点168℃每100份标准树脂用30-35份固化:150℃1小时+180℃4小时。

均苯四甲酸酐PMDA白色粉末熔点286℃粘度:65cps每100份标准树脂用30-60份固化:160℃24小时150℃1小时+180℃4小时。固化:200℃2小时。热变形温度251℃,弯曲强度570Kg/cm2,布氏硬度90热稳定性为200℃24小时失重%,7天失重%。

均苯四甲酸酐/顺酐每100份标准树脂用17/23热变形温度255℃抗弯强度770Kg/cm2抗压强度3230Kg/cm2抗拉强度830Kg/cm2伸长率%冲击强度1.9Kg-cm/cm2洛氏硬度109介电常数(50Hz23℃)功率因数(50Hz23℃)体积电阻。

偏苯四酸二酐MPDA分子量218熔点193℃但在加热到60-70℃时与环氧树脂的相溶性好,形成清亮溶液。每100份标准树脂用29份固化:200℃2小时。热变形温度225℃,弯曲强度

520Kg/cm2,布氏硬度89热稳定性为200℃24小时失重%,7天失重%,它是由1、2环已二烯与顺酐加成而得。

二苯酮四羧基二酸酐BTDA白色粉末每100份标准树脂用30-60份。

顺丁烯二酸酐MA白色粉末熔点53℃每100份标准树脂用19-27份。

十二烷基代顺丁烯二酸酐DDSAHT964又名十二烯基琥珀酸酐黄色液体粘度:290cps每100份标准树脂用120-150份固化:120℃4小时或85℃2小时+150℃12-24小时,适用期500克25℃10天(加促进剂)热变形温度66-70℃抗弯强度920Kg/cm2抗压强度720Kg/cm2抗拉强度550Kg/cm2伸长率%冲击强度-0.4ftin。

六氢苯二甲酸酐HHPAHT907HPADQ19127白色粉末熔点35℃每100份标准树脂用75-85份固化:150℃4小时适用期500克100℃14小时(加促进剂)热变形温度110-152℃抗弯强度1090Kg/cm2

抗压强度1500Kg/cm2抗拉强度800Kg/cm2伸长率%冲击强度0.46ft-1b/in-2.2Kgcm2)洛氏硬度105介电常数(50Hz23℃)功率因数(50Hz23℃)体积电阻2x1016Ω-cm。

甘油三偏苯三酸酐TMG白色粉末熔点60-76℃粘度:103cps每100份标准树脂用66份。

二顺丁烯二酸酐基甲乙苯37-624每100份标准树脂用88份固化:70-80℃2小时+2000℃2小时热变形温度174℃。

5、改性胺类

烷基醇胺H2NRNHC(R)HOH无色液体每100份标准树脂用20份固化常温2-7天。

环氧胺593ERL-2793DEH-52RCH2CH(OH)CH2NHR1NH2粘度25℃5000-13000cps每100份标准树脂用20-25份比重固化常温-60℃7天-1小时。

改性双氰胺NCCH2CH2NHRNHCH2CH2CN每100份标准树脂用20-30份加热固化。

苯酚、甲醛、苯二甲胺缩合物726液体每100份标准树脂用25-35份,胺值200-350,粘度:

50-70。

苯酚、甲醛、四乙烯五胺缩合物液体每100份标准树脂用45份胺值360-450,粘度:90。

苯酚、甲醛、二乙烯三胺缩合物T-31液体每100份标准树脂用20-25份胺值360-450,粘度:90。

苯胺、甲醛、咪唑缩合物每100份标准树脂用20份,固化:85℃2小时+150℃3小时。热变形温度176℃。

马来酰亚胺、二氨基二苯基甲烷预聚物每100份标准树脂用190份固化:160℃15分钟。在25℃时弯曲强度为15.3Kg/mm2,在250℃加热1300小时后弯曲强度为11.9Kg/mm2。

二乙烯三胺、硫脲缩合物液体快速固化每100份标准树脂用20-25份。

三乙烯四胺、硫脲缩合物液体快速固化每100份标准树脂用20-25份。

四乙烯五胺、硫脲缩合物液体快速固化每100份标准树脂用20-25份。

羟甲基二乙基三胺H2NC2H4NHC2H4NHCH2OH无色液体每100份标准树脂用20份毒性低,可替代乙二胺使用。分子量133活泼氢当量。

羟甲基乙二胺H2NC2H4NHCH2OH无色液体每100份标准树脂用15份分子量90活泼氢当量30。

羟乙基乙二胺120AEEAH2NC2H4NHC2H4OH无色液体每100份标准树脂用16-18份分子量104活泼氢当量34又名N-氨乙基乙醇胺。

二羟乙基乙二胺DAEEA(HOCH2CHRNH)2R粘稠液体每100份标准树脂用18-20份分子量186活泼氢当量36。

羟乙基二乙烯三胺H2NC2H4NHC2H4NHC2H4OH无色液体粘度150-300每100份标准树脂用20-30份固化:常温4天或60℃1小时+110℃20分钟,适用期50克常温19分钟热变形温度96℃抗弯强度950kg/cm2,抗压强度2790kg/cm2,常温固化、毒性比二乙烯三胺稍低、放热量大、适用期短。分子量147活泼氢当量。

二羟乙基二乙烯三胺HO(CH2)2HNC2H4NHC2H4NHC2H4OH无色液体粘度150-300每100份标准树脂用20-30份固化:常温4天或60℃1小时+110℃20分钟,适用期50克常温24分钟热变形温度58℃抗弯强度1000kg/cm2,抗压强度3060kg/cm2,常温固化、毒性比二乙烯三胺稍低、放热量大、适用期短。分子量190活泼氢当量。

羟乙基已二胺H2NC6H12NHC2H4OH无色液体每100份标准树脂用30份分子量160活泼氢当量。

一氰乙基乙二胺H2NC2H4NHC2H4CN无色液体每100份标准树脂用30份分子量113活泼氢当量。

一氰乙基已二胺H2NC6H12NHC2H4CN无色液体每100份标准树脂用30份分子量169活泼氢当量。

二氰乙基乙二胺ZZL-0803NCC2H4NHRNHC2H4CN无色液体粘度90-100比重每100份标准树脂用16-18份。分子量166活泼氢当量83。

一氰乙基二乙烯三胺591H2NC2H4NHC2H4NHC2H4CN无色液体每100份标准树脂用20-25份。固化:常温4天或70℃3小时+110℃2小时,适用期50克常温小时热变形温度72-76℃抗压强度

850kg/cm2,抗拉强度510-620kg/cm2,冲击强度尺-磅/寸洛氏硬度大于100。常温固化、毒性比二乙烯三胺稍低、放热量大、适用期短。(有的资料说放热量小、适用期长、柔性好、耐冲击好、耐热性差?)分子量156活泼氢当量39。

双氰乙基二乙烯三胺CNC2H4HNC2H4NHC2H4NHC2H4CN无色液体每100份标准树脂用20-25份。固化:常温4天或70℃3小时+110℃2小时,适用期50克常温小时热变形温度50-58℃抗压强度

840-920kg/cm2,抗拉强度610-740kg/cm2,冲击强度尺-磅/寸洛氏硬度大于78-96。常温固化、毒性比二乙烯三胺稍低、放热量大、适用期短。(有的资料说放热量小、适用期长、柔性好、耐冲击好、耐热性差?)分子量208活泼氢当量39。

氰乙基化二甲苯二胺低于20℃能固化,毒性小,热变形温度高,每100份标准树脂用20-25份固化:30℃3小时,热变形温度102℃抗弯强度15Kg/mm2冲击强度10 Kg-cm/cm2。

螺环二胺与环氧化合物的加成物,由氰基丙烯醛与季戊四醇合成的螺环二胺再与环氧化合物反应而得。这类固化剂室温固化,适用期长,反应热低,色泽好,韧性好,冲击性能好,耐热性好,不剌激皮肤,可在水中固化。H2N(CH2)3CH(OCH2)2C(OCH2)2CH(CH2)3NHCH2CHOHCH2OR。下式中C、B字头的R表示烷基,N字头的表示螺环二胺与丙烯腈的加成物,S字头的表示带40%的丁酮甲苯溶液。

C001粘度20℃370泊分子量500胺值220+/-15每100份标准树脂用70份固化:室温热变形温度57.7℃抗弯强度10.8Kg/mm2弯曲弹性模量320Kg/mm2抗拉强度7.15Kg/mm2拉伸弹性模量

232Kg/mm2冲击强度14.4 Kg-cm/cm2。

C002粘度20℃89泊分子量390胺值290+/-15每100份标准树脂用55份固化:室温热变形温度78.6℃抗弯强度11.2Kg/mm2弯曲弹性模量290Kg/mm2抗拉强度6.52Kg/mm2拉伸弹性模量

194Kg/mm2冲击强度15.8 Kg-cm/cm2。

B001粘度20℃74泊分子量400胺值280+/-15每100份标准树脂用60份固化:室温热变形温度58℃抗弯强度11.4Kg/mm2弯曲弹性模量292Kg/mm2抗拉强度7.15Kg/mm2拉伸弹性模量235Kg/mm2冲击强度14.4 Kg-cm/cm2。

B002粘度20℃44泊分子量340胺值330+/-15每100份标准树脂用50份固化:80℃30分钟热变形温度76℃抗弯强度11.5Kg/mm2弯曲弹性模量291Kg/mm2抗拉强度7.30Kg/mm2拉伸弹性模量216Kg/mm2冲击强度15.8 Kg-cm/cm2。

N001粘度20℃29泊分子量330胺值340+/-15每100份标准树脂用60份固化:60℃30分钟热变形温度55℃抗弯强度11.6Kg/mm2弯曲弹性模量298Kg/mm2抗拉强度7.97Kg/mm2拉伸弹性模量100Kg/mm2冲击强度15.8 Kg-cm/cm2。

N002粘度20℃20泊分子量330胺值370+/-15每100份标准树脂用50份固化:室温热变形温度80.7℃抗弯强度12.4Kg/mm2弯曲弹性模量297Kg/mm2抗拉强度6.85Kg/mm2拉伸弹性模量

107Kg/mm2冲击强度15.8 Kg-cm/cm2。

S002粘度20℃350泊分子量1500胺值145+/-15。

双酮丙烯酰胺加成物CH2CHCONHC(CH3)2CH2CNRCH3它是由丙酮与丙烯腈制得的双酮丙烯酰胺(DAA)和伯胺反应得到的胺基加合物。无毒、操作方便,所得产品透明,耐候性、耐水性好。

缩胺(苯二甲胺缩合物)105浅棕色液体每100份标准树脂用12-14份。可室温固化,产物既有较高的热变形温度140℃,又有较好的韧性。2x135分子量253活泼氢当量60。

590棕黑色粘稠液体每100份标准树脂用12-20份毒性小、韧性分子量269活泼氢当量40。

593855浅黄色液体每100份标准树脂用20-25份粘度小、毒性低,使用期短,室温固化迅速,固化物韧性较好分子量233活泼氢当量40-50。

701T-33棕红色粘稠液体每100份标准树脂用25-35份挥发性小,用量要求不严,可在0-15℃及潮湿条件下固化。分子量226活泼氢当量40-50。

702T-32棕红色粘稠液体每100份标准树脂用30-40份挥发性小,用量要求不严,可在潮湿条件下固化。抗弯强度2500Kg/cm2冲击强度190Kg/cm2,分子量217活泼氢当量40-50。

703T-31棕红色粘稠液体粘度25℃比重-1.09gcm325℃折光率胺值460-480KOHmg当量/克每100份标准树脂用20-25份挥发性小,用量要求不严,可在潮湿条件下固化。抗弯强度2500Kg/cm2冲击强度136Kg/cm2抗拉强度150Kg/cm2分子量167活泼氢当量40-50

二氨基二苯基甲烷、甲基异丁基酮加合物,每100份标准树脂用38份,25℃24小时。

6、聚酰胺类

为提高耐热性,可在聚酰胺-环氧树脂配方中加入芳胺及其改性物,并加热固化之。聚酰胺的固化在常温下进行得较慢,若每百份加入1-3份的苯酚或DMP-30则固化加快。

200型棕红色液体胺值215+/-15KOHmg当量/克粘度40℃每100份标准树脂用40-100份固化:室温24小时或60℃3小时。

250型C36棕红色液体胺值240-260KOHmg当量/克粘度8000-25000cp/40℃密度-0.98gcm325℃每100份标准树脂用40-100份固化:室温24小时或60℃3小时。

300型棕红色液体胺值305+/-15KOHmg当量/克粘度40℃(8000-12000cp/40℃)密度-0.98gcm325℃每100份标准树脂用40-100份固化:室温24小时或60℃3小时。

400型棕红色液体胺值200+/-20KOHmg当量/克粘度40℃每100份标准树脂用40-100份固化:室温24小时或60℃3小时。

V115胺值238每100份标准树脂用40-60份固化:室温24小时或60℃3小时。热变形温度45℃抗弯强度750Kg/cm2抗压强度410Kg/cm2伸长率8%布氏硬度50-60。

203型棕黄色液体胺值200+/-20KOHmg当量/克粘度40℃每100份标准树脂用40-100份固化:室温24小时或60℃3小时。

V125胺值345每100份标准树脂用40-60份固化:室温24小时或60℃3小时。热变形温度70-85℃抗弯强度880-1020Kg/cm2抗压强度540Kg/cm2伸长率8%布氏硬度65-75。

V140胺值375每100份标准树脂用40-60份固化:室温24小时或60℃3小时。热变形温度110-115℃抗弯强度950Kg/cm2抗压强度540Kg/cm2布氏硬度67-91。

500型棕黄色液体胺值400+/-20KOHmg当量/克粘度40℃每100份标准树脂用45-65份固化:室温24小时或60℃3小时。

600型棕黄色液体胺值600+/-20KOHmg当量/克粘度40℃每100份标准树脂用20-30份固化:室温24小时或60℃3小时。

650型棕红色液体胺值200+/-20KOHmg当量/克粘度40℃(20000-40000cp/40℃)密度-0.98gcm325℃每100份标准树脂用40-100份固化:室温24小时或60℃3小时。

651型棕黄色液体胺值300+/-20KOHmg当量/克(浦江为390-410KOHmg当量/克)粘度40℃

(2000-10000cp/40℃)密度-0.98gcm325℃每100份标准树脂用45-65份固化:室温24小时或60℃3小时。

3051型棕红色液体胺值350+/-20KOHmg当量/克每100份标准树脂用40-100份固化:室温24小时或60℃3小时。

7、潜伏性固化剂

双氰胺白色结晶粉末熔点207-209℃每100份标准树脂用6-12份固化:150℃4小时贮存期6-12月。

HZ986R-10在20-30℃有好的贮藏稳定性其质量指标如下:固体含量9-11%比重-1.09克厘米3粘度25℃<5厘泊闪点36-43℃。

三氟化硼单乙胺白色固体熔点89℃每100份标准树脂用3份固化:120℃4小时贮存期3-4月。

三氟化硼苯胺淡黄色固体熔点250℃分解每100份标准树脂用5份固化:120℃2小时贮存期3-4周。

三氟化硼邻甲基苯胺淡黄色固体熔点250℃分解每100份标准树脂用5份固化:120℃2小时贮存期7-8天。

三氟化硼苄胺淡黄色固体熔点136-138℃每100份标准树脂用10份固化:130℃4小时贮存期3-4周。

三氟化硼二甲基苯胺淡绿色熔点85℃每100份标准树脂用5份固化:120℃4小时贮存期5-6天。

三氟化硼乙基苯胺淡黄色固体熔点48℃每100份标准树脂用5份固化:120℃4小时贮存期7-8天。

三氟化硼吡啶淡黄色固体熔点73℃每100份标准树脂用4-9份固化:100℃4小时/140℃6-8小时贮存期3-4月。

594黄棕色透明液体每100份标准树脂用4-12份固化:100℃4小时/140℃6-8小时贮存期3-4月。

癸二酸二酰肼每100份标准树脂用30份固化:165℃小时贮存期3-4月。

MS-1微胶囊每100份标准树脂用38份固化:150℃2小时贮存期2年。

MS-2微胶囊每100份标准树脂用50份固化:130℃2小时贮存期2年。

8、咪唑类固化剂

咪唑结晶固体熔点88-90℃每100份标准树脂用4-8份固化:60-80℃6-8小时/150℃4小时使用期长,毒性低。

2-甲基咪唑2MZ白色结晶熔点135-139℃每100份标准树脂用4-8份固化:60-80℃6-8小时/150℃4小时使用期长,活性温度82-87℃热变形温度130℃。

2-乙基咪唑白色结晶熔点61-66℃每100份标准树脂用3-5份固化:60-80℃6-8小时/150℃4小时使用期长,活性温度82-87℃。

2、4-二甲基咪唑白色结晶熔点92℃每100份标准树脂用3-7份固化:60-80℃6-8小时/150℃4小时使用期长,活性温度82-87℃。

2-乙基4-甲基咪唑EMZ-242E4MZ白色结晶熔点45℃每100份标准树脂用2-10份固化:60-80℃6-8小时/150℃4小时使用期长,活性温度82-87℃操作方便热变形温度135℃。

2-甲基咪唑与环氧丙烷丁基醚加成物704棕黑色液体每100份标准树脂用2-10份固化:70℃6小时使用期长,毒性低中温固化、耐热、耐溶剂。

2-甲基咪唑与环氧丙烷异辛基醚加成物705棕黑色液体每100份标准树脂用15份固化:80℃4小时使用期长,毒性低中温固化、耐热、耐溶剂。

2-甲基咪唑与环氧异丙烷辛基醚加成物163棕黑色液体每100份标准树脂用15份固化:100℃8小时使用期长,毒性低中温固化、耐热、耐溶剂。

含咪唑促进剂的间苯二胺和二氯基二苯基甲烷混合液780棕黑色液体每100份标准树脂用15份固化:100℃4小时使用期长,毒性低中温固化、耐热、耐溶剂。

2-甲基咪唑与丙烯腈加成物781棕黄色粘稠液体每100份标准树脂用10份固化:60-80℃8小时使用期长,毒性低中温固化、耐热、耐溶剂。

9、叔胺类

N、N-二甲基苯胺DMPA淡黄色油状液体分子量121每100份标准树脂用1-3份固化:室温有剌激臭味。

三乙醇胺TEOA无色液体分子量149每100份标准树脂用10-15份固化:80℃4小时/120℃2小时。

三乙胺TEA无色液体分子量101每100份标准树脂用10-15份固化:100℃1小时。

2、4、6-三(二甲胺基甲基)苯酚DMP-30K-54HY-960淡黄色液体分子量249每100份标准树脂用15份固化:80℃1IHJF。

苄基二甲胺BDMA无色液体分子量135每100份标准树脂用15份固化:室温3小时/80℃小时。

邻羟苄基二甲胺DMP-10无色液体分子量151每100份标准树脂用16份固化:室温2小时/80℃小时。

594黄棕色液体每100份标准树脂用4-12份固化:室温2小时/80℃小时好的热稳定性、韧性,耐低温性差。

595黄棕色液体每100份标准树脂用4-9份固化:室温2小时/80℃小时。

二甲胺基二甲烷TMD分子量254每100份标准树脂用份固化:80℃3小时。

DMP-30的三-(2-乙基已酸)盐K-61B粘度500-700cps。

六氢吡啶60-100℃6-14小时。

10、合成树脂类环氧固化剂

苯胺甲醛树脂在120℃16小时固化热变形温度155℃。

苯酚甲醛树脂在180℃2小时固化。

固化促进剂的种类及其所适用的固化剂。

苯酚适用的固化剂:胺类固化剂。

双酚A适用的固化剂:胺类固化剂。

间苯二酚适用的固化剂:胺类固化剂。

DMP-30HY960即2、4、6-三(二甲氨基亚甲基)苯酚适用的固化剂:胺类、酸酐类、低分子量聚酰胺类固化剂。

DMP-10即二甲胺基甲基苯酚适用的固化剂:胺类、酸酐类、低分子量聚酰胺类固化剂。

吡啶适用的固化剂:酸酐类、低分子量聚酰胺类固化剂。

苄基二甲胺适用的固化剂:酸酐类固化剂。DY062比重-0.9克厘米3粘度25℃<10厘泊闪点33-37℃。

2-乙基-4-甲基咪唑适用的固化剂:酸酐类、双氰胺类固化剂。

三氟化硼-单乙胺适用的固化剂:胺类固化剂。

三乙胺适用的固化剂:酸酐类固化剂。

脂肪胺适用的固化剂:低分子量聚酰胺类固化剂。

间甲酚适用的固化剂:胺类固化剂。

三乙醇胺适用的固化剂:胺类固化剂。

乙二硫醇适用的固化剂:胺类固化剂。

壬基酚适用的固化剂:胺类固化剂。

三乙胺基硼酸盐适用的固化剂:胺类固化剂。

酰基胍适用的固化剂:双氰胺类固化剂。

水杨酸金属盐-胺类反应(如水杨酸锌-异丙胺比例为2:1,用量为树脂的5%)适用的固化剂:胺类固化剂。

水杨酸-硼络合物是由2克分子水杨酸与1克分子H3BO3制得,2C6H4(OH)COOH+H3BO3=(OC6H4COO)2BH+3H2O将水杨酸-硼络合物聚乙二醇600配成%溶液,该促进剂不仅缩短了凝胶、固化时间,而且也增加耐热温度。适用的固化剂:胺类固化剂溶液用量为树脂的10%。

过氧化苯甲酰适用的固化剂:二氨基二苯基甲烷。

水杨醛钴适用的固化剂:酸酐类用量为树脂的%。

制冷剂的种类及特性

氨(R717)的特性 氨(R717、NH3)是中温制冷剂之一,其蒸发温度ts为-33.4℃,使用范围是+5℃到-70℃,当冷却水温度高达30℃时,冷凝器中的工作压力一般不超过1.5MPa。 氨的临界温度较高(tkr=132℃)。氨是汽化潜热大,在大气压力下为1164KJ/Kg,单位容积制冷量也大,氨压缩机之尺寸可以较小。 纯氨对润滑油无不良影响,但有水分时,会降低冷冻油的润滑作用。 纯氨对钢铁无腐蚀作用,但当氨中含有水分时将腐蚀铜和铜合金(磷青铜除外),故在氨制冷系统中对管道及阀件均不采用铜和铜合金。 氨的蒸气无色,有强烈的刺激臭味。氨对人体有较大的毒性,当氨液飞溅到皮肤上时会引起冻伤。当空气中氨蒸气的容积达到0.5-0.6%时可引起爆炸。故机房内空气中氨的浓度不得超过0.02mg/L。 氨在常温下不易燃烧,但加热至350℃时,则分解为氮和氢气,氢气于空气中的氧气混合后会发生爆炸。 氟哩昂的特性 氟哩昂是一种透明、无味、无毒、不易燃烧、爆炸和化学性稳定的制冷剂。不同的化学组成和结构的氟里昂制冷剂热力性质相差很大,可适用于高温、中温和低温制冷机,以适应不同制冷温度的要求。 氟里昂对水的溶解度小,制冷装置中进入水分后会产生酸性物质,并容易造成低温系统的“冰堵”,堵塞节流阀或管道。另外避免氟里昂与天然橡胶起作用,其装置应采用丁晴橡胶作垫片或密封圈。 常用的氟里昂制冷剂有R12、R22、R502及R1341a,由于其他型号的制冷剂现在已经停用或禁用。在此不做说明。 氟里昂12(CF2CL2,R12):是氟里昂制冷剂中应用较多的一种,主要以中、小型食品库、家用电冰箱以及水、路冷藏运输等制冷装置中被广泛采用。R12具有较好的热力学性能,冷藏压力较低,采用风冷或自然冷凝压力约0.8-1.2KPa。R12的标准蒸发温度为-29℃,属中温制冷剂,用于中、小型活塞式压缩机可获得-70℃的低温。而对大型离心式压缩机可获得-80℃的低温。近年来电冰箱的代替冷媒为R134a。 氟里昂22(CHF2CL,R22):是氟里昂制冷剂中应用较多的一种,主要以家用空调和低温冰箱中采用。R22的热力学性能与氨相近。标准气化温度为-40.8℃,通常冷凝压力不超过1.6MPa。R22不燃、不爆,使用中比氨安全可靠。R22的单位容积比R12约高60%,其低温时单位容积制冷量和饱和压力均高于R12和氨。近年来对大型空调冷水机组的冷媒大都采用 R134a来代替。 氟里昂502(R502):R502是由R12、R22以51.2%和48.8%的百分比混合而成的共沸溶液。R502与R115、R22相比具有更好的热力学性能,更适用于低温。R502的标准蒸发温度为-45.6℃,正常工作压力与R22相近。在相同的工况下的单位容积制冷量比R22大,但排气温度却比R22低。R502用于全封闭、半封闭或某些中、小制冷装置,其蒸发温度可低达-55℃。R502在冷藏柜中使用较多。 氟里昂134a(C2H2F4,R134a):是一种较新型的制冷剂,其蒸发温度为-26.5℃。它的主要热力学性质与R12相似,不会破坏空气中的臭氧层,

制冷剂

制冷剂 一;对制冷剂性质的要求 (1)具有优良的热力学特性,以便能在给定的温度区域内运行时有较高的循环效率。具体要求为:临界温度高于冷凝温度、与冷凝温度对应的饱和压力不要太高、标准沸点较低、流体比热容小、绝热指数低、单位容积制热量较大等。 (2)具有优良的热物理性能具体要求为:较高的传热系数、较低的粘度及较小的密度。 (3)具有良好的化学稳定性要求工质在高温下具有良好的化学稳定性,保证在最高工作温度下工质不发生分解。 (4)与润滑油有良好互溶性 (5)安全性工质应无毒、无刺激性、无燃烧性及爆炸性。 (6)有良好的电气绝缘性 (7)经济性要求工质低廉,易于获得。 (8)环保性要求工质的臭氧消耗潜能值(ODP)与全球变暖潜能值(GWP)尽可能小,以减小对大气臭氧层的破坏及引起全球气候变暖。 二;制冷剂的一般分类 根据制冷剂常温下在冷凝器中冷凝时饱和压力Pk和正常蒸发温度T0的高低,一般分为三大类: 1.低压高温制冷剂 冷凝压力Pk≤2~3㎏/㎝(绝对),T0>0℃ 如R11(CFCl3),其T0=23.7℃。这类制冷剂适用于空调系统的离心式制冷压缩机中。通常30℃时,Pk≤3.06 ㎏/㎝。 2.中压中温制冷剂 冷凝压力Pk<20 ㎏/㎝(绝对),0℃>T0>-60℃。 如R717、R12、R22等,这类制冷剂一般用于普通单级压缩和双级压缩的活塞式制冷压缩机中。 3.高压低温制冷剂 冷凝压力Pk≥20 ㎏/㎝(绝对),T0≤-70℃。 如R13(CF3Cl)、R14(CF4)、二氧化碳、乙烷、乙烯等,这类制冷剂适用于复迭式制冷装置的低温部分或-70℃以下的低温装置中。

目前使用的制冷剂已达70~80种,并正在不断发展增多。但用于食品工业和空调制冷的仅十多种。其中被广泛采用的只有以下几种:1.氨(代号:R717) 氨是目前使用最为广泛的一种中压中温制冷剂。氨的凝固温度为 -77.7℃,标准蒸发温度为-33.3℃,在常温下冷凝压力一般为1.1~ 1.3MPa,即使当夏季冷却水温高达30℃时也绝不可能超过1.5MPa。氨的单位标准容积制冷量大约为520kcal/m3。 氨有很好的吸水性,即使在低温下水也不会从氨液中析出而冻结,故系统内不会发生“冰塞”现象。氨对钢铁不起腐蚀作用,但氨液中含有水分后,对铜及铜合金有腐蚀作用,且使蒸发温度稍许提高。因此,氨制冷装置中不能使用铜及铜合金材料,并规定氨中含水量不应超过0.2%。 氨的比重和粘度小,放热系数高,价格便宜,易于获得。但是,氨有较强的毒性和可燃性。若以容积计,当空气中氨的含量达到0.5%~0.6%时,人在其中停留半个小时即可中毒,达到11%~13%时即可点燃,达到16%时遇明火就会爆炸。因此,氨制冷机房必须注意通风排气,并需经常排除系统中的空气及其它不凝性气体。 总上所述,氨作为制冷剂的优点是:易于获得、价格低廉、压力适中、单位制冷量大、放热系数高、几乎不溶解于油、流动阻力小,泄漏时易发现。其缺点是:有刺激性臭味、有毒、可以燃烧和爆炸,对铜及铜合金有腐蚀作用。 2.氟利昂-12(代号:R12) R12为烷烃的卤代物,学名二氟二氯甲烷,分子式为CF2Cl2。它是我国中小型制冷装置中使用较为广泛的中压中温制冷剂。R12的标准蒸发温度为-29.8℃,冷凝压力一般为0.78~0.98MPa,凝固温度为-155℃,单位容积标准制冷量约为288kcal/m3。 R12是一种无色、透明、没有气味,几乎无毒性、不燃烧、不爆炸,很安全的制冷剂。只有在空气中容积浓度超过80%时才会使人窒息。但与明火接触或温度达400℃以上时,则分解出对人体有害的气体。 R12能与任意比例的润滑油互溶且能溶解各种有机物,但其吸水性极弱。因此,在小型氟利昂制冷装置中不设分油器,而装设干燥器。同时规定R12中含水量不得大于0.0025%,系统中不能用一般天然橡胶作密封垫片,而应采用丁腈橡胶或氯乙醇等人造橡胶。否则,会造成密封垫片的膨胀引起制冷剂的泄漏。 3.氟利昂-22(代号:R22)

空调常用制冷剂的特性

空调常用制冷剂的特性 目前我们所使用的制冷剂已达70~80种,并正在不断发展增多。但用于食品工业和空调制冷的仅十多种。其中被广泛采用的只有以下几种: 1.氨(代号:R717) 氨是目前使用最为广泛的一种中压中温制冷剂。氨的凝固温度为-77.7℃,标准蒸发温度为-33.3℃,在常温下冷凝压力一般为1.1~1.3MPa,即使当夏季冷却水温高达30℃时也绝不可能超过1.5MPa。氨的单位标准容积制冷量大约为520kcal/m3。 氨有很好的吸水性,即使在低温下水也不会从氨液中析出而冻结,故系统内不会发生“冰塞”现象。氨对钢铁不起腐蚀作用,但氨液中含有水分后,对铜及铜合金有腐蚀作用,且使蒸发温度稍许提高。因此,氨制冷装置中不能使用铜及铜合金材料,并规定氨中含水量不应超过0.2%。 氨的比重和粘度小,放热系数高,价格便宜,易于获得。但是,氨有较强的毒性和可燃性。若以容积计,当空气中氨的含量达到 0.5%~0.6%时,人在其中停留半个小时即可中毒,达到11%~13%时即可点燃,达到16%时遇明火就会爆炸。因此,氨制冷机房必须注意通风排气,并需经常排除系统中的空气及其它不凝性气体。 总上所述,氨作为制冷剂的优点是:易于获得、价格低廉、压力

适中、单位制冷量大、放热系数高、几乎不溶解于油、流动阻力小,泄漏时易发现。其缺点是:有刺激性臭味、有毒、可以燃烧和爆炸,对铜及铜合金有腐蚀作用。 2.氟利昂-12(代号:R12) R12为烷烃的卤代物,学名二氟二氯甲烷,分子式为CF2Cl2。它是我国中小型制冷装置中使用较为广泛的中压中温制冷剂。R12 的标准蒸发温度为-29.8℃,冷凝压力一般为0.78~0.98MPa,凝固温度为-155℃,单位容积标准制冷量约为288kcal/m3。 R12是一种无色、透明、没有气味,几乎无毒性、不燃烧、不爆炸,很安全的制冷剂。只有在空气中容积浓度超过80%时才会使人窒息。但与明火接触或温度达400℃以上时,则分解出对人体有害的气体。 R12能与任意比例的润滑油互溶且能溶解各种有机物,但其吸水性极弱。因此,在小型氟利昂制冷装置中不设分油器,而装设干燥器。同时规定R12中含水量不得大于0.0025%,系统中不能用一般天然橡胶作密封垫片,而应采用丁腈橡胶或氯乙醇等人造橡胶。否则,会造成密封垫片的膨胀引起制冷剂的泄漏。

新型制冷剂热力性质的快速计算及其特性研究

文章编号:1671-6612(2009)02-029-03 新型制冷剂热力性质的快速计算及其特性研究 陈锦华 敖永安 沈 琳 王聪民 高兴全 (沈阳建筑大学市政与环境学院 辽宁 110168) 【摘 要】 提出了新型制冷剂R407C 、R410A 及R227热力性质的快速计算方法,并对其特性分析比较。借 鉴Cleland 制冷剂热力性质简化计算公式,拟合出热力性质快速计算方程的系数,并从运行效率、经济性和安全性等角度来研究新型制冷剂的特性。结果在制冷空调的常用温度范围内,检验拟合系数的计算精度与Cleland 给出的其他制冷剂拟合精度相仿,在某些性能上新型制冷剂要优于被替代物。此快速计算方法可应用于装置的仿真和优化计算及装置或过程的实时控制。R407C 、R410A 能很好作为R22的替代物,R227是一种很有前途的制冷剂,很有可能作为混合物的一种阻燃组份用于HCFC 的混合替代物中,或作为热泵中CFC 的纯质替代物使用。 【关键词】 制冷剂;热力性质;计算;特性研究 中图分类号 TQ025 文献标识码 A The Comparison of Characteristics of Thermal Performance and Optimization and Simulation Calculation Method of Several New Refrigerant Chen Jinhua Ao Yong’an Shen Lin Wang Congmin Gao Xingquan (Institute of Urban Services and Environment , Architecture University , Liaoning, 110168) 【Abstract 】 Through comparing the thermodynamic properties of new refrigerant of R407C, R410A and R227,propose an optimization and simulation method. By using the simplified calculation formula of refrigerant of Cleland,draw the coefficient of quick calculation equation of thermodynamic properties,and study the characteristics of the new refrigerant from various angles such as operating efficiency, economy and security.result in the commonly used temperature range of refrigerating air-conditioning, the calculation accuracy of fitting coefficient is similar to fitting precision of other refrigerants which Cleland gives. In some performance,the new refrigerant is superior to the alternatives.conclusion This quick calculation method can be applied to simulation and optimization calculation of the device and the device or process real-time control. R407C, R410A can replace R22 very well, R227 is a promising refrigerant,it is possiblily used in the mixed HCFC alternatives as one flame-retardant component of the mixture,or as pure alternative of the CFC in the heat pump. 【Keywords 】 refrigerant ; thermodynamic properties ; calculation ; characteristics study 基金项目:“十一五”国家科技支撑计划重大项目(2006BAJ03B01) 作者简介:陈锦华(1981-),男,硕士研究生,主要从事建筑节能研究。 收稿日期:2008-11-06 0 引言 制冷工质的热力学性质和热物理性质数据是制冷系统流动、传热计算的基础。传统的查图表方法因效率低且精度不够,不满足系统仿真、优化计算及实时控制的要求,而被具有较高精度的简单快速计算公式所取代。许多研究者致力于这方面的工作,并提出了繁简不一的理论公式和经验方程。考虑到在装置的仿真和优化计算时,对制冷剂热力性质计算的速度和稳定性有较高的要求及在装置或过程的实时控制时,不可能在控制模块中附加很复杂的计算程序,因此笔者提出了简化快速计算方法。 第23卷第2期 2009年4月 制冷与空调 Refrigeration and Air Conditioning V ol.23 No.2 Apr. 2009.29~31

常用制冷剂R134a的特性

常用制冷剂R134a的特性 时间:2010-02-22 来源:互联网发布评论进入论坛 R134a(SUVA 134a),化学名:1,1,1,2-- 四氟乙烷,分子组成:CH2FCF3,CAS注册号:811-97-2,分子量:102.0,HFC型制冷剂,ODP值为零。R134a 的热力和物理性质,以及其低毒性,使之成为一种非常有效和安全的替代品。HFC-134a可用在目前使用CFC-12(二氯二氟甲烷)的许多领域,包括:汽车空调、家用电器、小型固定制冷设备、超级市场的中温制冷、工商业的制冷机,聚合物发泡,气雾剂产品,以及镁合金保护气体等。 R134a 作为新一代的环保制冷剂,用于替代R12(二氯二氟甲烷),R22,主要应用于汽车空调,冰箱,冷柜,饮水机,除湿机,中央空调(冷水机组)等制冷空调设备中。 用作保护气体:用于镁合金加工上的保护气体。 用于聚合物发泡:聚合物发泡。 用于气雾剂:HFC-134a也可用于那些对毒性和可燃性要求严格的气雾剂中;由于HFC-134a 的低毒和不易燃性,它被研制用于药物吸入剂的载体(即医用气雾剂)。 压缩机生产商通常建议使用多元醇酯POE(Polyol Ester)和聚二醇PAG(Polyalkylene Glycol)(汽车空调)冷冻机油。 HFC-134a的主要物化性质

中温制冷情况下CFC-12和HFC-134a理论性能的对照 膨胀阀的结构和工作原理 1热力膨胀阀的作用: 热力膨胀阀安装在蒸发器入口,常称为膨胀阀,主要作用有两个:1)节流做用:高温高压的液态制冷剂经过膨胀阀的节流孔节流后,成为低温低压的雾状的液压制冷 剂,为制冷剂的蒸发创造条件; 2)控制制冷剂的流量:进入蒸发器的液态制冷剂,经过蒸发器后,制冷剂由液态蒸发为气态,吸收热量,降低车内的温度。膨胀阀控制制冷剂的流量,保证蒸发器的出口完全为气态制冷剂,若流量过大,出口含有液态制冷剂,可能进入压缩机产生液击;若制冷剂流量过小,提前蒸发完毕,造成制冷不足;

常用的固化剂种类及材料特性总结

常用的固化剂种类和性能 环氧树脂是线型的热塑性树脂,本身不会硬化,且不具有任何使用性能,只有加入固化剂,使它由线型结构交联成网状或体型结构,形成不溶不熔物,才具有优良的使用性能;并且固化产物的性能在很大程度上取决于固化剂,因此。固化剂是环氧树脂结合剂中的一个重要组成部分。 凡能和环氧树脂的环氧基及羟基作用,使树脂交联的物质,叫做固化剂,也叫硬化剂或交联剂。 根据固化所需的温度不同可分为加热固化剂和室温固化剂两类。如果根据化学结构类型的不同,可分为胺类固化剂,酸酐类固化剂,树脂类固化剂,咪唑类固化剂及潜伏性固化剂等。按固化剂的物态不同可分为液体固化剂和固体固化剂两类。 常用的固化剂种类和性能

固化后环氧树脂的性能,特别是耐热性和力学强度,主要是由固化剂来提供,不同固化制成制品的耐热性和力学强度相差较大。 环氧树脂常用固化剂材料特性及配方 环氧树脂本身是一个线性结构的化合物,性能很稳定,必须与固化剂一块使用才能具有实用价值。因此固化剂是环氧树脂在使用过程中必不

可少的重要组成部分。环氧树脂的固化剂种类很多,常见的有:脂肪胺类、脂环胺类、芳香胺类、酸酐、聚酰胺类、改性胺类、潜伏性类、树脂类、叔胺类。 由于固化剂的不同会直接影响制品的工艺过程及制品的物理化学性能,所以根据应用的场合来加以选择这些环氧树脂固化剂是十分重要的。如固化工艺是常温固化还是加温固化?制品要求是硬质的还是软质的?是要求耐高温的还是低温的?使用环境是潮湿的还是干燥的?不同的场合使用的固化剂有所不同。总之要根据实际情况选择合适的固化剂,以便发挥出所用环氧树脂体系的最好的性能 1、脂肪多元胺 乙二胺EDA H2NCH2CH2NH2 分子量60 活泼氢当量15 无色液体每100份标准树脂用6-8份性能:有毒、有剌激臭味,挥发性大、粘度低、可室温快速固化。用于粘接、浇注、涂料。该类胺随分子量增大,粘度增加,挥发性减小,毒性减小,性能提高。但它们放热量大、适用期短。一般而言它们分子量越大受配合量影响越小。长期接触脂肪多元胺会引起皮炎,它们的蒸汽毒性很强,操作时须十分注意。 二乙烯三胺DETA H2NC2H4NHC2H4NH2 分子量103 活泼氢当量20.6 无色液体每100份标准树脂用8-11份。固化:20℃2小时+100℃30分钟或20℃4天。性能:适用期50克25℃45分钟,热变形温度95-124℃,抗弯强度1000-1160kg/cm2,抗压强度1120kg/cm2,抗拉强度780kg/cm2,伸长率5.5%,冲击强度0.4尺-磅/寸洛氏硬度99-108。介电常数(50赫、23℃)4.1 功率因数(50赫、23℃)0.009 体积电阻2x1016 Ω-cm 常温固化、毒性大、放热量大、适用期短。 三乙烯四胺TETA H2NC2H4NHC2H4NHC2H4NH2 分子量146 活泼氢当量24.3 无色粘稠液体每100份标准树脂用10-13份固化:20℃2小时+100℃30分钟或20℃7天。性能:适用期50克25℃45分钟,热变形温度98-124℃,抗弯强度950-1200kg/cm2,抗压强度1100kg/cm2,抗拉强度780kg/cm2,伸长率4.4%,冲击强度0.4尺-磅/寸洛氏硬度99-106。常温固化、毒性比二乙烯三胺稍低、放热量大、适用期短。 四乙烯五胺TEPA H2NC2H4(NHC2H4)3NH2 分子量189 活泼氢当量27 棕色液体每100份标准树脂用11-15份性能同上。

制冷剂R134a的特点及正确使用

制冷剂R134a的特点及正确使用长期以来含氯氟利昂R 12(CCL2F2)一直是汽车空调的唯一制冷剂,近年来科学家们发现,R 12的氯会破坏地球上空15km-25km 内的臭氧层,从而使更多的太阳能光紫外线能辐射到地球危害到人体健康,因此,国际社会于1987年9月在加拿大缔结了蒙特利尔协议书,明确规定了禁用R 12的期限为2000年,但近年来由于臭氧层的破坏不断加剧,国际社会把R 12R 的完全禁用日期提前到了1995年,发展中国家则可推迟10年。 我国于1992年发文规定:各汽车厂从1996年起在汽车空调中逐步用新制冷剂R 134a替代R 12,在2000年生产的新车上不准再用R 12。因此,汽车使手人员和维修人员必须了解和熟悉新制冷剂R134a的特点,以便能够熟练、正确地使用。 一、制冷剂R 134a的主要特点 ①.R 134a不含氯原子,对大气臭氧层不起破坏作用; ②.R 134a具有良好的安全性能(不易燃,不爆炸,无毒,无剌激性无腐性); ③.R 134a的传热性能比较接近,所以制冷系统的改型比较容易。 ④.R 134a的传热性能比R 12好,因此制冷剂的用量可大大减少。 二、 R 134a与R12制冷系统的主要区别

①.存放R 134a的容器为浅蓝色,而存放R 12的容器为白色。 ②.R 134a制冷系统连接软管是用橡胶和尼龙特制的,并且在其处部有汽车工程学会的印记(S.A.E.#J2196);而 R12制冷系统连接软管常用一般橡胶管。 ③.R 134a制冷系统连接管有颜色标记(低压管是蓝色带黑色条纹,高压管是红色带黑色条纹,普通管是黄色带黑色条纹)而R 12制冷系统连接管则无标记。 ④.R 134a制冷剂入口处使用的是快速接头,而R 12制冷系统估用的是螺纹接口。 ⑤.R 134a制冷系统连接软管与仪表的接头具有1/2in英寸螺纹,且高压口的接头比低压口的大;而R12制冷系统连接软管与仪表的接头具有7/16in螺纹。 ⑥.与R12制冷系统相比R134a制冷系统具有较高的压力和温度,需要较大的冷却风扇。 三、 R134a的使用及维修注意事项。 A).用于R 134a的仪器,设备和量具等不能与用R 12的互换,因若在R 134a中混有R12会使压缩面损坏,并且也可能使用仪器和调备损坏。 B).R 134a与R 12制冷剂的冷冻机油不能混用,因为R 134a 与R 12制冷系统的冷冻机油不相容。R12制冷系统一般用国产的18号、25号冷冻机油或日本产的SUNISO3GS、SUNISO4GS、SUNISO5GS

常用制冷剂种类及特性

说明 制冷剂又称制冷工质, 1987 HCFC 制冷剂的要求 热力学的要求 在大气压力下, 要求制冷剂在常温下的冷凝压力 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在

凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。 物理化学的要求 制冷剂的粘度应尽可能小,以减少管道流动阻力、提换热设备的传热强度。制冷剂的导热系数应当高,以提高换热设备的效率,减少传热面积。 制冷剂与油的互溶性质:制冷剂溶解于润滑油的性质应从两个方面来分析。如 应具有一定的吸水性, 应具有化学稳定性:不燃烧、不爆炸,使用中不分解,不变质。同时制冷剂本

安全性的要求 由于制冷剂在运行中可能泄漏,故要求工质对人身健康无损害、无毒性、无刺激作用。 制冷剂的分类 在压缩式制冷剂中广泛使用的制冷剂是氨、 无机化合物制冷剂:这类制冷剂使用得比较早,如氨( 氟里昂(卤碳化合物制冷剂):氟里昂是饱和碳氢化合物中全部或部分氢元素饱和碳氢化合物:这类制冷剂中主要有甲烷、乙烷、丙烷、丁烷和环状有机化不饱和碳氢化合物制冷剂:这类制冷剂中主要是乙烯( 共沸混合物制冷剂:这类制冷剂是由两种以上不同制冷剂以一定比例混合而成高温、中温及低温制冷剂:是按制冷剂的标准蒸发温度和常温下冷凝压力来分

氨( 氨( 氨的临界温度较高 纯氨对润滑油无不良影响,但有水分时,会降低冷冻油的润滑作用。 纯氨对钢铁无腐蚀作用,但当氨中含有水分时将腐蚀铜和铜合金(磷青铜除氨的蒸气无色,有强烈的刺激臭味。氨对人体有较大的毒性,当氨液飞溅到皮氨在常温下不易燃烧,但加热至 氟哩昂的特性 氟哩昂是一种透明、无味、无毒、不易燃烧、爆炸和化学性稳定的制冷剂。不同的化学组氟里昂对水的溶解度小,

制冷剂的分类、编号方法、安全等级

干货 | 一文搞定制冷剂的分类、编号方法、安全等级 制冷剂又称制冷工质,是制冷系统中的工作物质。当前,能当作制冷剂的物质有80多种,最常见的制冷剂有氟利昂(包括:R22、R134a 、R407c 、R410a 、R32等)、氨(NH )、水(H O )、二氧化碳(CO )、少数碳氢化合物(如:R290、R600a )。 1、制冷剂的分类 根据制冷剂在标准大气压力(100kPa )条件下蒸发温度t 的高低,可将其分为:高温制冷剂、中温制冷剂、低温制冷剂。[1] 图:制冷剂的分类 注:P 为环境温度为30℃的冷凝压力 高温制冷剂(或低压制冷剂),如:R11、R113、R114、R21,常用于离心式制冷机的空调系统。中温制冷剂(或中压制冷剂),如:R12、R22、R717、R142、R502,常用于普通单级压缩和双级压缩的活塞式制冷压缩机。 高温制冷剂(或高压制冷剂),如:R13、R14、R503、烷烃、烯烃,常用于复叠式制冷装置的低温级 此外,根据化学组成不同,制冷剂还可分为以下几类:1)无机化合物,2)饱和烃的卤化物(氟利昂),3)碳氢化合物,4)共沸制冷剂,5)非共沸制冷剂。 2、制冷剂编号表示方法 1)无机化合物 322s c

无机化合物制冷剂的代号中R后的第一个数字为7,其后跟的数字是分子量的整数部分。 2)饱和烃的卤化物(氟利昂) 氟利昂的代号是用字母R,和其后跟随的数字(m-1)(n+1)(x)B(z)组成。m=1时,(m-1)可省略;如果z=0,B(z)可省略。 3)碳氢化合物

饱和碳氢化合物也按照氟利昂的编号规则书写,除了丁烷例外写成R600。此外,同素异构物在代号后面加一个字母“a”,如异丁烧为R600a。 非饱和碳氢化合物和它们的卤族元素衍生物。在R后面先写一个“1”,然后写上按氟利昂编号规则的数字。 4)共沸制冷剂 共沸制冷剂在编号标准中规定R后的第一个数字为5,其后的两位数字按实用的先后次序编号,如R500,R501等。 5)非共沸制冷剂 非共沸制冷剂规定R后第一个数字为4,其后二位数字按实用的先后次序编号,如R400,R401, R407A,R407B,R407C等。

半固化片的固化反应机理及常用固化剂概述

半固化片的固化反应机理及常用固化剂概述 2009-8-6 15:14:10 资料来源:PCBcity 作者: 杨金爽 摘要:多层压合是多层电路板制作中一个必不可少的环节。多层压合是指将已完成图形制作的内层芯板和外层铜箔,通过半固化片在高温高压下发生聚合反应生成固体聚合物,从而使两者粘结在一起。半固化片中所含固化剂的种类将决定半固化片——环氧树脂发生固化反应的历程以及生成的固体聚合物的性能。本文介绍了几种常见的固化剂以及在这种固化剂作用下的固化反应机理。 关键词:固化反应;固化剂 1 引言 目前普遍使用的半固化片中所采用的树脂成分主要为环氧树脂。环氧树脂是泛指分子中有两个或两个以上环氧基团的有机高分子化合物,其环氧基团可以位于分子链的末端、中间或呈环状结构。正是由于活泼环氧基团的存在,才可使环氧树脂与固化剂在一定的条件下发生固化反应,生成立体网状结构的产物,从而显现出各种优良的性能。固化剂在环氧树脂的应用中是必不可少的,有些固化剂不同于催化剂,它在固化反应中既起到催化作用,又与树脂相互交联生成交联聚合物。因此固化剂在某种程度上对固化反应起着决定性作用,它决定了固化反应历程和所生成的交联聚合物的性质。半固化片中所添加的固化剂都是潜伏型固化剂,即在室温条件下可与环氧树脂较长期稳定地存在,而在高温高压或者光照等特殊条件下才具有反应活性,使环氧树脂固化。本文对于常用的潜伏型固化剂进行介绍,并以最常见的环氧树脂类型——二酚基丙烷型环氧树脂(简称双酚A 型环氧树脂)为例,介绍了添加不同固化剂时,所发生固化反应的机理。 2 固化剂的种类 2.1 按照官能团分类 (1)胺类 胺类固化剂包括脂肪族胺类和芳香族二胺类。其中脂肪族胺类中最常用的是乙二胺、己二胺、二乙烯三胺、三乙烯四胺等,通常为了降低其固化活性,提高贮存运输的稳定性,可以将其进行化学改性,与有机酮类化合物进行亲核加成反应,生成酮亚胺类物质。 经过改性制得的芳香族二胺固化剂具有优良的性能,毒性低、吸水率低,从而使其贮存更加方便,而Tg 高则使板材的尺寸更加稳定。二氨基二苯砜(DDS )是目前研究最成熟的芳香族固化剂,由于具有强吸电子的砜基,所以它

制冷剂的分类

常用制冷剂种类及特性 新闻来源: 空调技术网2005-6-14 11:13:12作者: 未知责任编辑: LOG 说明 制冷剂又称制冷工质,是制冷循环的工作介质,利用制冷剂的相变来传递热量,既制冷剂在蒸发器中汽化时吸热,在冷凝器中凝结时放热。当前能用作制冷剂的物质有80多种,最常用的是氨、氟里昂类、水和少数碳氢化合物等。 1987年9月在加拿大的蒙特利尔室召开了专门性的国际会议,并签署了《关于消耗臭氧层的蒙特利尔协议书》,于1989年1月1日起生效,对氟里昂在的R11、R12、R113、R114、R115、R502及R22等CFC类的生产进行限制。1990年6月在伦敦召开了该议定书缔约国的第二次会议,增加了对全部CFC、四氯化碳(CCL4)和甲基氯仿 (C2H3CL3)生产的限制,要求缔约国中的发达国家在2000年完全停止生产以上物质,发展中国家可推迟到2010年。另外对过渡性物质HCFC提出了2020年后的控制日程表。 HCFC中的R123和R134a是R12和R22的替代品。 制冷剂的要求氨(R717)的特性 制冷剂的分类氟哩昂的特性 制冷剂的要求 热力学的要求 在大气压力下,制冷剂的蒸发温度(沸点)ts要低。这是一个很重要的性能指标。ts愈低,则不仅可以制取较低的温度,而且还可以在一定的蒸发温度to下,使其蒸发压力Po高于大气压力。以避免空气进入制冷系统,发生泄漏时较容易发现。 要求制冷剂在常温下的冷凝压力Pc应尽量低些,以免处于高压下工作的压缩机、冷凝器及排气管道等设备的强度要求过高。并且,冷凝压力过高也有导致制冷剂向外渗漏的可能和引起消耗功的增大。 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量qv要求尽可能大,这样可以缩小压缩机尺寸和减少制冷工质的循环量;而对于小型或微型压缩机,单位容积制冷量可小一些;对于小型离心式压缩机亦要求制冷剂qv要小,以扩大离心式压缩机的使用范围,并避免小尺寸叶轮制造之困难。 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在常温或普通低温范围内能否液化。 凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。

冷媒类型

目前使用的制冷剂已达70~80种,并正在不断发展增多。但用于食品工业和空调制冷的仅十多种。其中被广泛采用的只有以下几种: 1.氨(代号:R717)氨是目前使用最为广泛的一种中压中温制冷剂。氨的凝固温度为-77.7℃,标准蒸发温度为-33.3℃,在常温下冷凝压力一般为1.1~1.3MPa,即使当夏季冷却水温高达30℃时也绝不可能超过1.5MPa。氨的单位标准容积制冷量大约为520kcal/m3。氨有很好的吸水性,即使在低温下水也不会从氨液中析出而冻结,故系统内不会发生“冰塞”现象。氨对钢铁不起腐蚀作用,但氨液中含有水分后,对铜及铜合金有腐蚀作用,且使蒸发温度稍许提高。因此,氨制冷装置中不能使用铜及铜合金材料,并规定氨中含水量不应超过0.2%。氨的比重和粘度小,放热系数高,价格便宜,易于获得。但是,氨有较强的毒性和可燃性。若以容积计,当空气中氨的含量达到0.5%~0.6%时,人在其中停留半个小时即可中毒,达到11%~13%时即可点燃,达到16%时遇明火就会爆炸。因此,氨制冷机房必须注意通风排气,并需经常排除系统中的空气及其它不凝性气体。总上所述,氨作为制冷剂的优点是:易于获得、价格低廉、压力适中、单位制冷量大、放热系数高、几乎不溶解于油、流动阻力小,泄漏时易发现。其缺点是:有刺激性臭味、有毒、可以燃烧和爆炸,对铜及铜合金有腐蚀作用。 2.氟利昂-12(代号:R12)R12为烷烃的卤代物,学名二氟二氯甲烷,分子式为CF2Cl2。它是我国中小型制冷装置中使用较为广泛的中压中温制冷剂。R12的标准蒸发温度为-29.8℃,冷凝压力一般为0.78~0.98MPa,凝固温度为-155℃,单位容积标准制冷量约为288kcal/m3。R12是一种无色、透明、没有气味,几乎无毒性、不燃烧、不爆炸,很安全的制冷剂。只有在空气中容积浓度超过80%时才会使人窒息。但与明火接触或温度达400℃以上时,则分解出对人体有害的气体。R12能与任意比例的润滑油互溶且能溶解各种有机物,但其吸水性极弱。因此,在小型氟利昂制冷装置中不设分油器,而装设干燥器。同时规定R12中含水量不得大于0.0025%,系统中不能用一般天然橡胶作密封垫片,而应采用丁腈橡胶或氯乙醇等人造橡胶。否则,会造成密封垫片的膨胀引起制冷剂的泄漏。 3.氟利昂-22(代号:R22)R22也是烷烃的卤代物,学名二氟一氯甲烷,分子式为CHClF2,标准蒸发温度约为-41℃,凝固温度约为-160℃,冷凝压力同氨相似,单位容积标准制冷量约为454kcal/m3。R22的许多性质与R12相似,但化学稳定性不如R12,毒性也比R12稍大。但是,R22的单位容积制冷量却比R12大的多,接近于氨。当要求-40~-70℃的低温时,利用R22比R12适宜,故目前R22被广泛应用于-40~-60℃的双级压缩或空调制冷系统中。 4. R-134a(代号:R134a)分子式:CH 2 FCF 3 (四氟乙烷),分子量:102.03 沸点:-26.26℃,凝固点:-96.6°C ,临界温度:101.1 ℃,临界压力:4067kpa 饱和液体密度:25℃,1.207g/cm 3 ,液体比热:25℃,1.51KJ/(Kg·℃) 溶解度( 水中,25℃ ) :0.15% ,临界密度:0.512g/cm3 破坏臭氧潜能值(ODP):0 ,全球变暖系数值(GWP):0.29 沸点下蒸发潜能:215 kJ/kg 质量指标:纯度≥ 99.9 % ,水份PPm≤ 0.0010,酸度PPm≤ 0.00001 ,蒸发残留物PPm≤ 0.01 R134a作为R12的替代制冷剂,它的许多特性与R12很相像。R134a的毒性非常低,在空气中不可燃,安全类别为A1,是很安全的制冷剂。R134a的化学稳定性很好,然而由于它的溶水性比R22高,所以对制冷系统不利,即使有少量水分存在,在润滑油等的作用下,将会产生酸、二氧化碳或一氧化碳,将对金属产生腐蚀作用,或产生“镀铜”作用,所以R134a 对系统的干燥和清洁要求更高。R134a对钢、铁、铜、铝等金属未发现有相互

环氧树脂固化剂概论

环氧树脂是一类具有良好的粘接性、电绝缘性、化学稳定性的热固性高分子材料,作为胶粘剂、涂料和复合材料等的树脂基体,广泛应用于建筑、机械、电子电气、航空航天等领域。环氧树脂使用时必须加入固化剂,并在一定条件下进行固化反应,生成立体网状结构的产物,才会显现出各种优良的性能,成为具有真正使用价值的环氧材料。因此固化剂在环氧树脂的应用中具有不可缺少的,甚至在某种程度上起着决定性的作用。环氧树脂潜伏性固化剂是近年来国内外环氧树脂固化剂研究的热点。所谓潜伏性固化剂,是指加入到环氧树脂中与其组成的单组分体系在室温下具有一定的贮存稳定性,而在加热、光照、湿气、加压等条件下能迅速进行固化反应的固化剂,与目前普遍采用的双组分环氧树脂体系相比,由潜伏性固化剂与环氧树脂混合配制而成的单组分环氧树脂体系具有简化生产操作工艺,防止环境污染,提高产品质量,适应现代大规模工业化生产等优点。 环氧树脂潜伏性固化剂的研究一般通过物理和化学的手段,对普通使用低温和高温固化剂的固化活性加以改进,主要采取以下两种改进方法:一是将一些反应活性高而贮存稳定性差的固化剂的反应活性进行封闭、钝化;二是将一些贮存稳定性好而反应活性低的固化剂的反应活性提高、激发。最终达到使固化剂在室温下加入到环氧树脂中时具有一定的贮存稳定性,而在使用时通过光、热等外界条件将固化剂的反应活性释放出来,从而达到使环氧树脂迅速固化的目的。本文就国内外环氧树脂潜伏性固化剂的研究进展作一基本概述。 1 环氧树脂潜伏性固化剂 1.1 改性脂肪族胺类 脂肪族胺类固化剂如乙二胺、己二胺、二乙烯三胺、三乙烯四胺等是常用的双组分环氧树脂室温固化剂,通过化学改性的方法,将其与有机酮类化合物进行亲核加成反应,脱水生成亚胺是一种封闭、降低其固化活性,提高其贮存稳定性的有效途径。 这种酮亚胺型固化剂与环氧树脂组成的单组分体系通过湿气和水分的作用而使酮亚胺分解成胺因此在常温下即可使环氧树脂固化。但一般固化速度不快,使用期也较短,原因是亚胺氮原子上的孤对电子仍具有一定的开环活性。为解决这一问题,武田敏之用羰基两端具有立体阻碍基团的酮3-甲基-2 -丁酮与高活性的二胺1,3 二氨甲基环己烷反应得到的酮亚胺不仅具有较高的固化反应活性,而且贮存稳定性明显改善。另外日本专利报道采用聚醚改性的脂肪族胺类化合物与甲基异丁基酮反应得到的酮亚胺也是一种性能良好的环氧树脂潜伏性固化剂。脂肪族胺类固化剂通过与丙烯腈、有机膦化合物,过渡金属络合物的反应,也可使其固化反应活性降低,从而具有一定的潜伏性。 1.2 芳香族二胺类 芳香胺由于具有较高的Tg而受到重视,但由于其的剧毒性而限制了应用。经改性制得的芳香族二胺类固化剂则具有Tg高、毒性低、吸水率低、综合性能好的优点。近年来研究较多的芳香族二胺类固化剂有二胺基二苯砜(DDS)、二胺基二苯甲烷(DDM)、间苯二胺(m PDA)等,其中以DDS研究得最多最成熟,成为高性能环氧树脂中常用的固化剂。DDS用作环氧树脂潜伏性固化剂时,与MP DA、DDM等芳香二胺相比,由于其分子中有强吸电子的砜基,反应活性大大降低,其适用期也增长。在无促进剂时,100克环氧树脂配合物的适用期可达1年,固化温度一般要达到200℃。为了降低其固化温度,常加入促进剂以实现中温固化。近年来为了改善体系的湿热性能和韧性,对DDS进行了改性,开发出多种聚醚二胺型固化剂,使得它们在干燥时耐热性有所降低,这些二胺因两端胺基间的距离较长,造成吸水点氨基减少,并且具有优良的耐冲击性。 1.3 双氰胺类 双氰胺又称二氰二胺,很早就被用作潜伏性固化剂应用于粉末涂料、胶粘剂等领域。双氰胺与环氧树脂混合后室温下贮存期可达半年之久。双氰胺的固化机理较复杂,除双氰胺上的4个氢可参加反应外,氰基也具有一定的反应活性。双氰胺单独用作环氧树脂固化剂时固化温度很高,一般在150~170℃之间,在此温度下许多器件及材料由于不能承受这样的温度而不能使用,或因为生产工艺的要求而必须降低单组分环氧树脂的固化温度。解决这个问题的方法有两种,一种是加入促进剂,在不过分损害双氰胺的贮存期和使用性能的前提下,降低其固化温度。这类促进剂很多,主要有咪唑类化合物及其衍生物和盐、脲类衍生物、有机胍类衍生物、含磷化合物,过渡金属配合物及复合促进剂等,这些促进剂都可以使双氰胺的固化温度明显降低,理想的固化温度可降至120℃左右,但同时会使贮存期缩短,而且耐水性能也会受到一定的影响。 另一种降低单组分环氧树脂固化温度的有效方法是通过分子设计的方法对双氰胺进行化学改性。在双氰胺分子中引入胺类,特别是芳香族胺类结构,以制备双氰胺衍生物,如瑞士Ciba Geigy公司开发的HT 2833,HT 2844是一种用3,5 二取代苯胺改性的双氰胺衍生物,其化学结构式如下: 据报道,此类固化剂与环氧树脂相溶性较好,贮存期长,固化速度快,在100℃下固化1h,剪切强度可达25MPa,150℃固化30min,剪切强度可达27MPa。日本旭化成工业公司研制的粉末涂料专用固化剂AEHD-610,AEHD-210也是一种改性双氰胺衍生物。另外,日本有采用芳香族二胺如4,4’ 二氨基二苯甲烷(DDM),4,4’ 二氨基二苯醚

制冷剂 基础知识

碳氢制冷剂基础知识 (一)制冷剂概述制冷剂概述制冷剂概述制冷剂概述 1、什么是制冷剂? 答:制冷剂又称制冷工质,它是在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。空调制冷中主要是采用卤代烃制冷剂,其中不含氢原子的称为氯氟烃(CFC),含氢原子的称为氢氯氟烃(HCFC),不含氯原子的称为氢氟烃(HFC)。 制冷剂在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。它的性质直接关系到制冷装臵的制冷效果、经济性、安全性及运行管理,因而对制冷剂性质要求的了解是不容忽视的。 2、对制冷剂性质有哪些要求? (1)环保性 要求工质的臭氧消耗潜能值(ODP)与全球变暖潜能值(GWP)尽可能小,以减小对大气臭氧层的破坏及引起全球气候变暖。 (2)具有优良的热力学特性 具有优良的热力学特性以便能在给定的温度区域内运行时有较高的循环效率。具体要求为:临界温度高于冷凝温度、与冷凝温度对应的饱和压力不要太高、标准沸点较低、流体比热容小、绝热指数低、单位容积制热量较大等。

(3)具有优良的热物理性能 具体要求为:较高的传热系数、较低的粘度及较小的密度。 (4)具有良好的化学稳定性 要求工质在高温下具有良好的化学稳定性,保证在最高工作温度下工质不发生分解。 (5)与润滑油有良好互溶性。 (6)安全性。工质应无毒、无刺激性、无燃烧性及爆炸性。 (7)有良好的电气绝缘性。 (8)经济性。要求工质低廉,易于获得。 3、制冷剂是怎样分类的? 在压缩式制冷剂中广泛使用的是氨、氟里昂和烃类。 一、按照化学成分,制冷剂可分为五类:无机化合物制冷剂、氟里昂、饱和碳氢化合物制冷剂、不饱和碳氢化合物制冷剂和共沸混合物制冷剂。 (1)无机化合物制冷剂:这类制冷剂使用得比较早,如氨(NH3)、水(H2O)、空气、二氧化碳(CO2)和二氧化硫(SO2)等。对于无机化合物制冷剂,国际上规定的代号为R及后面的三位数字,其中第一位为“7”后两位数字为分子量。如水R718...等。 (2)氟里昂(卤碳化合物制冷剂):氟里昂是饱和碳氢化合物中全部或部分氢元素(CL)、氟(F)和溴(Br)代替后衍生物的总称。国际规定用“R”作为这类制冷剂的代号,如R22...等。又有人称之为氟利昂的。 (3)饱和碳氢化合物制冷剂:这类制冷剂中主要有甲烷、乙烷、丙烷、丁

相关文档
最新文档