通信原理实验01 各种模拟信号源实验

通信原理实验01 各种模拟信号源实验
通信原理实验01 各种模拟信号源实验

实验一各种模拟信号源实验

实验内容

1.测试各种模拟信号的波形。

2.测量信号音信号的波形。

一.实验目的:

1.熟悉各种模拟信号的产生方法及其用途。

2.观察分析各种模拟信号波形的特点。

二、电路工作原理

模拟信号源电路用来产生实验所需的各种音频信号:同步正弦波信号、非同步正弦波信号、话音信号、音乐信号等。

(一)同步信号源(同步正弦波发生器)

1.功用

同步信号源用来产生与编码数字信号同步的2KHz正弦波信号,作为增量调制编码、PCM编码实验的输入音频信号。在没有数字存贮示波器的条件下,用它作为编码实验的输入信号,可在普通示波器上观察到稳定的编码数字信号波形。

2.电路原理

图1-1为同步正弦信号发生器的电路图。它由2KHz方波信号产生器(图中省略了)、高通滤波器、低通滤波器和输出电路四部分组成。

2KHz方波信号由CPLD可编程器件U101内的逻辑电路通过编程产生。TP104为其测量点。U107C及周边的阻容网络组成一个截止频率为ωL的二阶高通滤波器,用以滤除各次谐波。U107D及周边的阻容网络组成一个截止频率为ωH的二阶低通滤波器,用以滤除基波以下的杂波。两者组合成一个2KHz正弦波的带通滤波器只输出一个2KHz 正弦波,TP107为其测量点。输出电路由BG102和周边阻容元件组成射极跟随器,起阻抗匹配、隔离与提高驱动能力的作用。

W104用来改变高通滤波器反馈量的大小,使其工作在稳定的状态,W105用来改变输出正弦波的幅度。

图1-1 同步正弦信号发生器电路图

(三)话筒输入电路(麦克风电路)

1.功用

话筒电路用来给驻极体话筒提供直流工作电压。

2.工作原理

话筒电路如图1-3所示,V CC经分压器向话筒提供约2.5V工作电压,讲话时话筒与R101上的电压发生变化,其电压变化分量即为话音信号,经E101耦合输出,送往模拟信号输入选择电子开关。

(四)音乐信号产生电路

1.功用

音乐信号产生电路用来产生音乐信号送往音频终端电路,以检查话音信道的开通情况及通话质量。

2.工作原理

音乐信号产生电路见图1-4。音乐信号由U109音乐片厚膜集成电路产生。该片的1脚为电源端,2脚为控制端,3脚为输出端,4脚为公共地端。V CC经R117、D101向U109的1脚提供3.3V电源电压,当2脚通过K105输入控制电压+3.3V时,音乐片即有音乐信号从第3脚输出,经E105送往模拟信号输入选择电子开关。

(五)外加模拟信号输入电路

在一些特殊情况下,简易正弦波信号发生器不能满足实验要求,就要用外加信号源提供所需信号。例如要定量地测试通信话路的频率特性时需要使用频率与电平、输出阻抗都很稳定的频率范围很宽的音频测试信号,这就需要外接音频信号产生器或函数信号发生器。外加模拟信号输入电路为它们提供了连接到实验的接口电路。

(六) 模拟电话输入电路:

图1-5是用PBL38710/1电话集成电路组成的电话输入电路,J103是手柄的送话器接口。讲话时话音信号从TIPX与RINGX引脚输入,经U112内部话音信号传输处理后从VTX与RSN引脚输出。输出信号分两路,一路经K103的1-2送往PCM(一)编码器或经K103的2-3送往PCM(二)编码器;另一路经K104的1-2或2-3送往话路终端接收滤波电路的J105,选择后从音信号输出电路的喇叭输出话音。

图1-3 话筒电路图

图1-4 音乐信号产生电路图

图1-5 电话输入电原理图

三、实验内容

1.用示波器在相应测试点上测量各点波形:同步信号源、电话输入电路、话音输入电路、外加模拟信号输入电路。

2.熟悉上述各种信号的产生方法、来源及去处,了解信号流程。

四、实验步骤

1.用示波器测量TP106、TP107、TP108、TP109、TP110、TP112、TP113、TP114等各点波形。

2.测量音乐信号时用K105接通+3.3V,此时K105短接1-2,令音乐片加上控制信号,产生音乐信号输出。

五、各测量点波形(以PCM一为例)

TP106:由CPLD(EPM7128SLC-15)分频产生的2 KHz方波。

TP107:与工作时钟同步输出的2KHz正弦波信号。

TP108:0.3~3.4KHz频率可调幅度可调的正弦波。

TP109:话路终端接收模拟信号输入。

TP110:音频功放输入信号。

TP111:音频输出信号。

TP112:话路终端发送模拟信号输出。

TP113:电话电路送往PCM编码器的话音信号。

TP114:电话电路送往话音终端接收滤波电路的话音信号。

模拟信号源实验报告

实验1 模拟信号源实验 一、实验目的 1.了解本模块中函数信号产生芯片的技术参数; 2.了解本模块在后续实验系统中的作用; 3.熟悉本模块产生的几种模拟信号的波形和参数调节方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.频率计1 台 3.20M 双踪示波器1 台 4.小电话单机1 部 三、实验原理 本模块主要功能是产生频率、幅度连续可调的正弦波、三角波、方波等函数信号(非同步函数信号),另外还提供与系统主时钟同源的2KHZ 正弦波信号(同步正弦波信号)和模拟电话接口。在实验系统中,可利用它定性地观察通信话路的频率特性,同时用做PAM、PCM、ADPCM、CVSD(Δ M)等实验的音频信号源。本模块位于底板的左边。 1.非同步函数信号 它由集成函数发生器XR2206 和一些外围电路组成,XR2206 芯片的技术资料可到网上搜索得到。函数信号类型由三档开关K01 选择,类型分别为三角波、正弦波、方波等;峰峰值幅度范围0~10V,可由W03调节;频率范围约500HZ~5KHZ,可由W02 调节;直流电平可由W01 调节(一般左旋到底)。非同步函数信号源结构示意图,见图2-1。 2.同步正弦波信号 它由2KHz 方波信号源、低通滤波器和输出放大电路三部分组成。2KHz 方波信号由“时钟与基带数据发生模块”分频产生。U03 及周边的阻容网络组成一个截止频率为2KHZ 的低通滤波器,用以滤除各次谐波,只输出一个2KHz 正弦波,在P04 可测试其波形。用其作为PAM、PCM、ADPCM、CVSD(Δ M)等模块的音频信号源,其编码数据可在普通模拟示波器上形成稳定的波形,便于实验者观测。W04 用来改变输出同步正弦波的幅度。同步信号源结构示意图,见图2-2。

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

通信原理实验3

实验三FSK调制及解调实验 一、实验目的 1、掌握用键控法产生FSK信号的方法。 2、掌握FSK非相干解调的原理。 二、实验器材 1、主控&信号源、9号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 FSK调制及解调实验原理框图 2、实验框图说明 基带信号与一路载波相乘得到1电平的ASK调制信号,基带信号取反后再与二路载波相乘得到0电平的ASK调制信号,然后相加合成FSK调制输出;已调信号经过过零检测来识别信号中载波频率的变化情况,通过上、下沿单稳触发电路再相加输出,最后经过低通滤波和门限判决,得到原始基带信号。 四、实验步骤 实验项目一FSK调制 概述:FSK调制实验中,信号是用载波频率的变化来表征被传信息的状态。本项目中,通过调节输入PN序列频率,对比观测基带信号波形与调制输出波形来验证FSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【FSK数字调制解调】。将9号模块的S1拨为0000。调节信号源模块的W2使128KHz载波信号的峰峰值为3V,调节W3使256KHz载波信号的峰峰值也为3V。 3、此时系统初始状态为:PN序列输出频率32KH。 4、实验操作及波形观测。 (1)示波器CH1接9号模块TH1基带信号,CH2接9号模块TH4调制输出,以CH1为触发对比观测FSK调制输入及输出,验证FSK调制原理。 (2)将PN序列输出频率改为64KHz,观察载波个数是否发生变化。 答:PN序列输出频率增大后,载波个数会增多。 实验项目二FSK解调 概述:FSK解调实验中,采用的是非相干解调法对FSK调制信号进行解调。实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证FSK解调原理。观测解调输出的中间观测点,如TP6(单稳相加输出),TP7(LPF-FSK),深入理解FSK解调过程。 1、保持实验项目一中的连线及初始状态。 2、对比观测调制信号输入以及解调输出:以9号模块TH1为触发,用示波器分别观测9号模块TH1和TP6(单稳相加输出)、TP7(LPF-FSK)、TH8(FSK解调输出),验证FSK解

模拟与数字信号源

实验一模拟与数字信号源 一、实验目的 1、熟悉各种时钟信号的特点及波形; 2、熟悉各种数字信号的特点及波形。 1、熟悉CPLD可编程信号发生器各测量点波形 2、测量并分析各测量点波形及数据 3、了解CPLD可编程器件的编程操作 4、熟练掌握模拟信号源的使用方法 二、实验电路的工作原理 1、CPLD可编程模块电路的功能及电路组成 CPLD可编程模块用来产生实验系统所需要的各种时钟信号和数字信号。它由CPLD可编程器件ALTERA公司的EPM240(EPM7128或者是Xilinx公司的XC95108)、下载接口电路(J101)和一块晶振(JZ101)组成。晶振用来产生8.1920MHz系统内的主时钟。本实验要求参加实验者了解这些信号的产生方法、工作原理以及测量方法,才可通过CPLD可编程器件的二次开发生成这些信号,理论联系实践,提高实际操作能力(如图1-1所示)。 2、数字信号源的使用方法 数字信号源各个引脚表明产生的方波频率,数值即为频率值以KHZ为单位,如“1”即代表1KHz。所产生的波形幅度约5V。SYN_8:输出8KHz冲序列;PRC_32和PRC_2引脚均输出随机码455 :输出455KHZ方波 图1-1 CPLD可编程模块电路图 3、模拟信号的使用方法 标有“正弦波”、“方波”的电位器用来调节各产生波形的幅度。“频率调节”电位器用来调节产生波形的频率。使用示波器测量观察相关波形。

三、实验内容 1、熟悉通信原理实验系统工作原理及电路组成; 2、熟悉信号发生器各测量点信号波形; 3、测量并分析各各测量点信号波形。 四、实验步骤 1、打开电源开关,给系统上电。 2、用示波器测量数字信号以及模拟信号的相关波形,测量时注意示波器探头接地良好。 注意事项:模拟信号源产生的方波和正弦波,幅度均可调。为防止在以后的实验中不致因为信号的加入而损坏电路板,请同学们在进行实验时先调好需要波形的幅度(切 记)和频率。

信号源实验

实验一信号源实验 一、实验目的 1、掌握频率连续变化的各种波形的产生方法 2、掌握用FPGA产生伪随机码的方法 3、掌握码型可变NTZ码的产生方法 4、了解用FPGA进行电路设计的基本方法 5、了解帧同步信号与同步信号在整个通信系统中的作用 6、熟练掌握信号源模块的使用方法 二、实验内容 1、观察频率连续可变信号发生器输出的各种波形及7段数码管的显示 2、观察点频方波信号的输出 3、观察点频正弦波信号的输出 4、波动拨码开关,观察码型可变NRZ码的输出 5、观察位同步信号和帧同步信号输出 6、改变FPGA程序,扩展其他波形 三、实验器材 1、信号源模块 2、20M双踪示波器 3、频率计 4、PC机 5、连接线 四、实验原理 信号源模块可以大致分成模拟部分和数字部分,分别产生模拟信号和数字信号。 1、模拟信号源部分 模拟信号源部分可以输出频率和幅度可任意改变的正弦波(频率变化范围100Hz~10KHz)、三角波(频率变化范围100Hz~1KHz)、方波(频率变化范围

100Hz~10KHz)、锯齿波(频率变化范围100Hz~1KHz)以及32KHz、64KHz、1MHz、的点频正弦波(幅度可以调节)。 我们已经将各种波形在不同频段的数据写入了数据存储器U005(2864)并存放在固定的地址中。 2、数字信号源部分 数字信号源部分可以产生多种频率的点频方波、NRZ码以及位同步信号和帧同步信号。 晶振出来的方波信号经3分频后分别送入分频器和另外一个可预知分频器分频,前一频器分频后可得到1MHz、256KHz、64KHz、8KHz的方波以及8KHz 的窄脉冲信号。可预置分频的分频比可通过拨码开关SW101、SW102来改变,分频比范围是1~9999。分频后的新号即为整个系统的位同步信号(从信号输出点“BS”输出)。数字信号源部分还包括一个NRZ码产生电路,通过该电路可产生24位为一帧的周期性NRZ码序列,该序列的码型可通过拨码开关SW103、SW104、SW105来改变。 五、实验步骤 1、插上电源线,打开交流开关,再按下开关POWER1、POWER2,按一下复位键, 信号源模块开始工作。 2、模拟信号源部分 a、观察“32K正弦波”、“64K正弦波”、“1M正弦波”可并分别改变各正弦波的 幅度。 b、按下“复位”波形指示灯“三角波”亮,数码管M001~M004显示“2000”。 c、按一下“波形选择”,“三角波”亮,输出波形为是三角波。逐次按下“波形 选择”轮流输出正弦波、三角波、锯齿波和方波。 d、波形选择为正弦波,改变输出信号的频率,观察“模拟输出”点的波形,计 算其频率是否与数码管显示的一致。转动“幅度调节1”改变幅度 e、分别选择为三角波,锯齿波,方波重复上述实验 f、模拟信号放大通道:链接“模拟输出”点与“IN”点,观察“OUT”点波形, 转动“幅度调节2”改变输出信号的幅度 3.数字信号源部分

通信原理实验指导期末考试讲解

实验一CPLD可编程数字信号发生器实验 一、实验目的 1、熟悉各种时钟信号的特点及波形。 2、熟悉各种数字信号的特点及波形。 二、实验内容 1、熟悉CPLD可编程信号发生器各测量点波形。 2、测量并分析各测量点波形及数据。 3、学习CPLD可编程器件的编程操作。 三、实验器材 1、信号源模块一块 2、连接线若干 3、20M双踪示波器一台 四、实验原理 CPLD可编程模块用来产生实验系统所需要的各种时钟信号和各种数字信号。它由CPLD 可编程器件ALTERA公司的EPM240T100C5、下载接口电路和一块晶振组成。晶振JZ1用来产生系统内的32.768MHz主时钟。 1、CPLD数字信号发生器 包含以下五部分: 1)时钟信号产生电路 将晶振产生的32.768MH Z时钟送入CPLD内计数器进行分频,生成实验所需的时钟信号。通过拨码开关S4和S5来改变时钟频率。有两组时钟输出,输出点为“CLK1”和“CLK2”,S4控制“CLK1”输出时钟的频率,S5控制“CLK2”输出时钟的频率。 2)伪随机序列产生电路 通常产生伪随机序列的电路为一反馈移存器。它又可分为线性反馈移存器和非线性反馈移存器两类。由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为m序列。

以15位m 序列为例,说明m 序列产生原理。 在图1-1中示出一个4级反馈移存器。若其初始状态为(0123,,,a a a a )=(1,1,1,1),则在移位一次时1a 和0a 模2相加产生新的输入4110a =⊕=,新的状态变为(1234,,,a a a a )=(0,1,1,1),这样移位15次后又回到初始状态(1,1,1,1)。不难看出,若初始状态为全“0”,即“0,0,0,0”,则移位后得到的仍然为全“0”状态。这就意味着在这种反馈寄存器中应避免出现全“0”状态,不然移位寄存器的状态将不会改变。因为4级移存器共有24 =16种可能的不同状态。除全“0”状态外,剩下15种状态可用,即由任何4级反馈移存器产生的序列的周期最长为15。 a 3 a 2 a 1 a 0 + 输出 图1-1 15位m 序列产生 信号源产生一个15位的m 序列,由“PN ”端口输出,可根据需要生成不同频率的伪随机码,码型为111100010011010,频率由S4控制,对应关系如表1-2所示。 3) 帧同步信号产生电路 信号源产生8K 帧同步信号,用作脉冲编码调制的帧同步输入,由“FS ”输出。 4) NRZ 码复用电路以及码选信号产生电路 码选信号产生电路:主要用于8选1电路的码选信号;NRZ 码复用电路:将三路八位串行信号送入CPLD ,进行固定速率时分复用,复用输出一路24位NRZ 码,输出端口为“NRZ ”,码速率由拨码开关S5控制,对应关系见表1-2。 5) 终端接收解复用电路 将NRZ 码(从“NRZIN ”输入)、位同步时钟(从“BS ”输入)和帧同步信号(从“FSIN ”输入)送入CPLD ,进行解复用,将串行码转换为并行码,输出到终端光条(U6和U4)显示。 2、 24位NRZ 码产生电路 本单元产生NRZ 信号,信号速率根据输入时钟不同自行选择,帧结构如图1-2所示。帧长为24位,其中首位无定义(本实验系统将首位固定为0),第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ 信号为集中插入帧同步

信号源基础知识

信号源基础知识

信号源基础知识 1、认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器。 谈及模拟式函数信号源,结构图如下: 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正

弦波整型电路产生正弦波,同时经由比较器的比较产生方波。 而三角波是如何产生的,公式如下: 换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是

信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 1、频率(周期)不变,脉宽改变,其方法如下: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下:

实验一信号源实验共7页

通信原理实验报告(一) 颜平 222011315220096 实验一信号源实验 一.实验目的 1.了解频率连续变化的各种波形的产生方法。 2.理解帧同步信号与位同步信号在整个通信系统中的作用。 3.熟练掌握信号源模块的使用方法。 二.实验内容 1.观察频率连续可变信号发生器输出的各种波形及7段数码管的显示。2.观察点频方波信号的输出。 3.观察点频正弦波信号的输出。 4.拨动拨码开关,观察码型可变NRZ码的输出 5.观察位同步信号和帧同步信号的输出 三.实验器材 1.信号源模块 2.20M双踪示波器 一台3.频率计(可选) 一台 4.PC机(可选) 一台

5.连接线若干 四.实验原理 信号源模块可以大致分为模拟部分和数字部分,分别产生模拟信号和数字信号。 1.模拟信号源部分 图1-1 模拟信号源部分原理框图 如上原理框图部分, 模拟信号源部分可以输出频率和幅度可任意改变的正弦波(频率变化范围100Hz~10KHz)、三角波(频率变化范围100Hz~1KHz)、方波(频率变化范围100Hz~10KHz)、锯齿波(频率变化范围100Hz~1KHz)以及32KHz、64KHz、1MHz的点频正弦波(幅度可以调节) 2.数字信号源部分 可以产生多种频率的点频方波、NRZ码(可通过拨码开关SW103、SW104、SW105改变码型)以及位同步信号和帧同步信号。绝大部分电路功能由U004(EPM7128)来完成,通过拨码开关SW101、SW102可改变整个数字信号源位同步信号和帧同步信号的速率,该部分电路原理框图如图1-2所示。 图1-2 数字信号源部分原理框图

五、操作方法与实验步骤: 1、将信号源模块小心固定在主机箱中,确保电源接触良好。 2、插上电源线,打开主机箱右侧的交流开关,再按下开关POWER1、POWER2,发光二极管LED001、LED002发光,按一下复位键,信号源模块开始工作。 3、模拟信号源部分 ①观察“32K正弦波”、“64K正弦波”、“1M正弦波”各点输出的正弦波波形,对应的电位器“32K幅度调节”、“64K幅度调节”、“1M幅度调节”可分别改变各正弦波的幅度。 ②按下“复位”键使U006复位,波形指示灯“正弦波”亮,波形指示灯“三角波”、“锯齿波”、“方波”以及发光二极管LED007灭,数码管 M001~M004显示“2000”。 ③按一下“波形选择”按键,波形指示灯“三角波”亮(其他仍熄灭),此时信号输出点“模拟输出”的输出波形为三角波。逐次按下“波形选择”按键,四个波形报指示灯轮流发亮,此时“模拟输出”点轮流输出正弦波、三角波、锯齿波、和方波。 ④将波形选择为正弦波,转动旋转编码器K001,改变输出信号的频率,观察“模拟输出”点的波形,并注意计算其频率是否与数码管显示的一致。转动电位器“幅度调节1”可改变输出信号的幅度,幅度最大可达3V以上。 ⑤将波形分别选择为三角波、锯齿波、方波、重复上述实验。 4.数字信号源部分 ①拨码开关SW101、SW102的作用是改变分频器的分频比,得到不同频

通信原理实验一、二实验报告

通信原理 实验一 实 验 报 告 实验日期: 学院: 班级: 学号: 姓名: 指导老师:

实验一数字基带传输系统的MA TLAB仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握 卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的 常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用 MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MA TLAB实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB 程序产生离散随机信号 2、编写MATLAB 程序生成连续时间信号 3、编写MATLAB 程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看, 信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如 信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层次上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 四、实验步骤 (1)分析程序program1_1 每条指令的作用,运行该程序,将结果保存,贴在下面的空白 处。然后修改程序,将dt 改为0.2,并执行修改后的程序,保存图形,看看所得图形的效果 怎样。 dt=0.01 时的信号波形 Sinusoidal signal x(t) -2-1.5-1-0.500.51 1.52 Time t (sec) dt=0.2 时的信号波形

通信原理实验报告

实验一、PCM编译码实验 实验步骤 1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。 2. PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。 (2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。 3. PCM编码器 (1)方法一: (A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。分析为什么采用一般的示波器不能进行有效的观察。 (2)方法二: (A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。此时由该模块产生一个1KHz的测试信号,送入PCM编码器。(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。 4. PCM译码器 (1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。此时将PCM输出编码数据直接送入本地译码器,构成自环。用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (2) PCM译码器输出模拟信号观测:用示波器同时观测解码器输出信号端(TP506)和编码器输入信号端口(TP501),观测信号时以TP501做同步。定性的观测解码信号与输入信号的关系:质量、电平、延时。 5. PCM频率响应测量:将测试信号电平固定在2Vp-p,调整测试信号频率,定性的观测解码恢复出的模拟信号电平。观测输出信号信电平相对变化随输入信号频率变化的相对关系。

模拟心电信号发生器SKX-2000应用

模拟心电信号发生器SKX-2000A/C/D/G

本系列模拟心电信号发生器性能特点: 1、模拟器内置大容量锂电池,可以长时间工作;充满后可以连续工作大于60个小时(出厂时)。因为是锂电池,请尽量不要过度放电。请注意正确使用充电器,充电器电压不能高于4.2V。 2、采用10个万能心电转接接头,可与各种心电图机和监护仪的导联线进行连接。 3、充电器绿灯亮表示充电完成,红色越亮表示电量低。 4、增加电池电量低自动关断功能,保护锂电池。 5、模拟器的LED显示管,为防止用户在使用过程中忘记关闭电源,系统设计为当4个小时内内没有操作按键时,CPU将进入待机状态,以便节电。按任意按键则计时归零。 本系列机型功能特点区别与价格体系如下: SKX-2000A型信号发生器 只有模拟的人体心电波形,不能更改波形内容,外壳上也无显示区;价格是380元包邮. SKX-2000C:480元包邮 本模拟器可以产生如下波形,第一位代码代表如下波形 1、正常的心电波形 2、正负三角波形 注意: 1、本模拟器上电后自动产生波形1的正常心电波形。 2、模拟器的LED显示管,当5秒内没有操作按键时,将自动关闭显示,以便节电。按任意按键则触发再次显示。 按键说明 一共有四个按键,依次为选择键、增加键、减小键、确认键,另外还有一组组合键 选择键: 此按键用来选择要改变的参数,共有4个LED管来显示4个代码,分别代表显示的内容, 1代表波形代码,2-4代表要更改的参数(2是数值的百位,3代表十位,4代表个位) LED管右下脚的亮点,表示现在选择的内容;可以进行更改。 增加键: 当使用选择键选择好更改内容后,使用此键进行参数更改。 减小键: 当使用选择键选择好更改内容后,使用此键进行参数更改。 确认键: 当参数更改完毕后,此键确认后将确认参数的更改,并产生相应的波形。

实验1 DDS信号源实验

班级通信1403学号201409732姓名裴振启指导教师邵军花日期 实验1 DDS信号源实验 一、实验目的 1.了解DDS信号源的组成及工作原理; 2.掌握DDS信号源使用方法; 3.掌握DDS信号源各种输出信号的测试。 二、实验仪器 1.DDS信号源(位于大底板左侧,实物图片如下) 2.频率计1台 3. 20M双踪示波器1台 4.低频信号发生器 1台 三、实验原理 直接数字频率合成(DDS—Digital Direct Frequency Synthesis),是一种全数字化的频率合成器,由相位累加器、波形ROM、D/A转换器和低通滤波器构成。时钟频率给定后,输出信号的频率取决于频率控制字,频率分辨率取决于累加器位数,相位分辨率取决于ROM 的地址线位数,幅度量化噪声取决于ROM的数据位字长和D/A转换器位数。 DDS信号源模块硬件上由cortex-m3内核的ARM芯片(STM32)和外围电路构成。在 该模块中,我们用到STM32芯片的一路AD采集(对应插孔调制输入)和两路DAC输出(分别对应插孔P03、P04)。PWM信号由STM32时钟配置PWM模式输出,调幅、调频信号通过向STM32 写入相应的采样点数组,由时钟触发两路DAC同步循环分别输出其已 调信号与载波信号。对于外加信号的AM调制,由STM32的AD对外加音频信号进行采样,在时钟触发下当前采样值与载波信号数组的相应值进行相应算法处理,并将该值保存输出到DAC,然后循环进行这个过程,就实现了对外部音频信号的AM调制。 RZ8681 D实验箱的DDS信号源能够输出脉宽调制波(PWM)、正弦波、三角波、方波、扫频信号、调幅波(AM)、双边带(DSB)、调频波(FM)及对外部输入信号进行 AM调制输出。 四、各测量点的作用 调制输入:外部调制信号输入铆孔(注意铆孔下面标注的箭头方向。若箭头背离铆孔, 说明此铆孔点为信号输出孔;若箭头指向铆孔,说明此铆孔点为信号输入孔)。 P03:DDS各种信号输出铆孔。 P04:20KHZ载波输出铆孔。 P09:抽样脉冲输出铆孔。 SS01:复合式按键旋纽,按键用来选择输出信号状态;旋纽用来改变信号频率。 LCD:显示输出信号的频率。

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

通信原理实验一

实验一:信号源实验 第一部分 CPLD可编程逻辑器件实验 一、实验目的 1.了解ALTERA公司的CPLD可编程器件EPM240; 2.了解本模块在实验系统中的作用及使用方法; 3.掌握本模块中数字信号的产生方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.示波器1台 三、实验原理 CPLD可编程模块(时钟与基带数据发生模块,芯片位号:4U01)用来产生实验系统所需要的各种时钟信号和数字信号。它由CPLD可编程器件ALTERA公司的EPM240、下载接口电路(4J03)和一块晶振(4JZ01)组成。晶振用来产生16.384MHz系统内的主时钟,送给CPLD芯片生成各种时钟和数字信号。本实验要求实验者了解这些信号的产生方法、工作原理以及测量方法,理论联系实践,提高实际操作能力。 m序列是最被广泛采用伪随机序列之一,除此之外,还用到其它伪随机码,如Gold序列等,本模块采用m序列码作为系统的数字基带信号源使用,在示波器上可形成稳定的波形,方便学生观测分析。下面介绍的m序列原理示意图和仿真波形图都是在MAX+PLUS II软件环境下完成。其中,RD输入低电平脉冲,防止伪随机码发生器出现连0死锁,其对应仿真波形的低电平脉冲。CLK为时钟脉冲输入端。OUT为m序列伪随机码输出。 下图3-1、图3-2为三级m序列发生器原理图和其仿真波形图。在实验模块中的clk为2KHZ时钟,输出测试点为4P02,m序列输出测试点为4P01。 图3-1 三级m序列发生器原理图(M=7)

图3-2 三级m序列仿真波形图 下图3-3、图3-4为四级m序列发生器原理图和其仿真波形图。 图3-3 四级m序列发生器原理图(M=15) 下图3-5、图3-6为五级m序列发生器原理图和其仿真波形图。 图3-5 五级伪随机码发生器原理图 图3-6 五级伪随机码仿真波形图 图3-7中介绍是异步四级2分频电路,其特点是电路简单,但由于其后级触发器的触发脉冲要待前级触发器的状态翻转之后才能产生,因此其工作速率较低。在对分频输出时钟的相位关系要求严格的情况下,一般采用同步分频法,具体实现原理请同学自己整理。图3-8为异步四级2分频电路仿真波形 图。

E4432B 数字和模拟信号发生器

E4432B 数字和模拟信号发生器 详细介绍: 2250KHz-3000MHz 2供单信道和多信道CDMA用的测量专用卡 2用于I和Q的20 MHz射频带宽 2极度高的电平精度 2步进扫描(频率、功率和列表) 2宽带调幅、调频和调相 2内部数据发生器和突发脉冲功能(选件UN8) 2灵活形成定制调制选件UN8,UND) 2机内有供DECT、GSM、NADC、PDC、PHS和TETRA用的TDMA格式(选件UN8) 2内部双任意波形发生器(选件UND) 2内部误码率分析仪(选件UND7) 23年保用期 产品介绍 Agilent ESG-D系列射频信号发生器除具有广泛的特性和优良的模拟性能之外,还提供多种数字调制功能,而且在价格方面亦能被用户所接受。他们提供了极好的调制精度和稳定度,以及空前的电平精度。AgilentESG-D系列特别适于满足当前数字接收机测试、元器件测试和本地振荡器应用日益提高的要求。 专门定制的调制和DECT、EDGE、GSM、NADC、PDC、PHS、TETRA标准(选件UN8) 内部生成通用标准的信号来对接收机进行测试。改变调制类型、数据、码元速率、滤波器型式和滤波因数,以生成供元器件和系统容限测试用的定制信号。很容易配置时隙来模拟不同类型的通信业务量、控制信道或同步信道(或突发信号)。可产生具有内部突发功能移动站或基站传输。还降低了对具有综合数据生成功能的外部设备的需求。 内部双任意波开发生器(选件UND) 能重现几乎任何以数学形式生成的波形。可下载长波形或多个波形(达1M取样),以放置或贮存到非易失RAM中供随后使用。14比特的数模转换器(DAC)分辨率扩大了动态范围和改善了噪声性能。在对I/Q生成进行优化后,双任意波形发生器选件将使装置大为简化。 W-CDMA和Cdma 2000 能产生符合正在拟定的国际标准的正确编码信号。模拟用于基站和移动接收机测试的全编码信道或部分编码统计修正的多信道信号,可以对用于正在拟定的国际3G标准的有源元件进行精确的大容量测试。 多信道和多载波CDMA Agilent ESG-D系列提供CDMA(选件UN5)测量专用卡。用多个信道产生多载波CDMA信号,每个载波用于基站和移动站的系统或元件测试。通过选择预定的多载波CDMA配置或明确确定每个信道对每个载波的特性,可以为某些特殊的需要,如互补累积分布函数(CCDF)专门制定某种测试。 内部误码率分析仪(选件UN7) 为测量灵敏度和选择性而进行误码率分析。选件UN7提供用于PN9或PN15比特序列的分析功能,并指出用户规定的测试极限的合格或不合格条件。 宽带I和Q调制 利用模拟I和Q输入,产生复杂的调制格式,以满足射频数字通信系统开发研究和测试的需要。机内正交调制器处理I和Q输入信号,以在10MHz(1dB)带宽范围提供极高的调制精度和稳定度。 极高的电平精度 Agilent ESG-D系列射频信号发生器能在宽的功率范围(+13dBm~-136dBm,利用选件UNB时为+17dBm~-136dBm)以极高的电平精度进行精确、有效的灵敏度测试。内部调制格式的电平精度优于±1.1dB(典型值为+0.6dB),从而保证甚至对最灵敏的数字接收机也能进行精密测量。 技术指标 2频率:250kHz~3000MHz 2关于模拟远程编程和一般技术指标,参阅ESG系列数字调制的电平精度

通信技术与系统实验

2014-2015学年第二学期《通信技术与系统》课程实验报告 所在学院:电子工程学院 学生姓名: 学生学号: 任课老师: 2015年6月 18日

实验1 模拟信号源实验 一、实验目的 1.了解本模块中函数信号产生芯片的技术参数; 2.了解本模块在后续实验系统中的作用; 3.熟悉本模块产生的几种模拟信号的波形和参数调节方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.频率计1台 3.20M 双踪示波器1台 4.小电话单机1部 三、实验原理 本模块主要功能是产生频率、幅度连续可调的正弦波、三角波、方波等函数信号(非同步函数信号),另外还提供与系统主时钟同源的2KHZ 正弦波信号(同步正弦波信号)和模拟电话接口。在实验系统中,可利用它定性地观察通信话路的频率特性,同时用做PAM 、PCM 、ADPCM 、CVSD (?M )等实验的音频信号源。本模块位于底板的左边。 1.非同步函数信号 它由集成函数发生器XR2206和一些外围电路组成,XR2206芯片的技术资料可到网上搜索得到。函数信号类型由三档开关K01选择,类型分别为三角波、正弦波、方波等;峰峰值幅度范围0~10V ,可由W03调节;频率范围约500HZ ~5KHZ ,可由W02调节;直流电平可由W01调节(一般左旋到底)。非同步函数信号源结构示意图,见图2-1。 图2-1 非同步函数信号源结构示意图 2.同步正弦波信号 它由2KHz 方波信号源、低通滤波器和输出放大电路三部分组成。 2KHz 方波信号由“时钟与基带数据发生模块”分频产生。U03及周边的阻容网络组成一个截止频率为2KHZ 的低通滤波器,用以滤除各次谐波,只输出一个2KHz 正弦波,在P04可测试其波形。用其作为PAM 、PCM 、ADPCM 、CVSD (?M )等模块的音频信号源,其编码数据可在普通模拟示波器上形成稳定的波形,便于实验者观测。 W04用来改变输出同步正弦波的幅度。同步信号源结构示意图,见图2-2。 K01 U01 跟随放大器 XR2206 电 路 三角波 正弦波 方波 P03

通信原理实验七

实验七抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性。 2、掌握自然抽样及平顶抽样的实现方法。 3、理解低通采样定理的原理。 4、理解实际的抽样系统。 5、理解低通滤波器的幅频特性对抽样信号恢复的影响。 6、理解低通滤波器的相频特性对抽样信号恢复的影响。 7、理解带通采样定理的原理。 二、实验器材 1、主控&信号源、3号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 图1-1 抽样定理实验框图 2、实验框图说明 抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关

S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。 要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验步骤 实验项目一抽样信号观测及抽样定理验证 概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。 3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。 4、实验操作及波形观测。 (1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。 MUSIC主控&信号源抽样输出3#

通信原理实验报告

通信原理实验报告 实验一抽样定理 实验二 CVSD编译码系统实验 实验一抽样定理 一、实验目的 所谓抽样。就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 二、功能模块介绍 1.DDS 信号源:位于实验箱的左侧 (1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。 (2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010 对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。 (3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。 (4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。 2.抽样脉冲形成电路模块 它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。P09 测试点可用于抽样脉冲的连接和测量。该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。 3.PAM 脉冲调幅模块 它采用模拟开关CD4066 实现脉冲幅度调制。抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。因此,本模块实现的是自然抽样。在32TP01 测试点可以测量到已调信号波形。 调制信号和抽样脉冲都需要外接连线输入。已调信号经过PAM 模拟信道(模拟实际信道的惰性)的传输,从32P03 铆孔输出,可能会产生波形失真。PAM 模拟信道电路示意图如下图所示,32W01(R1)电位器可改变模拟信道的传输特性。

相关文档
最新文档