发电厂实验报告

发电厂实验报告
发电厂实验报告

实验报告

实验课程:发电厂电气部分(一、二)学生姓名:

学号:

专业班级:

2013年 11 月 27 日

南昌大学实验报告

学生姓名:学号:专业班级:电力系统

实验类型:█验证□综合□设计□创新实验日期:2013/11/23 实验成绩:

一、实验项目名称:

具有灯光和音响监视的断路器控制回路实验

二、实验目的:

1、掌握具有灯光和音响监视的断路器控制回路的工作原理、电路内含的功能特点。

2、理解为使具有灯光和音响监视的断路器控制回路能安全可靠地工作,电路所必须满足对回路监视的基本要求。

3、结合ZB02挂箱(实验设备中的一个小的集成部分,具体内容及功能在实验课中会得到讲授)控制开关的触点图表, 学会开关的使用、控制回路的接线和动作试验方法。

三、实验基本原理:

具有灯光和音响监视的断路器控制回路如图2—1。控制开关也是封闭式万能转换开关LW2—W—2/F6。与图1—1不同的是,该图在原红、绿两灯的位置中接入合闸位置继电器(简称合位继电器)HWJ和跳闸位置继电器(简称跳位继电器)TWJ。断路器的操作过程如下:

当断路器处于跳闸状态时,跳位继电器TWJ线圈、QF常闭辅助触点和HC线圈组成通路,由于TWJ线圈电阻远大于HC线圈电阻,所以TWJ动作,其常开触点接通了绿灯LD回路,绿灯发光,指示断路器在跳闸位置。当断路器处于合闸位置时,合位继电器HWJ线圈、QF常开辅助触点和TQ线圈组成通路,HWJ也因线圈电阻远大于TQ 电阻而动作,其常开触点接通了红灯HD回路,红灯发光,指示断路器处于合闸位置。其它动作过程与图1—1相似。这里不再叙述。

控制电路图2—1具有失电及回路断线报警功能:当断路器控制回路熔断器1FU (2FU)熔断时,当断路器合闸后HWJ线圈断线或分闸后TWJ线圈断线时,HWJ和TWJ线圈失电,其常闭触点闭合,其常闭触点接通了光字牌GP回路。GP左侧接通冲击继电器XMJ,预告音响装置XMJ脉冲变压器BL的一次回路接通电源正极,GP右侧

联接电源负极。于是警铃发声,预告故障的存在;另外,在发声的同时光字牌GP 也通电而发光示字,告知故障的性质。

图2—1 具有灯光和音响监视的断路器控制回路

HWJ 和TWJ 是中间继电器,线圈的电阻很大,串接在跳、合闸回路中短路的可能

控 制 小 母 线

熔 断 器

电 动 合 闸跳 位 继 电 器

电 动 跳 闸

合 位 继 电 器

继 电 保 护 跳 闸

220V(+)

220V(-)

跳 闸 位 置 信 号

合 闸 位 置 信 号

性很小,所以不会影响断路器的动作。HWJ和TWJ的触点对数很多,可以代替断路器的辅助触点使用在不重要的回路中。

图2—1所示控制回路和图1—1所示回路一样不能装设闪光信号,其事故音响信号回路一般通过信号继电器的触点来接通。

四、主要仪器设备及耗材:

五、实验步骤:

1、根据直流接触器、跳闸线圈、合闸线圈、信号指示灯、合位及跳位继电器的技术参数选择操作电源的电压。

2、按图2—1具有灯光和音响监视的断路器控制回路进行安装接线。

3、检查上述接线的正确性,确定无误后,接入直流220伏电源进行控制回路动作试验,通过操作与观察,深入理解具有灯光和音响监视的断路器控制回路中,各元件及接点的作用和电路动作过程。

六、思考讨论题

实验记入表格

1、为什么控制回路能监视回路本身的完整性和操作电源的情况?上述电路中如何实现断路器在合闸位置时能监视跳闸回路的完整性;断路器在跳闸位置时也能监视合闸回路的完整性?

答:本次实验的电路是具有灯光监视的断路器控制回路,因此在断路器断开或者闭合时都应该有灯光指示.因此,当断路器在断开或者闭合时,如果有灯光,那么表示此回路本身是完整和操作电源的正常;如果没有灯光则表示监视回路和操作电源不完整。当断路器在闭合位置时,常闭辅助触点QF1-2断开,QF1—3闭合,20V(+)-1Fu-HWJ线圈–断路器常开触点QF3-4(此时为闭合状态)-TQ跳闸线圈- 2Fu-220V(-)回路闭合,HWJ的线圈带电,使得HWJ线圈的辅助常开触点闭合,红灯支路通电。当此时HD灯亮,则表示这一部分监视回路完整和操作电源正常,如果灯不亮,那么监视回路或操作电源有问题。

2、断路器的分、合闸时间都很短(分闸时间不大于0.1S;合闸时间不大于0.6S),

操作机构的分、合闸线圈都按短时通电设计,若通电时间过长,就可能烧毁。请分析上述控制电路中,在分、合闸动作时是如何实现短时接通的,当动作完成后,分、合闸线圈回路是如何自动断开的?

答:当在进行合闸操作时,开关KK2-4闭合,短接了TWJ的线圈阻抗,HC线圈得电动作,HQ线圈回路接通,断路器合闸,其常闭触点QF1-2因断路器在非常态而瞬时断开HC线圈回路,这样就短时接通了断路器并且也自动断开了合闸线圈回路。

当进行分闸操作时,可把KK手柄逆时针转动45 °,此时KK触点1—3接通,短接了HWJ线圈的阻抗,使得TQ线圈得电启动,断路器跳闸,其常开触点QF3-4因断路器在常态而瞬时闭合TQ线圈回路,随后KK手柄自动弹回原位,触点1-3断开,分闸线圈回路是自动断开。

3、上述控制电路中红灯、绿灯分别表示断路器在什么状态?

答:当红灯亮时,表示断路器处于合闸状态;当绿灯亮时,表示断路器处于断开状态。

4、上述控制电路中哪一个接点是由继电保护引入实现自动分闸的?如要由自动装置实现自动合闸,控制接点应引入电路的哪个回路?

答:在控制电路中触点BCJ是由继电保护引入实现自动分闸的。

七、实验小结:

在本次实验中,虽然说八个人一台机器,操作的人就两三个人而已,但是当我们遇到了问题还是可以通过八个人的智慧一起解决,每个人都认真看别人是怎么接线的,在寻找问题时也就比较好下手了,我们这组连好线后总是出现报警状态,检查了很多遍的线路都没有问题,后来通过老师的指导才发现只是电流表的量程选小了,才导致的报警,所以我想做实验还是要做到细心,一丝不苟,才能把实验做成功。通过本次实验,使我对具有灯光监视和音响监视的断路器控制回路有了一定的认识,这个控制回路在上个实验的回路中增加了音响提醒工难,使得控制回路更加可靠。通过本次实验,对具有灯光监视的断路器控制回路有了一定的认识,首次真正的认识到断路器的控制回路的大概工作原理,知道了怎么进行简单的手动合闸与手跳闸。

南昌大学实验报告

学生姓名:学号:专业班级:电力系统

实验类型:□验证□综合█设计□创新实验日期:实验成绩:

一、实验项目名称:

装设跳跃闭锁继电器的断路器控制回路实验。

二、实验目的:

1、利用实验装置,再现断路器的“跳跃”现象的出现。

2、掌握装设跳跃闭锁继电器的断路器控制回路的“防跳”原理、电路的功能和特性。

3、理解装设跳跃闭锁继电器的断路器控制回路,为实现安全可靠地工作,该电路满足了哪些基本要求?

4、掌握电路中所用控制开关的触点图表,学会装设跳跃闭锁继电器的断路器控制回路的接线和实验操作方法。

5、为什么在防跳继电器中有电流起动线圈和电压自保持线圈的在在?如果不在在,电路是否会正常工作?

6、什么叫做断路器与控制开关的不对应关系?在这种关系下,有什么信号现象?

三、实验基本原理:

所谓“跳跃”是指断路器合闸回路中,控制开关的触点在合闸结束后来不及返回而人为地闭合,或自动装置继电器的触点由于某种原因在动作时被卡住不能复归,此时断路器合闸在永久故障的线路上,造成断路器在短时间内多次跳闸-合闸的现象。

危害:断路器如果多次“跳跃”,可能导致设备损坏并使事故扩大。因此必须采取“防跳”措施。

措施:装设“跳跃”闭锁继电器的断路器控制回路见图5-1,图中的中间继电器TBJ,称为跳跃闭锁继电器。它有两个线圈:一个是电流启动线圈,串联于跳闸回路中,这个线圈的额定电流应根据跳闸线圈的动作电流来选择,并要求有较高的灵敏度,以保证在跳闸操作时能可靠地启动;另一个线圈为电压自保持线圈,经过自身的常开触点并联于

合闸接触器线圈HC回路中。另外,在合闸回路中还串接入一个TBJ的常闭触点。

控制回路的工作原理如下:当利用控制开关KK手动合闸或自动装置触点1ZJ进行自动重合闸时,如遇到故障,继电保护装置动作,其触点BCJ闭合,将跳闸回路接通,使断路器跳闸。同时跳闸电流也流过跳跃闭锁继电器TBJ的电流启动线圈,使TBJ动作,其常开触点接通TBJ的电压线圈常闭触点断开合闸线圈回路。此时,如控制开关KK的触点5-8或自动装置的触点1ZJ因故未断开,则TBJ的电压线圈始终带电,与HC 线圈串联的TBJ常闭触点就始终分开,实现“闭锁”,HC线圈就始终无电,断路器就不能进行多次合闸。只有当合闸命令解除后,(也就是KK触点或1ZJ触点断开),TBJ 的电压线圈失电,控制回路才恢复到正常的状态,解除闭锁。

图5-1所示电厂和变电所常用的断路器控制回路电气接线图。其控制开关KK为封

—Z—1a、4、6a、40、20/F8,它的触点图表见表5-2。

闭式万能转换开关LW

2

表5-2 LW2—Z—1a、4、6a、40、20/F8控制开关触点图表

图2—1 具有灯光和音响监视的断路器控制回路

四、主要仪器设备及耗材:

以及相应的导线、熔断器等

五、实验步骤:

1、根据跳跃闭锁继电器、信号指示灯、跳闸线圈合闸线圈、直流接触器的工作技术参数选择操作电源电压(本实验装置选用直流220V操作电源)。

2、按图5-1“装设跳跃闭锁继电器的断路器控制回路”进行安装接线。

3、检查上述接线的正确性,确定无误后,接入电源进行控制回路操作试验,通过操作与观察,深入理解装设跳跃闭锁继电器同时具有灯光监视的断路器控制回路的工作原理、电路中各元器件及接点的作用。

4、断路器的控制操作过程

①合闸状态

前题条件:

断路器处于合闸状态,属于“非常态”,它相应的辅助常闭触点QF1-2断开,辅助开触点QF3-4闭合;相应的控制开关KK手柄在“合闸后”位置的,从表5-2中可查相应的触点1-3、9-10、13-16和17-19触点闭合。

分析过程:由前题条件可知,从图5-1的电路图中,有电路:

220V(+)-1FU-KK16-13-红灯HD-电阻R2-TBJ的电流线圈-QF3-4-TQ线圈-2FU-220V(-)组成回路;

由于TQ线圈及TBJ电流线圈的电阻远小于HD和附加电阻的电阻,回路中的电压大部分降落在红灯HD和附加电阻R2上,使红灯HD发出平光。

TQ跳闸线圈中虽有电流流过,但电流很小,电磁力不足以将操作机构脱扣,断路器不会跳闸。同理TBJ同样也不会动作。

由以上的分析过程可知,电路中红灯HD发出平光,一方面指示断路器在合闸位置,另一方面表示跳闸线圈回路完好。运行中如果红灯熄灭,就表明跳闸线圈回路断线,必须检查修复,否则影响断路器的跳闸。红灯HD回路中的附加电阻R2的作用是防止红灯灯泡两端短接,造成断路器误跳闸。

②跳闸操作

断路器进行跳闸操作时,把KK手柄先转到“预备跳闸”位置再转到“跳闸”位置,KK在跳闸位置时,从表5-2中可知KK触点6-7接通,下述电路

220V(+)-1FU-KK6-7-TBJ的线圈-QF3-4-TQ线圈-2FU-220V(-)形成闭合回路;

把红灯HD和附加电阻短接,回路全部电压降在TQ跳闸线圈上,TQ跳闸线圈电流增大,使得TQ线圈带电,电磁力使跳闸铁芯向上吸引,使操作机构脱扣,断路器跳闸。同时跳闸电流也流过TBJ跳跃闭锁继电器的电流线圈,使得TBJ的电流线圈起动,TBJ 电流线圈带电动作,其常开触点TBF3-4闭合,若KK5-8触点未复归或被卡死,回路将接通电压线圈实现自保;其常闭触点断开,对合闸回路实现“闭锁”。

断路器跳闸后,与其联动的常开触点QF3-4断开,常闭触点QF1-2闭合,并使TQ 线圈及TBJ电流线圈断电。在此过程中,由于KK控制开关的设计使得KK自动弹到“跳闸后”位置,并使KK10-11、KK14-15等相应的触点闭合,使得电路是:220V(+)-1FU-KK10-11-绿灯LD-电阻R1-QF1-2-HC合闸线圈-2FU-220V(-)形成闭合

回路,绿灯发平光。

由于合闸线圈HC线圈电阻远小于绿灯LD及附加电阻R1的电阻,所以绿灯LD发出平光,HC线圈虽通电而电流很小,不能动作,不会造成断路器合闸。绿灯LD发出平光,一方面指示断路器在跳闸位置,另一方面表明合闸回路完好。当KK手柄松开弹回到“跳闸后”位置时,触点6-7断开。与红灯附加电阻一样,绿灯附加电阻的作用是防止绿灯灯泡两端短接,造成断路器误合闸。

③合闸操作

断路器进行合闸操作时,把KK手柄先转到“预备合闸”位置,再转到“合闸”位置,KK在“合闸”位置时,触点KK5-8接通,将绿灯LD和附加电阻短接,回路电压全降在HC线圈上,则HC动作,(这部分电路在电路图中未给出:接通合闸线圈HQ回路,将断路器合闸)。

断路器合闸后,其常闭触点QF1-2断开,使HC线圈断电,(这部分电路在电路图中未给出:因而HQ回路也断电);并且此时KK的位置是在“合闸后”的位置,相应的辅助触点KK9-10、KK13-16等闭合,使下面电路:

220V(+)-1FU- KK13-16-红灯HD-R2-TBJ线圈-QF3-4-TQ线圈-2FU-220V(-)形成闭合回路。

红灯HD发平光。随后,将KK手柄放开使其弹回到“合闸后”位置,触点5-8断开,16-13仍接通,红灯继续发出平光。

合闸线圈HQ不象跳闸线圈TQ那样直接启动,其原因是HQ电阻极小,合闸电流很大,若用KK触点直接启动将烧坏触点。所以把KK的5-8触点先接通作为中间接触器的HC线圈,再通过容量较大HC触点来接通HQ回路。④事故跳闸当断路器所在电气一次回路发生事故时,继电保护动作,保护出口继电器的常开触点BCJ闭合,把红灯HD及其附加电阻短接,使断路器跳闸。

断路器事故跳闸时,必须发出事故信号,以引起操作人员的注意。事故信号有事故音响

信号和绿灯闪光信号,两者同时作用。

事故音响信号的动作过程如下:

当断路器事故跳闸时,KK的手柄仍处于“合闸后”的位置,因此其触点KK1-3、KK19-17闭合,但QF5-6常闭触点也因断路器跳闸而闭合,所以接通了冲击继电器回路,BL线圈中有冲击电流流过,GHJ线圈得电励磁,ZJ线圈得电并自保持,这样就启动了音响装置,使电笛发声,从而引起操作人员的注意。

音响装置一般全厂共用一组,为使每台断路器跳闸时电笛都能发声,在事故信号回路里串联入一个附加电阻R,以后的中央音响信号装置实验中会得到进一步了解和认识。

在发出事故音响信号的同时,还必须直观地表明何台断路器跳闸,绿灯闪光信号就起到了这个作用,当KK手柄在“合闸后”位置时,其触点9-10接通,若断路器跳闸,其常闭触点QF1-2闭合,于是把绿灯右边接到负电源,左边接到闪光继电器,这样绿灯就在闪光电源作用下一闪闪地发光。

闪光既有指示断路器事故跳闸的作用,又有监视断路器操作的作用。如将KK手柄转到“预备合闸”位置,其触点9-10也接通,断路器常闭触点QF1-2闭合,因此绿灯也闪光。这种闪光是为了引起操作者的注意,即所操作的断路器是否有误。若无误,可把KK手柄继续转到“合闸”位置,断路器就合闸。同样,当KK手柄转到“预备跳闸”位置时,触点13-14接通,红灯闪光,同样起到监视的作用。

操作人员在处理事故时,应先停止音响信号,但保留闪光信号,这样能清楚地

知道事故断路器所在位置。事故处理完毕后,将KK手柄转到“跳闸后”位置,触点9-10断开,闪光解除。同时KK的触点1-3、19-17断开,事故信号回路也

断开。

六、注意事项

注意事项除了操作规程以外,在操作接线中要特别注意跳跃闭锁继电器TBJ的电流

线圈的正确接入,如接入电压线圈回路,将会烧毁电流线圈。因此必须核对接线正确无误,待指导教师检查实验电路准确无误后,方可通电试验。

七、实验报告

在安装接线动作试验结束后,认真分析控制回路的动作过程及音响装置的起动原理,结合上述思考题、实验要求、在实验过程所遇到的问题及其解决过程等来作为实验

八、思考讨论题或体会或对改进实验的建议:

1、上述装设跳跃闭锁继电器同时具有灯光监视的断路器控制回路中,是否具有监视控制回路本身的完整性和操作电源正常性的功能?

答:具有监视控制回路本身的完整性和操作电源正常性的功能。

2、为什么图5-1控制电路中没有装设合闸位置继电器和跳闸位置继电器?

答:5-1电路中灯光回路和跳闸回路连在一起,所以不需要2种继电器来接通灯光回路。

3、在图5-1的控制电路中,是否满足确保断路器分合闸线圈短时通电的要求?为什么?

答:是,因为当用KK开关实现合闸或跳闸时,5-8、6-7接通使断路器分合闸线圈直接连在电源2端,使其电流瞬间达到动作值而动作,保证了短时通电的要求。

4、跳跃闭锁继电器TBJ为什么需要一个电流线圈和一个电压线圈?接入时应注意什么?

答:在合闸时,如遇到故障,继电保护装置动作,其触点BCJ闭合将跳闸回路接通,使断路器跳闸。同时跳闸电流也流过跳跃闭锁继电器TBJ的电流启动线圈,使TBJ动作,其常开触点接通TBJ的电压线圈常闭触点断开合闸线圈回路。此时,如控制开关KK的触点5-8或自动装置的触点1ZJ因故未断开则TBJ的电压线圈始终带电,与HC线圈串联的TBJ常闭触点就始终分开,实现“闭锁”,HC线圈就始终无电,断路器就不能进行多次合闸。只有这两个线圈共同作用才能实现防跳。

5、图5-1的控制电路,是否可用继电保护和自动装置进行分合闸操作?为什么?

答:是,因为回路中有自动分合闸的辅助触点,当辅助触点接通时可使继电保护动作。

6、图5-1控制电路的操作过程中,出现“红灯平光”“红灯闪光”“绿灯平光”“绿灯闪光”各表示什么状态?

答:红灯平光表示此时断路器处于合闸状态。

红灯闪光表示此时正在进行预备跳闸操作,提醒操作人员核对是否选择了正确的操作对象。

绿灯平光表示此时断路器处于断开状态。

绿灯闪光表示此时正在进行预备合闸操作,提醒操作人员核对是否选择了正确的操作对象。

八、实验小结

通过本次实验主要是对断路器的“跳跃”有了新的了解以及对如何防跳,防跳的工作原理有了更深的认识,断路器中跳跃闭锁继电器的两个线圈是怎么配合工作的来实现防跳闭锁。还有就是真正的模拟了故障条件下断路器控制回路是怎么工作的,断路器是怎么自动跳闸的。

此次实验还让我加深理解了断路器控制回路出现“跳跃”现象的原因——跳跃现象的产生有两个条件:1.永久故障 2.5-8节点卡死,手柄不能复归。掌握了装设跳跃闭锁继电器的断路器控制回路的“防跳”原理、电路的功能和特点。也了解了为了解决跳跃而采取的措施,对“防跳”具体操作也有更深的体会。

本次实验还有一个收获就是知道了:当你在接一个控制回路时,如果在完成之后发现有故障,我们该怎样去一步一步去排除故障,而不是全拆了重接,这样既浪费时间,又不能锻炼到分析故障的能力。

九、参考资料

[1]熊信银,朱永利.发电厂电气部分(第三版).北京:中国电力出版社,2002

[2]刘介才,工厂供电 (第三版) 水利电力出版社 2003

甲醇制芳烃实验报告doc

甲醇制芳烃实验报告 篇一:化工实训实验报告 吉林化工学院化工过程模拟实训报告 题目:甲醇-水精馏分离过程模拟计算 教学院石油化工学院专业班级化工1302班学生学号1310111218学生姓名何迪指导教师刘艳杰 XX 年12月8日 1、软件功能简介 (1)全面的单元操作:包括气/液,气/液/液,固体系统和用户模型。 (2)将工艺模型与真实的装置数据进行拟合,确保精确的和有效的真实装置模型。 (3) 优化功能:确定装置操作条件,最大化任何规定的目标,如收率、能耗、物流纯度和工艺经济条件。 (4) Design Specification 功能: 自动计算操作条件或设备参数,满足指定的性能目标。 2、已知基础数据及分离任务 (1)已知基础数据 F1:35?C ,101kPa,1080 kg/hr的甲醇(52%w)-水(48%w)。F2:20?C ,150kPa,1000kg/hr 的甲醇(40%w)-水(60%w)。F3:25?C ,120kPa,1420kg/hr 的甲醇(60%w)-水(40%w)。精馏塔进料流量:3000 kg/hr,进料温度60?C,压力150kPa。(2)分离任务 塔顶产品甲醇含量不低于99.9%(w),塔底产品水含量

不低于99.9%(w)。甲醇回收率不低于99.1%,水回收率不低于99.5%。 3、流程叙述 将温度为35 ?C,压力为101kPa,流量为1080 kg/hr 的甲醇(52%w)-水(48%w) 与温度为20 ?C,压力为150kPa,流量为1000 kg/hr的甲醇(40%w)-水(60%w)及温度为25 ?C,压力为120kPa,流量为1420kg/hr的甲醇(60%w)-水(40%w)在混合器M0101中混合。将混合后的物料经分流器S0101分流出3000kg/hr由泵P0101打入换热器E0101,在换热器中将物料加热至60 ?C后,进入精馏塔T0101进行甲醇-水混合液的精馏分离,经精馏后塔顶得到99.9%的甲醇,塔釜得到99.9%的水。流程图见图1所示。 图1 甲醇-水分离流程图 4、模拟计算过程的简述 4.1 模拟的全局设置(1)启动ASPEN 双击桌面的aspen软件快捷方式打开aspen。(2)单位制的选择 在新建页面选择General with Metric Units选项 (3)运行类型的确定 运行类型选择 Flowsheet,确认创建aspen文件。 (4)组分的输入 将本组流程命名为学号18,并且Input Data为METCHE,Output Result为METCHE。

热电厂反渗透浓水回用处理的试验

热电厂反渗透浓水回用处理的试验 摘要:在热电厂中,对反渗透浓水进行处理是非常重要的一项工艺。采用超滤+ 强化阻垢反渗透工艺对某热电厂的高盐度反渗透浓水进行回收,结果表明,超滤 +强化阻垢反渗透工艺完全适合反渗透浓水的回收,对离子和有机物的去除效果 显著。设备运行稳定,处理后的出水满足二级反渗透的进水水质要求,运行成本 与常规的超滤+反渗透工艺的成本基本无异。 关键词:浓水回收;强化阻垢;超滤;反渗透 引言 反渗透水处理技术因具有脱盐率高、操作简便和对环境污染小的优点被广泛 应用于水处理中。电厂排水主要有循环水排水和化学水处理排水两部分。化学水 处理排水中,反渗透浓排水约45×104t/a占化学水处理排水的70%。反渗透系统 的浓水大量排放,不仅造成水资源浪费,而且给企业带来很大的废水排放压力。 因此,合理利用反渗透浓排水,实现废水回用,具有十分重要的经济和环保效益。 1工艺概述 根据浓水的水质情况以及现场场地情况确定浓水回收的基本工艺。浓水在调 节池进行酸碱中和,经潜污泵泵送至一体化净水器,经絮凝沉淀后去除水体中大 部分的胶体悬浮物。随后泵送至多介质过滤器,过滤器中的石英砂和活性炭可进 一步去除水中疏水性的溶解性有机物,保证后续处理工艺中膜污染的控制。经超 滤进一步预处理后,进入反渗透系统脱盐除硬。反渗透产水做为纯水站的一级反 渗透进水循环利用。 2处理工艺 2.1工艺流程 原水为某电厂反渗透浓水,试验规模为2m3/h。反渗透浓水经过超滤处理后,出水添加强化阻垢剂进入反渗透装置处理。 2.2预处理工艺 由于生产厂区排放的浓水水量、水质不稳定容易对中水回用装置造成各种形 式的冲击负荷。因此,该在进入处理装置前,要调节水质、水量,以保证处理装 置的正常运转。一体化净水装置和城市供水厂的净化流程一样。它有:混凝池、 沉淀池、过滤池。投加混凝剂的原水由进水管进入混凝池内,用特制的搅拌机搅动,使水中的悬浮物和混凝剂充分接触反应形成矶花。一般净水装置是采用涡流 反应来使水和混凝剂混和,但效果受水量的变化而不稳定。该净水装置则用搅拌 机混和,不受水量变化而影响效果。水经加混凝剂混凝后形成巩花,流到设备的 沉淀池内进行沉淀,沉淀池采用斜管沉淀法,经过梯形斜板沉淀室沉淀完成固液 分离,沉淀下来的污泥排入泥斗。经沉淀后的水流到过滤池过滤,滤池结构:底 部为布水管,中部为石英砂,上部为无烟煤。 2.3反渗透装置的选择 反渗透装置已经比较早的运用到了国内,但大部分运用在生物制药行业。因 为给水预处理技术水平的提高,特别是超滤技术的应用使反渗透越来越多的应用 到了电厂水等生产中。现阶段,国内在水处理方面使用的反渗透装置大多使用的 是卷式结构。要严格的控制反渗透的产生率,这不是指产水率越高越好,如果太 高的产水率就会造成浓差极化。但是发生浓差极化并不知识太高的产水率导致的,通过膜的水量太多也会造成产生浓差极化。产生浓差极化情况后就会增加水能源 的耗费量,透过的盐的数量增大,就可能导致膜的性能下降并无法还原。

热力发电厂试题1

热力发电厂 一、名词解释 1.冷源损失 汽轮机排汽在凝汽器中的放热量。 2.汽轮机装置内效率 汽轮机单位时间内所做的实际内功(焓降)与热耗量之比。 3. 管道效率 汽轮机的热耗量与锅炉热负荷之比。用来表征蒸汽从锅炉流至汽轮机进口,由于发生压力损失和散热损失而导致的能量损失。 4.厂用电率 厂用电量占电厂发电量的百分比。 5.汽轮发电机组热耗率 汽轮发电机组每生产1kW×h的电能所消耗的热量。 6.汽轮发电机组汽耗率 汽轮发电机组每生产1kW×h的电能所需要的蒸汽量。 7.凝汽式电厂的热耗率 发电厂每生产1kW×h的电能所需要的热量。 8.汽轮机相对内效率 汽轮机实际内功(焓降)与理想内功(焓降)之比。 9.凝汽式电厂的全厂热效率 发电厂输出的有效能量(电能)与输入总能量(燃料化学能)之比10.循环热效率 汽轮机在单位时间内输出内功与循环吸热量之比。 11.安全阀 用于锅炉、压力容器及管道上的保护阀门。当容器内压力超过规定值时,可以自动开启,排出介质,当容器内压力恢复正常时能自动关闭。12.疏水泵 提高疏水压力,将疏水打入到本级加热器出口水中的泵。 13.前置泵 置于给水泵前、与之串联运行的泵。其转速较低,必须汽蚀余量较小,能提高给水泵入口压力,防止给水泵汽蚀。

14.排污扩容器 对锅炉连续排污水进行扩容、降压,回收利用其扩容蒸汽,减少系统的汽水损失。 15.除氧器抽汽调节阀 用于除氧器的定压运行,能将汽轮机抽汽节流至给定的除氧器工作压力。 16.抽汽逆止阀 保证汽轮机抽汽的单向流动(由汽轮机至加热器),防止管内蒸汽或加热器内汽水倒流入汽轮机的一种阀门。 17.主给水再循环 将主给水泵出口的给水通过管道返回除氧水箱,防止给水泵在汽轮机低负荷时由于给水流量不足发生汽蚀。 18.主凝结水再循环 将凝结水泵出口的凝结水通过管道返回凝汽器热井,防止凝结水泵在汽轮机低负荷时由于凝结水流量不足发生汽蚀。 19.高压加热器水侧旁路 在高压加热器出现故障时,将其切除,这时给水所流经的管路。20.轴封加热器 利用汽轮机各汽缸末端的轴封漏出的汽气混合物加热凝结水的间壁式换热器,位于凝结水泵与最末级低压加热器之间。 二、单项选择题(从下列各题四个被选答案中选出一个正确答案,并将其题号写在题干后面的括号内。答案选错或未作选择者,该题无分)1.高压加热器的旁路阀门若关闭不严__。(②) ①降低机组的安全性②会降低机组的经济性 ③对机组的安全性和经济性都有影响④对机组安全性和经济性都无影响 2.汽轮机Ⅰ,Ⅱ级旁路(即高、低压旁路)的减温水__。(③) ①都来自给水②都来自凝结水 ③分别来自给水和凝结水④都来自循环水 3.凝结水泵和给水泵都需要设置__。(④) ①再循环管和抽空气管②抽空气管和逆止阀

燃料电池实验报告

竭诚为您提供优质文档/双击可除 燃料电池实验报告 篇一:燃料电池综合特性实验报告 燃料电池综合特性实验 【实验背景】燃料电池以氢和氧为燃料,通过电化学反应直接产生电力,能量转换效率高于燃烧燃料的热机。燃料电池的反应生成物为水,对环境无污染,单位体积氢的储能密度远高于现有的其它电池。因此它的应用从最早的宇航等特殊领域,到现在人们积极研究将其应用到电动汽车,手机电池等日常生活的各个方面,各国都投入巨资进行研发。按燃料电池使用的电解质或燃料类型,可将现在和近期可行的燃料电池分为碱性燃料电池,质子交换膜燃料电池,直接甲醇燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池6种主要类型,本实验研究其中的质子交换膜燃料电池。 能源为人类社会发展提供动力,长期依赖矿物能源使我们面临环境污染之害,资源枯竭之困。为了人类社会的持续健康发展,各国都致力于研究开发新型能源。未来的能源系

统中,太阳能将作为主要的一次能源替代目前的煤,石油和天然气,而燃料电池将成为取代汽油,柴油和化学电池的清洁能源。 【摘要】燃料电池尤其是质子交换膜燃料电池(pem)以其高功率密度、高能量转换效率、可低温启动、环境友好等突出优点而受到瞩目。本实验包含太阳能电池发电(光能—电能转换),电解水制取氢气(电能—氢能转换),燃料电池发电(氢能—电能转换)几个环节,形成了完整的能量转换,储存,使用的链条。本实验通过研究燃料电池的工作原理,测量其输出特性,计算燃料电池的最大输出功率及效率并验证法拉第电解定律。测量太阳能电池的特性,做出所测太阳能电池的伏安特性曲线,电池输出功率随输出电压的变化曲线。获取太阳能电池的开路电压,短路电流,最大输出功率等。 【关键词】燃料电池,电解池,太阳能电池 【正文】 一、实验目的: 1、了解燃料电池的工作原理。 2、观察仪器的能量转换过程: 光能→太阳能电池→电能→电解池→氢能(能量储存)→燃料电池→电能 3、测量燃料电池输出特性,做出所测燃料电池的伏安

#1发电机进相运行试验报告

#1发电机进相运行试验报告

发电机进相运行试验报告 (A版/0)

参加工作单位:山东电力研究院 山东中实易通集团有限公司 太阳纸业热电厂 工作人员:张维超、孙善华等 项目负责人:张维超 工作时间:2008年2月15日至2008年2月16日编写: 审核: 批准:

1.前言 随着山东电网装机容量的增加,输电线路的容量和距离不断扩大,线路相间和对地电容相应地增大,系统的容性负荷大量增加。在负荷低谷时,系统发出的总感性无功可能超过用户的感性无功和线路的无功损耗总和,导致电网局部电压超出容许范围,影响电网设备的安全运行。为吸收系统多余无功调整电网电压,一般采用并联电抗器或调相机的办法,但这不仅增加了设备投资,而且增加了损耗。如果降低发电机的励磁电流,使发电机由通常的定子电流滞后于机端电压(发电机向系统提供感性无功)的迟相运行,转变为由于欠励磁使发电机的定子电流超前定子电压(发电机从系统吸收感性无功)的进相运行,也可以达到同样目的。显然,这种方式比使用电抗器或调相机节约投资和能耗,而且操作也很简便。为此调度中心要求新建及改造机组在投产前做进相运行试验,利用试验结果指导机组的实际运行,确保系统电压控制在允许范围内。 太阳纸业热电厂#1发电机为空气冷却方式发电机,2008年2月,由山东电力研究院负责,电力研究院、太阳纸业热电厂双方共同对#1发电机进行了进相运行试验,以确认该机的进相运行能力。 2.试验依据的标准 GB/T 1029-2005 《三相同步电机试验方法》 《WX21-D85LLT型汽轮发电机技术数据及有关说明》 GB/T 7064-2002 《透平型汽轮发电机技术要求》 #1发电机运行规程 3.#1发电机有关参数: #1发电机参数 型号:WX21-D85LLT 额定容量:176.5 MV A 额定功率:150 MW 额定电压:15.75 kV 额定电流:6469 A 励磁电流:1344 A

内蒙古科技大学热力发电厂考试卷A

热力发电厂考试试卷 一 名词解释(10分) 发电热耗率 端差 最佳真空 热电厂的燃料利用系数 热化发电率 二 简答题 (70分) 1 提高蒸汽初温可提高机组的热经济性,分析其原因,并说明提高蒸汽初温在工程中主要受哪些因素限制。 2 现在绝大多数大容量再热式机组都设置了旁路系统,简述旁路系统的作用。 3在现代的高参数、大容量采用中间再热机组的热力系统中,大多数回热加热器都采用了置式疏水冷却段以提高热经济性,试利用热量法分析其原因。 4 给水热除氧的机理基于哪两个基本定律?根据热除氧机理指出监测哪些参数就可了解给水溶氧量情况。 5 什么是除氧器的自生沸腾现象?为防止这种现象的发生,可采取哪些解决措施? 6在火力发电厂原则性热力系统计算中,拟定回热加热器的热平衡式并据以求解加热器的抽汽量是其中很重要的一步,试对下图中的加热器根据所给符号写出热平衡式。 7对于抽汽凝汽式机组,其做功汽流可分为供热汽流和凝汽汽流,这两部分汽流与代替 凝汽式机组做功汽流的热经济性满足下述关系,ic i ih ηηη>>,s c e,s cp s h ,e b b b <<,试分析 其原因。 三 作出符合下列条件的火电厂热力系统图(20分) 1. 高、中、低压三缸两排汽,低压缸对称分流,一次中间再热; 2. 机组有八级回热,三高、四低、一除氧,其中高压缸两段、中压缸两段抽汽; 3. #1、#2高压加热器带有置式蒸冷段和疏冷段,#3号高压加热器带外置式蒸汽冷却器(串联布置),#5低压加热器只带有置式蒸汽冷却段; 4. 高压加热器的疏水逐级自流入除氧器,低压加热器除最低一级加热器外均采用疏水逐级自流方式,最末一级低压加热器疏水采用疏水泵方式打到其出口,轴封加热器疏水至凝汽器热井; 5. 前置泵、给水泵均由小汽轮机带动,汽源来自第四段抽汽,排汽至主凝汽器; 6. 带给水泵、凝结水泵再循环; 7. 补水补入凝汽器; 8. 锅炉一级连排扩容器扩容蒸汽至除氧器,未扩容的排污水经排污冷却器至地沟; 9. 第一至第六段抽汽管路上有电动阀和逆止阀,最末两段抽汽管路上没有任何阀门。 10. 过热器减温水引自给水泵出口,再热器减温水引自给水泵中间抽头。 热力发电厂习题 一、单项选择题

蓄电池实验报告doc

蓄电池实验报告 篇一:直流系统蓄电池充放电试验报告 2 篇二:蓄电池测试 报告 蓄电池测试报告 使用单位:凯翔电池型号:产品名称:制造厂商:测试单位:凯翔测试人员:测试日期:打印日期:测试站点:凯翔 05 XX-11-10 XX-02-20 电流曲线图: 特性比较图: 单体条形图: 容量分析: 篇三:实验报告01--车用蓄电池技术状况的检查 实验一车用蓄电池技术状况的检查 实验时间:XX年9月29日实验地点:A-08 107 指导教师:亢凤林 一、实验目的 1、认识铅酸免维护蓄电池 2、高效放电计在检测蓄电池技术状况中的正确使用; 3、认识和正确使用蓄电池充电机。 二、实验设备

蓄电池、12V高率放电计; GZL-24V-60型过载保护硅整流充电机。 三、实验方法及步骤 1、观察6-QW-54蓄电池外观; 记录:可以看到两个接线柱:红色的一个标有“+”,另一个黑色标有”—”两个都是螺栓接线柱,一个蓄电池技术状态观察窗口,从外边可以看到蓝色的圆点 2、观察蓄电池技术状态指示器 记录:看到蓝色的圆环中间位黑色的圆点 记录分析:说明技术状态良好存电充足 3、12V高率放电计的正确使用; (1)使用高率放电计辨别蓄电池正负极 方法步骤:把高效放电计两个接线端接在蓄电池的两极,要保证两个接线柱都与电极接触完好,通过观察高效放电计的只是灯判定蓄电池的正负极。 (2)使用高率放电计辨别蓄电池技术状态 方法步骤:保持高效放电计的两个接线端接通蓄电池的两极,通过观察放电计上的电压表示数,观察时间最好不超过五秒。 测量数据:11.2V 数据分析:11—12V技术状态良好,9-11V技术状态较好,小于9V技术状态不好。通过本次测量电压表示数为11.2V

氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测试 实验报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

氢氧燃料电池性能测 试实验报告 学号: 姓名:冯铖炼 指导老师:索艳格 一、实验目的 1.了解燃料电池工作原理 2.通过记录电池的放电特性,熟悉燃料电池极化特性 3.研究燃料电池功率和放电电流、燃料浓度的关系 4.熟悉电子负载、直流电源的操作 二、工作原理 氢氧燃料电池以氢气作燃料为还原剂,氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。

工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂全部储藏在电池内的装置氢氧燃料电池的反应物都在电池外部它只是提供一个反应的容器 氢气和氧气都可以由电池外提供燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,2013年正发展为直接使用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气)。氢在负极分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种"发电机"。 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。在正、负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢—氧燃料电池有酸式和碱式两种: 若电解质溶液是碱、盐溶液则

热力发电厂考试知识点总结

1.名词解释 (1)热耗率:汽轮发电机组每生产1kw·h的电能所消耗的能量。 (2)汽耗率:汽轮发电机组每生产1kw·h的电能所消耗的蒸汽量。 (3)发电标准煤耗率:发电厂生产单位电能所消耗的煤折合成标准煤的数量。 (4)供电标准煤耗率:发电厂向外提供单位电能所消耗的标准煤的数量。 (5)厂用电率:单位时间内厂用电功率与发电功率的百分比。(6)热电联产:在发电厂中利用在汽轮机中做过功的蒸汽的热量供给热用户。在同一动力设备中同时生产电能和热能的生产过程。 (7)高压加热器:水侧部分承受除氧器下给水泵压力的表面式加热器。 (8)低压加热器:水侧部分承受凝汽器下凝结水泵压力的表面式加热器。 (9)混合式加热器:加热蒸汽与水在加热器内直接接触,在此过程中蒸汽释放出热量,水吸收了大部分热量使温度得以升高,在加热器内实现了热量传递,完成了提高水温的过程。 (10)给水泵汽蚀:汽泡的产生、发展、凝结破裂及材料的破坏过程。 (11)热效率:有效利用的能量与输入的总能量之比。 (12)热力系统:将热力设备按照热力循环的顺序用管道和附件连接起来的一个有机整体。 (13)单元制系统:每台锅炉与相对应的汽轮机组成一个独立单元,各单元间无母管横向联系。 (14)公称压力:管道参数等级。是指管道、管道附件在某基准温度下允许的最大工作压力。 (15)公称通径:划分管道及附件内径的等级,只是名义上的计算内径,不是实际内径。 (16)最佳真空:发电厂净燃料量消耗最小的情况下,提高真空是机组出力与循环水泵耗功之差最大时的真空。 (17)最佳给水温度:汽轮机绝对内效率最大时对应的给水温度。 (18)加热器端差:上端差:加热器汽侧压力下的饱和温度与水侧出口温度之差。 下端差:加热器汽侧压力下的饱和温度与水侧进口温度之差。

蓄电池充放电试验

蓄电池放电试验方案 批准: 审核: 编写: 重庆大唐国际彭水水电开发有限公司设备部 二〇一二年七月二日

蓄电池放电试验方案 本次试验按DL/T724-2000-6.3.3阀控蓄电池核对性放电要求进行全核对性放电试验。 一、计划时间: 开关站直流Ⅰ组蓄电池充放电试验:2012年07月11日08:00至2012年07月14日23:00 开关站直流Ⅱ组蓄电池充放电试验:2012年07月15日08:00至2012年07月19日23:00 地下厂房直流Ⅰ组蓄电池充放电试验:2012年07月29日08:00至2012年08月01日23:00 地下厂房直流Ⅱ段充电装置试验:2012年08月02日08:00至2012年08月05日23:00 大坝直流充电装置试验:2012年08月11日08:00至2012年08月14日23:00 二、组织措施 现场指挥:李正家 成员:谭小华(工作负责人)、刘宏生、肖琳、肖力、陈灏、刘应西、韦黎敏、运行当班值 三、试验前准备工作 1、设备部

1)外观检查:蓄电池槽、盖、安全阀、极柱封口剂等的材 料应具有阻燃性,用目测检查蓄电池外观,蓄电池的外观不应有裂纹、变形及污迹; 2)极性检测:用万用表检查蓄电池极性; 3)开路电压检查:蓄电池在环境温度5℃~35℃的条件 下完全充电后静置至少24h,测量蓄电池的开路电压应符开路电压最大最小电压差值不大于; 4)蓄电池连接压降:蓄电池间的连接条电压降应不大于 8mV; 5)内阻测试:制造厂提供的蓄电池内阻值应与实际测试的 蓄电池内阻值一致,允许偏差范围为±10%。 2、发电部 退出需放电试验的运行蓄电池组。 三、试验步骤 1、蓄电池核容试验: 1)以×10小时放电率电流对电池组充电,连续充电至少 72小时,直至3小时内充电电流基本稳定不变(电池组充满状态),静置1到2小时,电池组温度与周围温度基本一致后对电池组进行放电,放电电流为10小时放电率电流(120A),连续放电10小时(放电过程中调整负载,始终保持放电电流不变)或端电压达到终止电压或单个电池电压低于时,停止放电,记录连续放电时间,由此算出容量。

碳载铂、钌催化剂对甲醇燃料电池阳极电催化性能的研究实验报告

碳载铂、钌催化剂对甲醇燃料电池阳极电催化性能的研究 学院:化学学院 班级:化学03班 姓名:艾丽莎 学号:33090331

碳载铂、钌催化剂对甲醇燃料电池阳极电催化性能的研究【实验目的】 甲醇燃料电池阳极催化剂的合成及其电化学催化性能的表征,此实验过程设计无机合成、物理化学及电化学等学科方向内容,对同学熟练运用化学实验基本理论、基本方法和操作具有很好的促进作用。燃料电池是一类连续地将燃料氧化过程的化学能直接转换为电能的电化学电池,直接甲醇燃料电池(DMFC)由于其结构简单、操作方便和比能量高等优点,具有十分诱人的应用前景,引起广泛的研究兴趣,已经成为燃料电池领域的研究热点。把相关研究作为实验内容对同学开阔视野,培养科学的思维方式及勇于创新意识具有促进作用。 1. 了解碳载铂与铂钌阳极催化剂的制备方法。 2. 了解甲醇燃料电池的工作原理,掌握催化剂电催化性能的测试方法。 3. 了解甲醇燃料电池阳极电催化反应机理。 【实验原理】 一.什么是燃料电池。 燃料电池(Fuel Cell, 简称FC)发电是继水力、火力和核能发电之后的第四类发电技术。由于它是一种不经过燃烧直接以电化学反应方式将燃料的化学能转化为电能的发电装置,从理论上讲,只要连续供给燃料,燃料电池便能连续发电。但是,与一般电池不同,FC所用的燃料和氧化剂并不是储存在电池内,而是储存在电池外。在这一点上,与内燃机相似。因此,FC又被形象地称为“电化学发电机”。 二.燃料电池的分类。 燃料电池的分类方式有很多种,可依据所用解质性、工作温度燃料电池的分类方式有很多种,可依据所用解质性、工作温度燃料电池的分类方式有很多种,可依据所用解质性、工作温度燃料的种类以及使用方式等进行分。目前广为采纳法是燃料的种类以及使用方式等进行分。目前广为采纳法是依据燃料电池中所用的电解质类型来进行分,即为六燃料: ①碱性燃料电池(AFC)碱性燃料电池采用氢氧化钾溶液作为电解液,电池的工作温度一般在60 -220 ℃之间。 ②质子交换膜燃料电池(PEMFC)质子交换膜燃料电池采用能够传导质子的聚合物膜作为电解质,比如全氟磺酸膜(Nafion 膜),其主链为聚四氟乙烯链,支链上带有磺酸基团,可以传导质子。 ③磷酸燃料电池(PAFC)磷酸燃料电池是目前最为成熟的燃料电池,已经实现了一定规模的商品化。其采用是100%的磷酸作为电解液,其具有稳定性好和腐蚀性低的特点。 ④熔融碳酸盐燃料电池(MCFC)熔融碳酸盐燃料电池是一种中高温燃料电池,其电解质是Li2CO3-Na2CO3或者Li2CO3-K2CO3的混合物熔盐,浸在用LiAlO2制成的多孔膜中,高温时呈熔融状态对碳酸根离子具有很好的传导作用。 ⑤固体氧化物燃料电池(SOFC)其是一种全固体的燃料电池,电解质是固态致密无孔的复合氧化物,最常使用钇掺杂锆简写为YSZ,这样的电解质材料在高温下具有很好的氧离子传导性。 ⑥直接甲醇燃料电池(DMFC)直接甲醇燃料电池是近年来开发起的,用PEM 作为电解质的新型燃料电池。其直接使用液体甲醇作为燃料,大幅度的简化了发电系统和结构。三.甲醇燃料电池(DMFC)的工作原理。 直接以液态或气态甲醇为燃料的FC称为DMFC,直接甲醇燃料电池是质子交换膜燃料电池(PEMFC)的一种变种,它直接使用甲醇而勿需预先重整。甲醇在阳极转换

热力发电厂试题

热力发电厂 一、名词解释 1. 冷源损失 汽轮机排汽在凝汽器中的放热量。 2. 汽轮机装置内效率 汽轮机单位时间内所做的实际内功(次含降)与热耗量之比。 3. 管道效率 汽轮机的热耗量与锅炉热负荷之比。用来表征蒸汽从锅炉流至汽轮机进口,由于发生压力损失与散热损失而导致的能量损失。 4. 厂用电率 厂用电量占电厂发电量的百分比。 5. 汽轮发电机组热耗率 汽轮发电机组每生产1kW h的电能所消耗的热量。 6. 汽轮发电机组汽耗率 汽轮发电机组每生产1kW h的电能所需要的蒸汽量。 7. 凝汽式电厂的热耗率 发电厂每生产1kV^ h的电能所需要的热量。 8. 汽轮机相对内效率 汽轮机实际内功以含降)与理想内功以含降)之比。 9. 凝汽式电厂的全厂热效率 发电厂输出的有效能量(电能)与输入总能量(燃料化学能)之比 10. 循环热效率 汽轮机在单位时间内输出内功与循环吸热量之比。 11. 安全阀 用于锅炉、压力容器及管道上的保护阀门。当容器内压力超过规定值时,可以白动开启,排出介质,当容器内压力恢复正常时能白动关闭。 12. 疏水泵

提高疏水压力,将疏水打入到本级加热器出口水中的泵。 13. 前置泵 置于给水泵前、与之串联运行的泵。其转速较低,必须汽蚀余量较小能提高给水泵入口压力,防止给水泵汽蚀。 14. 排污扩容器 对锅炉连续排污水进行扩容、降压,回收利用其扩容蒸汽,减少系统的汽水损失。 15. 除氧器抽汽调节阀 用于除氧器的定压运行,能将汽轮机抽汽节流至给定的除氧器工作压力。 16. 抽汽逆止阀 保证汽轮机抽汽的单向流动(由汽轮机至加热器),防止管内蒸汽或加 热器内汽水倒流入汽轮机的一种阀门。 17. 主给水再循环 将主给水泵出口的给水通过管道返回除氧水箱,防止给水泵在汽轮机低负荷时由于给水流量不足发生汽蚀。 18. 主凝结水再循环 将凝结水泵出口的凝结水通过管道返回凝汽器热井,防止凝结水泵在汽轮机低负荷时由于凝结水流量不足发生汽蚀。 19. 高压加热器水侧旁路 在高压加热器出现故障时,将其切除,这时给水所流经的管路。 20. 轴封加热器 利用汽轮机各汽缸末端的轴封漏出的汽气混合物加热凝结水的间壁 式换热器,位于凝结水泵与最末级低压加热器之间。 二、单项选择题(从下列各题四个被选答案中选出一个正确答案,并将其题号写在题干后面的括号内。答案选错或未作选择者,该题无分) 1. 高压加热器的旁路阀门若关闭不严。(②) ①降低机组的安全性②会降低机组的经济性 ③对机组的安全性与经济性都有影响④对机组安全性与经济性都 无影响

(完整word版)实验报告5燃料电池电堆测试

《燃料电池电堆测试与分析》实验报告 一.实验目的: 1.掌握PEMFC电堆测试台的基本结构和操作方法; 2.通过实测,掌握电堆极化曲线的测试方法,学会绘制极化曲线、功率曲线等图谱; 3.能将燃料电池电堆的实测性能应用于燃料电池系统的构建上;锻炼运用理论分析、解决实际问题的能力和方法。 二.实验原理: 将所需测量的PEMFC电堆与NBT燃料电池测试系统连接,通过控制平台调节燃料电池的氢气和空气流量,设置负载的电流值(也就是燃料电池电堆的电流值),观察记录电压值和功率值得变化,利用所记录的数据画出燃料电池的i-V和i-P曲线。 三.实验仪器设备和器材 四.测试平台开机顺序测试 1.打开气源,检查氢气、空气(外部供应时)的压力是否正常、去离子水的液位是否正常;室内氢气泄露报警系统是否正常;氢气、空气与水的排放口是否连接妥当,氢气管路的出口必须接于室外。注意测试时的人员与设备的安全。 2.给测试平台上电,380V AC。 3.开启电脑,与设备联机。 4.手动设置适当的氢、空、冷却水温度(注意不应超过80℃)、各流体最低流量、电堆片数、活性面积等参数。 5.设定数据保存路径和文件名,开始记录数据。

6.测试极化曲线。根据电堆所需要氢空流量,手动设置电流,测试极化曲线。 7.实验结束。 五.提前制作电堆运行所需氢气和空气的流量表,如下表所示。 已知条件:电堆片数:19片,单电池活性面积250cm2; 阴/阳极化学计量比:3.5/1.5; 常压 六.绘制电堆的极化曲线和功率密度曲线,需要标明必要的测试条件。

七.绘制上述极化曲线上最大功率时的单片电池电压柱状图,并计算电压的 标准偏差。 学生(签名): 实验日期:2015.5.25

#1发电机进相运行试验报告

太阳纸业热电厂150MW机组 发电机进相运行试验报告 (A版/0) 山东电力研究院 山东中实易通集团有限公司 2008年2月

参加工作单位:山东电力研究院 山东中实易通集团有限公司 太阳纸业热电厂 工作人员:张维超、孙善华等 项目负责人:张维超 工作时间:2008年2月15日至2008年2月16日编写: 审核: 批准:

随着山东电网装机容量的增加,输电线路的容量和距离不断扩大,线路相间和对地电容相应地增大,系统的容性负荷大量增加。在负荷低谷时,系统发出的总感性无功可能超过用户的感性无功和线路的无功损耗总和,导致电网局部电压超出容许范围,影响电网设备的安全运行。为吸收系统多余无功调整电网电压,一般采用并联电抗器或调相机的办法,但这不仅增加了设备投资,而且增加了损耗。如果降低发电机的励磁电流,使发电机由通常的定子电流滞后于机端电压(发电机向系统提供感性无功)的迟相运行,转变为由于欠励磁使发电机的定子电流超前定子电压(发电机从系统吸收感性无功)的进相运行,也可以达到同样目的。显然,这种方式比使用电抗器或调相机节约投资和能耗,而且操作也很简便。为此调度中心要求新建及改造机组在投产前做进相运行试验,利用试验结果指导机组的实际运行,确保系统电压控制在允许范围内。 太阳纸业热电厂#1发电机为空气冷却方式发电机,2008年2月,由山东电力研究院负责,电力研究院、太阳纸业热电厂双方共同对#1发电机进行了进相运行试验,以确认该机的进相运行能力。 2.试验依据的标准 GB/T 1029-2005 《三相同步电机试验方法》 《WX21-D85LLT型汽轮发电机技术数据及有关说明》 GB/T 7064-2002 《透平型汽轮发电机技术要求》 #1发电机运行规程 3.#1发电机有关参数: #1发电机参数 型号:WX21-D85LLT 额定容量:176.5 MV A 额定功率:150 MW 额定电压:15.75 kV 额定电流:6469 A 励磁电流:1344 A 功率因数:0.85 接线方式:Y 出厂编号:1500018 出品年月:2007.4 制造厂:山东济南发电设备厂 4.试验的有关说明 通常限制发电机进相运行能力的主要因素有三个:发电机的静稳定、定子铁芯端部的温升、厂用电的降低。 为了保证试验的安全,试验时采取以下措施:

热力发电厂试题2010

华北电力大学_2010-2011_学年第_一_学期考试试卷(A) 班级: 姓名: 学号: 一、名词解释:(每题3分共15分) 1.供电热效率 2.回热做功比 3.烟气再热 4.凝汽器最佳真空 5.热化系数 二、简答题(每题5分共25分) 1.简述发电厂原则性热力系统和全面性热力系统的相同点和差异。 2.说明提高蒸汽初参数对热力发电厂热经济性的影响规律。 3.简述为什么会存在最佳给水温度。 4.简述除氧器热力除氧原理及对除氧器结构的要求。 5.简述旁路系统的主要形式及作用。 三、绘图题(10分) 某发电厂机组为单轴双缸双排汽,高中压缸采用合缸反流结构,低压缸为双 流对称布置。有八级不调整抽汽,回热系统为“三高四低一除氧”,除氧器滑 压运行。高低压加热器均有内置式疏水冷却器,高压加热器均有内置式蒸汽 冷却器。有除盐装置DE、一台轴封冷却器SG。高压加热器及5、6级低压 加热器疏水逐级自流方式,7级低压加热器疏水通过疏水泵打到本级给水出 口,8级低压加热器、轴封加热器疏水自流向凝汽器。给水泵FP配有前置泵 TP,正常运行为汽动泵,小轮机TD为凝汽式,正常运行其汽源取自第四段 抽汽(中压缸排汽),其排汽引入主凝汽器。补充水引入凝汽器。 绘制该机组原则性热力系统图。 四、计算题(共30分) 1.就习题三机组回热原则性热力系统写出8个加热器的热平衡方程式(给定给 水流量为1,各级抽汽量a i单位kg/s,抽汽放热量q i疏水放热量i ,给水焓 升iτ,单位均为kJ/kg,不足符号自行添加,所添加符号需给出说明)(15分)

2.某再热凝汽机组(无回热),求其机组热经济性指标和全厂发电热经济性指标。 (15分) 原始条件:p b=25MPa,t b=545℃,h b=3323kJ/kg,p0=23.5MPa,t0=540℃, p rh,i=3.82MPa,t rh,i=t2=284℃,p rh=3.34MPa,t rh=540℃,h0=3325kJ/kg, h rh,i=2922kJ/kg, h rh=3543kJ/kg, p c=0.0036MPa, h c=2405kJ/kg, h fw=141.1kJ/kg,ηb=0.92,ηm=0.985,ηg=0.99,不计工质损失,不考虑给 水泵功焓升。 五、分析论述题(任选2题,每题10分共20分) 1.说明为何降低终参数能够提高热力发电厂热经济性,并分析影响机组终参数 的主要因素。 2.题目三的原则性热力系统中,7号加热器疏水回收方式改为逐级自流方式后, 用热力学第一定律方法和热力学第二定律方法分析机组热经济性的变化。 3.试分析机组负荷聚变对除氧器除氧效果和给水泵安全性的影响。

大学物理化学实验报告-化学电池温度系数的测定课件.doc

物理化学实验报告 院系化学化工学院 班级化学061 学号13 姓名沈建明

实验名称 化学电池温度系数的测定 日期 2009.4.20 同组者姓名 史黄亮 室温 19.60 ℃ 气压 102.0 kPa 成绩 一、目的和要求 1、掌握可逆电池电动势的测量原理和电位差计的操作技术; 2、学会几种电极和盐桥的制备方法; 3、通过原电池电动势的测定求算有关 热力学函数。 二、基本原理 (一)、凡是能使化学能转变为电能的装置都称之为电池对定温定压下的可 逆电池而言 : r m (1) nFE T , p G E S nF (2) r m T p E H nE F nF T (3) r m T p 式中,F 为法拉弟(Farady)常数;n 为电极反应式中电子的计量系数 ;E 为电池 的电动势。

另, 可逆电池应满足如下条件: 1.电池反应可逆,亦即电池电极反应可逆。 2.电池中不允许存在任何不可逆的液接界。 即充放电过程必须在平衡态下进行,3.电池必须在可逆的情况下 工作,

因此在制备可逆电池、 测定可逆电池的电动势时应符合上述条件, 不高的测量中,常用正负离子迁移数比较接近的盐类构成 “盐桥 ”来消除液接电 位。用电位差计测量电动势也可满足通过电池电流为无限小的条件。 (二)、求电池反应的 Δ r G m 、Δr S m 、Δr H m 设计电池如下 : Ag(s) | AgCl(s) |饱和 KCl | Hg 2Cl 2(s) | Hg(l) 分别 测定电池在各个温度下的电动势,作 E — T 图,从曲线斜率可求得任一温度 下的 E T p 利用公式 (1),(2),(3) 即可求得该电池反应的 Δ r G m 、Δr S m 、Δr H m 三、仪器、试剂 SDC — Ⅱ数字电位差综合测试仪 1 台 精密稳压电源(或蓄电池) SC — 15A 超级恒温槽 铜电极 2 只 铂电极 1 只 饱和甘汞电极 1 只 恒温夹套烧杯 2 只 HCl ( 0.1000mol k ·g-1) AgNO3 ( 0.1000mol k ·g-1) 镀银溶液 镀铜溶液 四、实验步骤 一、电极的制备 1.银电极的制备 将欲用的两只 Pt 电极(一个电极 Pt 较短,作为阳极, 另一个电极作为阴极, 用于镀银) 浸入稀硝酸溶液片刻, 取出用蒸馏水洗净。 将洗净的电极分别插入盛 有镀银液( AgNO 3 3g ,浓氨水, KI 60g )中,控制电流为 0.3mA ,电镀 1h ,得 白色紧密的镀银电极一只。 2. Ag-AgCl 电极制备 在精确度 KCl 饱和溶液

直接甲醇燃料电池实验报告

研究生专业实验报告 实验项目名称:被动式直接甲醇燃料电池学号: 姓名:张薇 指导教师:陈蓉 动力工程学院

被动式直接甲醇燃料电池 一、实验目的 1、了解和掌握被动式空气自呼吸直接甲醇燃料电池(DMFC)的基本工作原理; 2、了解和掌握对燃料电池进行性能测试的基本方法; 3、了解和掌握燃料电池性能评价方法; 4、观察和认识影响燃料电池性能的主要因素。 二、实验意义 燃料电池是一种将燃料的化学能直接转化为电能的能源转化装置,具有环境友好、效率高、工作安静可靠等显着优点,被誉为继核能之后新一代的能源装置。在众多燃料电池种类中,空气自呼吸式直接甲醇燃料电池(DMFC)因具有系统结构简单、能量密度高、环境友好、更换燃料方便、可在常温下工作等优点,成为便携式设备最有前景的可替代电源,是电化学和能源科学领域的研究热点。本实验旨在对被动式空气自呼吸直接甲醇燃料电池进行实验研究,使同学们了解和掌握燃料电池测试的基本方法,加深对燃料电池基本工作原理的认识和理解。 三、实验原理 燃料电池是将燃料的化学能直接转化为电能的能源转化装置。一个典型的直 接甲醇燃料电池的示意图如图1所示。 图1: 直接甲醇燃料电池的典型结构 从图1中可以看出,典型的直接甲醇燃料电池包括阳极扩散层、阴极扩散层、阳极催化剂层、阴极催化剂层、质子交换膜、集流体等部件。在被动式空气自呼吸直接甲醇燃料电池中,电池阳极发生的是甲醇的氧化反应: CH 3OH+H 2 O→CO 2 +6H++6e-,E0=0.046 V (1) 电池阴极发生的是氧气的还原反应: 3/2O 2+6H++6e-→3H 2 O,E0=1.229 V (2) 总反应式为: CH 3OH+3/2O 2 →CO 2 +2H 2 O,△ E=1.183 V (3) 在被动式直接甲醇燃料电池阳极,甲醇水溶液扩散通过阳极扩散层到达阳极催化层,甲醇在阳极催化层被氧化,生成二氧化碳、氢离子和电子,如式(1)所示。氢离子通过质子交换膜迁移到阴极,电子通过外电路传递到阴极;在阴极侧,氧气通过暴露在空气中的阴极扩散层传输至阴极催化层,在电催化剂的作用下,氧气与从阳极迁移过来的质子以及从外电路到达的电子发生还原反应生成水,如式(2)所示。理论上直接甲醇燃料电池的开路电压能达到1.183 V,但实际上DMFC 的开路电压一般只有0.7 V左右,其主要原因是部分燃料(甲醇)在浓度差的作

直流屏试验记录

直流绝缘监察装置试验记录 安装位置及用途: 2#机110V 直流1#馈线柜 Ⅰ. 铭牌 型 号: WJY-3000A 电 源: DC110V 生产厂家: 深圳奥特迅电力设备有限公司 Ⅱ. 试验 (温度:27℃ 湿度:70%) 1. 外观检查:完好 2. 绝缘检查:15M Ω 3. 报警设定值 控制母线过压: 132 V 控制母线欠压: 98 V 正母线对地欠压: 35 V 负母线对地欠压: 35 V 正对地绝缘电阻: 20 k Ω 负对地绝缘电阻: 20 k Ω 支路接地电阻: 25 k Ω 支路数: 40 4. 模拟报警 模拟过压报警: 装置显示及输出正常 模拟欠压报警: 装置显示及输出正常 模拟绝缘降低: 装置显示及输出正常 模拟装置故障: 装置显示及输出正常 模拟电源消失: 装置显示及输出正常 模拟各支路接地: 循检正确,显示正确 5. 直流母线绝缘记录 正对地绝缘: 120 M Ω 负对地绝缘: 120 M Ω 正对负绝缘: 100 M Ω 测试结论:合 格

安装位置及用途:2#机110V直流2#馈线柜 Ⅰ. 铭牌 型号:WJY-3000A 电源:DC110V 生产厂家:深圳奥特迅电力设备有限公司 Ⅱ. 试验(温度:6℃湿度:70%) 1. 外观检查:完好 2. 绝缘检查:15MΩ 3. 报警设定值 控制母线过压:132 V 控制母线欠压:98 V 正母线对地欠压:35 V 负母线对地欠压:35 V 正对地绝缘电阻:20 kΩ负对地绝缘电阻:20 kΩ 支路接地电阻:25 kΩ支路数:40 4. 模拟报警 模拟过压报警:装置显示及输出正常模拟欠压报警:装置显示及输出正常模拟绝缘降低:装置显示及输出正常模拟装置故障:装置显示及输出正常 模拟电源消失:装置显示及输出正常模拟各支路接地装置循检正确,显示正 确 5. 直流母线绝缘记录 正对地绝缘:120 MΩ负对地绝缘:120 MΩ正对负绝缘:100 MΩ 测试结果:合格

相关文档
最新文档