高中数学圆与方程

高中数学圆与方程
高中数学圆与方程

高中数学圆与方程(理)专题

一、选择题:本大题共10小题;每小题5

分,共50分.

1. 若圆的一条直径的两个端点分别是(2,0)和(2,-2),则此圆的方程是( )

A. x2 + y2 -4x + 2y + 4=0

B. x2 + y2 -4x - 2y -4 = 0

C. x2 + y2 -4x + 2y -4=0

D. x2 + y2 + 4x + 2y + 4 = 0

2. 若点P(m2,5)与圆x2+ y2 = 24的位置关系是( )

A. 在圆外

B. 在圆内

C. 在圆上

D. 不确定

3. 已知点A(1,-2,11),B(4,2,3),C(6,-1,

4),则△ABC的形状是( )

A. 等腰三角形

B. 等边三角形

C. 直角三角形

D. 等腰直角三角形

4. 点B是点A(1,2,3)在坐标平面yOz内的射影,则|OB|等于( )

5. 当a取不同的实数时,由方程x2+ y2 + 2ax + 2ay -1 = 0可以得到不同的圆,则下列结论正确的是( )

A. 这些圆的圆心都在直线y = x上

B. 这些圆的圆心都在直线y = -x上

C. 这些圆的圆心都在直线y = x,或在直线y = -x 上

D. 这些圆的圆心不在直线上

6. 直线l : (x + y)+ 1 + a = 0与圆 C : x2 + y2=a(a>0)的位置关系是( )

A. 恒相切

B. 恒相交

C. 恒相离

D. 相切或相离

7. 如果直线y = - x + m与圆x2+ y2 = 1在第一象限内有两个不同的交点,那么实数m的范围是( )

8. 圆x2+ 2x + y2 + 4y -3 = 0上到直线x + y + 1 = 0的距离为的点共有( )

A. 1个

B. 2个

C. 3个

D. 4个

9. 过原点的直线与圆x2+ y2 + 4x + 3 = 0相切,若切点在第三象限,则这条直线的方程是( )

10. 如果圆心坐标为(2,-1)的圆在直线x -y - 1 = 0上截得弦长为 2 ,那么这个圆的方程为( )

A.(x – 2)2+(y + 1)2= 4

B.(x -2)2+(y + 1)2= 2

C.(x - 2)2 +(y + 1)2 = 8

D.(x -2)2+(y + 1)2= 16

二、填空题:本大题共有4个小题,每小题5

分,共20分

11. 若经过点的直线与圆相切,则此直线在y轴上的截距是. .

三、解答题:本大题共3个小题,每小题10分,共30分.

15. (本小题10分)已知圆x2 + y2 = r2,点P(x0,y0)是圆外一点,自点P向圆作两条切线,A,B是切点,求弦AB所在直线的方程.

16. (本小题10分)自圆C:x2 + y2 - 4x - 6y + 12 = 0外一点P(a,b)向圆作切线PT,点T 为切点,且|PT|=|PO|(点O为原点),求|PT|的最小值以及此刻点P 的坐标.

17. (本小题10分)圆 A 的方程为x2 + y2 -2x -7 = 0,圆

B 的方程为x2 + y2 + 2x + 2y – 2 = 0,判断圆A和圆B 是否相交,若相交,求过交点的直线的方程;若不相交,说明理由.

高中数学圆与方程(理)(专题训练答案)

一、选择题

1. A

悄悄提示:半径为= 1,

圆心为(2,-1).

∴(x - 2)2 +(y + 1)2 = 1.

∴x2–4x + y2 + 2y + 4 = 0.

2. A

悄悄提示:由于m4 + 25>24,

∴点P在圆外.

3. C

悄悄提示:

∴|AB|2 = |BC|2 + |AC|2.

∴△ABC为直角三角形.

4. B

悄悄提示:射影坐标为(2,3),∴|OB|= .

5. A

悄悄提示:x2 + y2 + 2ax + 2ay - 1 = 0,

∴(x + a)2 +(y + a)2 = 1 + 2a2.

圆心为(-a,-a).

∴圆心在直线y = x 上.

6. D

悄悄提示:

7. D

悄悄提示:如图所示,

(第7 题)

交点若在第一象限,

则m> 1.

8. C

悄悄提示:(x + 1)2 +(y + 2)2 = 8,

圆心为(-1,-2).

∴圆心到x + y + 1=0的距离为= .

∴有三个点,如图,即A,B, C 三个点.

9. A

悄悄提示:(x + 2)2 + y2 = 1,(第8 题)

∵圆心(-2,0)到y = x 的距离为1,

∴y = x符合题意.

10. A

圆心到直线的距离为= ,

∴R = = 2,

∴圆的方程为(x - 2)2 + (y + 1)2 = 4.

二、填空题

11. 1

14. 5

三、解答题

15. 一:设A(x1,y1),B(x2,y2),

过点A的圆的切线方程为x1x + y1y = r2,

过点B的圆的切线方程为x2x + y2y = r2.

由于点P在这两条切线上,得

x1x0 + y1y0 = r2,①

x2x0 + y2y0 = r2.②

由①②看出,A,B两点都在直线x0x + y0y = r2上,而过两点仅有一条直线,

∴方程x0x + y0y = r2就是所求的切点弦AB所在直线的方程.

提示二:已知圆x2 + y2 = r2,①

A,B两点都在以OP为直径的圆上,

它的方程是. ②

①-②得x0x + y0y = r2.

这就是两圆相交弦所在直线的方程,也是切点弦AB所在的直线的方程.

16. 悄悄提示:圆C:(x- 2)2+(y- 3)2= 1,

圆心为(2,3),由|PT|=|PO|,

∴a2 - 4a + 4 + b2 - 6b + 9 - 1 = a2 + b2,

∴4a + 6b = 12,

即2a + 3b = 6.

:圆 A 的方程可写为(x- 1)2+(y- 1)2 = 9

圆 B 的方程可写为(x + 1)2+(y+ 1)2= 4

∴两圆心之间的距离满足即两圆心之间的距离小于两圆半径之和大于两圆半径之差.

∴两圆相交.

圆 A 的方程与圆 B 的方程左、右两边分别相减得-4x - 4y -5 = 0.

∴4x + 4y + 5 = 0 为过两圆交点的直线方程.

文- 汉语汉字编辑词条

文,wen,从玄从爻。天地万物的信息产生出来的现象、纹路、轨迹,描绘出了阴阳二气在事物中的运行轨迹和原理。

故文即为符。上古之时,符文一体。

古者伏羲氏之王天下也,始画八卦,造书契,

以代结绳(爻)之政,由是文籍生焉。--《尚书序》

依类象形,故谓之文。其后形声相益,即谓之字。--《说文》序》

仓颉造书,形立谓之文,声具谓之字。--《古今通论》

(1) 象形。甲骨文此字象纹理纵横交错形。"文"是汉字的一个部首。本义:花纹;纹理。

(2) 同本义[figure;veins]

文,英语念为:text、article等,从字面意思上就可以理解为文章、文字,与古今中外的各个文学著作中出现的各种文字字形密不可分。古有甲骨文、金文、小篆等,今有宋体、楷体等,都在这一方面突出了"文"的重要性。古今中外,人们对于"文"都有自己不同的认知,从

大的方面来讲,它可以用于表示一个民族的文化历史,从小的方面来说它可用于用于表示单独的一个"文"字,可用于表示一段话,也可用于人物的姓氏。

折叠编辑本段基本字义

1.事物错综所造成的纹理或形象:灿若~锦。

2.刺画花纹:~身。

3.记录语言的符号:~字。~盲。以~害辞。

4.用文字记下来以及与之有关的:~凭。~艺。~体。~典。~苑。~献(指有历史价值和参考价值的图书资料)。~采(a.文辞、文艺方面的才华;b.错杂艳丽的色彩)。

5.人类劳动成果的总结:~化。~物。

6.自然界的某些现象:天~。水~。

7.旧时指礼节仪式:虚~。繁~缛节(过多的礼节仪式)。

8.文华辞采,与“质”、“情”相对:~质彬彬。

9.温和:~火。~静。~雅。

10.指非军事的:~职。~治武功(指礼乐教化和军事功绩)。

11.指以古汉语为基础的书面语:552~言。~白间杂。

12.专指社会科学:~科。

13.掩饰:~过饰非。

14.量词,指旧时小铜钱:一~不名。

15.姓。

16.皇帝谥号,经纬天地曰文;道德博闻曰文;慈惠爱民曰文;愍民惠礼曰文;赐民爵位曰文;勤学好问曰文;博闻多见曰文;忠信接礼曰文;能定典礼曰文;经邦定誉曰文;敏而好学曰文;施而中礼曰文;修德来远曰文;刚柔相济曰文;修治班制曰文;德美才秀曰文;万邦为宪、帝德运广曰文;坚强不暴曰文;徽柔懿恭曰文;圣谟丕显曰文;化成天下曰文;纯穆不已曰文;克嗣徽音曰文;敬直慈惠曰文;与贤同升曰文;绍修圣绪曰文;声教四讫曰文。如汉文帝。

折叠编辑本段字源字形

字源演变与字形比较

折叠编辑本段详细字义

〈名〉

1.右图是

“文”字的甲骨文图片,资料来源:徐无闻主编:《甲金篆隶大字典》,四川辞书出版社。1991年7月第一版。

“文”字的甲骨文字绘画的像一个正面的“大人”,寓意“大象有形”、“象形”;特别放大了胸部,并在胸部画了“心”,含义是“外界客体在心里面的整体影像、整体写真、整体素描、整体速写”。

许慎《说文解字》把“文”解释为“错画也”,

意思是“对事物形象进行整体素描,笔画交错,相联相络,不可解构”,这与他说的独体为文、合体为字的话的意思是一致的。“说文解字”这个书名就表示了“文”只能“说”,而“字”则可“解”的意思。“文”是客观事物外在形象的速写,是人类进一步了解事物内在性质的基础,所以它是“字”的父母,“字”是“文”的孩子。“文”生“字”举例(以“哲”为例):先对人手摩画,其文为“手”;又对斧子摩画,其文为“斤”。以手、斤为父母,结合、生子,其子就是“折”(手和斤各代表父母的基因)。这个“折”就是许慎所谓的“字”。“字”从宀从子,“宀”表示“独立的房子”,子在其中,有“自立门户”的意思。故“字”还能与“文”或其他“字”结合,生出新“字”来。在本例,作为字的“折”与作为文的“口”结合,就生出了新的字“哲”。

2.

同本义[figure;veins]

文,错画也。象交文。今字作纹。——东

汉·许慎《说文》

五章以奉五色。——春秋·左丘明《左传·昭公二十五年》。注:“青与赤谓之文,赤与白谓之章,白与黑谓之黼,黑与青谓之黻。”

美于黼黼文章。——《荀子·非相》

茵席雕文。——《韩非子·十过》

织文鸟章,白旆央央。——《诗·小雅·六

月》

斑文小鱼。——明·刘基《诚意伯刘文成公文集》

3.又如:文驾(彩车);文斑(杂色的斑纹);

文旆(有文彩的旗帜);文绣(绣有彩色花纹的丝织品;刺花图案);文织(有彩色花纹的丝织品);文鳞(鱼鳞形花纹)。

4.字,文字(“文”,在先秦时期就有文字的意思,“字”,到了秦朝才有此意。分别讲,

“文”指独体字;“字”指合体字。笼统地说,都泛指文字。)[character]

饰以篆文。——南朝宋·范晔《后汉书·张衡传》

分文析字。——东汉·班固《汉书·刘歆传》

夫文,止戈为武。——《左传·宣公十二年》

距洞数百步,有碑仆道,其文漫灭。——王安石《游褒禅山记》

文曰“天启壬戌秋日”。——明·魏学洢《核

舟记》

文曰“初平山尺”。

5.又如:甲骨文;金文;汉文;英文;文迹(文字所记载的事迹);文书爻(有关文字、文凭之类的卦象);文异(文字相异);文轨(文字和车轨);文狱(文字狱);文钱(钱。因钱有文字,故称);文状(字据,军令状);文引(通行证;路凭);文定(定婚)。

6.文章(遣造的词句叫做“文”,结构段落叫做“章”。)[literary composition]

故说诗者不以文害辞。——《孟子·万章上》

好古文。——唐·韩愈《师说》

属予作文以记之。——宋·范仲淹《岳阳楼记》

能述以文。——宋·欧阳修《醉翁亭记》

摘其诗文。——清·纪昀《阅微草堂笔记》

7.又如:文价(文章的声誉);文魔(书呆子);文会(旧时读书人为了准备应试,在一起写文章、互相观摩的集会);文移(旧时官府文书的代称);文雄(擅长写文章的大作家);文意(文章的旨趣);文义(文章的义理);文情(文章的词句和情思);本文(所指的这篇文章);作文(写文章;学习练习所写的文章);文魁(文章魁首);文价(文章的声价);文什(文章与诗篇)。

8.美德;文德[virtue]

圣云继之神,神乃用文治。——杜牧《感怀诗一首》

9.又如:文丈(对才高德韶的老者的敬称);文母(文德之母);文武(文德与武功);文命

(文德教命);文惠(文德恩惠);文德(写文章的道德);文薄(谓文德浅薄);文昭(文德昭著)。

10.文才;才华。亦谓有文才,有才华[literary talent]

而文采不表于后世也。——汉·司马迁《报任安书》

11.又如:文业(才学);文英(文才出众的人);文采风流(横溢的才华与潇洒的风度);文郎(有才华的青少年);文彦(有文才德行的人);文通残锦(比喻剩下不多的才华)。

12.文献,经典;韵文[document;classics;verse]

儒以文乱法。——《韩非子·五蠹》

言必遵修旧文而不穿凿。——《说文解

字·叙》

13.辞词句。亦指文字记载[writings;record]。如:文几(旧时书信中开头常用的套语。意为将书信呈献于几前);文倒(文句颠倒);文过其实(文辞浮夸,不切实际);文义(文辞);文辞(言词动听的辞令);文绣(辞藻华丽)。

14.自然界的某些现象[natural phenomenon]

经纬天地曰文。——《左传·昭公二十八年》

15.又如:天文;地文;水文;文象(日月星辰变化的迹象);文曜(指日月星辰;文星);文昌(星座名)。

16.文治;文事;文职。与“武”相对。[achievements in culture and education;civilian post]

高一数学圆的方程经典例题

典型例题一 例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点. 设所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 343322 1=+-?+?=d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解:

设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?=d . ∴圆1O 到01143=-+y x 距离为1的点有两个. 显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 典型例题三 例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 124-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为: 23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

高中数学-必修二-圆与方程-经典例题

习题精选精讲圆标准方程 已知圆心),(b a C 和半径r ,即得圆的标准方程222 )() (r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆心 ),(b a C 和半径r ,进而可解得与圆有关的任何问题. 一、求圆的方程 例1 (06重庆卷文) 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( ) (A)3)1()2(22=++-y x (B)3)1()2(2 2=-++y x (C)9)1() 2(22 =++-y x (D)9)1()2(22=-++y x 解 已知圆心为)1,2(-,且由题意知线心距等于圆半径,即2 243546+++= d r ==3,∴所求的圆方程为9)1()2(22=++-y x , 故选(C). 点评:一般先求得圆心和半径,再代入圆的标准方程222 )()(r b y a x =-+-即得圆的方程. 二、位置关系问题 例2 (06安徽卷文) 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( ) (A))12,0(- (B ))12,12( +- (C))12,12(+-- (D))12, 0(+ 解 化为标准方程222 )(a a y x =-+,即得圆心),0(a C 和半径a r =. ∵直线 1=+y x 与已知圆没有公共点,∴线心距a r a d =>-= 2 1,平方去分母得 2 2212a a a >+-,解得 1212-<<--a ,注意到0>a ,∴120-<r d 线圆相离;?=r d 线圆相切;?

高中数学说课稿:《圆的标准方程》.doc

高中数学说课稿:《圆的标准方程》 "说课"有利于提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力,因而受到广大教师的重视,登上了教育研究的大雅之堂。下面是我为大家收集的关于高中数学说课稿:《圆的标准方程》,欢迎大家阅读借鉴! 高中数学说课稿:《圆的标准方程》 【一】教学背景分析 1.教材结构分析 《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用. 2.学情分析 圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强. 根据上述教材结构与内容分析,考虑到学生已有的认知结构和

心理特征,我制定如下教学目标: 3.教学目标 (1) 知识目标:①掌握圆的标准方程; ②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程; ③利用圆的标准方程解决简单的实际问题. (2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力; ②加深对数形结合思想的理解和加强对待定系数法的运用; ③增强学生用数学的意识. (3) 情感目标:①培养学生主动探究知识、合作交流的意识; ②在体验数学美的过程中激发学生的学习兴趣. 根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点: 4. 教学重点与难点 (1)重点:圆的标准方程的求法及其应用. (2)难点:①会根据不同的已知条件求圆的标准方程; ②选择恰当的坐标系解决与圆有关的实际问题. 为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析: 【二】教法学法分析 1.教法分析为了充分调动学生学习的积极性,本节课采用"

人教版高中数学《直线和圆的方程》教案全套

人教版高中数学《直线和圆的方程》教案全套 直线的倾斜角和斜率 一、教学目标 (一)知识教学点 知道一次函数的图象是直线,了解直线方程的概念,掌握直线的倾斜角和斜率的概念以及直线的斜率公式. (二)能力训练点 通过对研究直线方程的必要性的分析,培养学生分析、提出问题的能力;通过建立直线上的点与直线的方程的解的一一对应关系、方程和直线的对应关系,培养学生的知识转化、迁移能力. (三)学科渗透点 分析问题、提出问题的思维品质,事物之间相互联系、互相转化的辩证唯物主义思想. 二、教材分析 1.重点:通过对一次函数的研究,学生对直线的方程已有所了解,要对进一步研究直线方程的内容进行介绍,以激发学生学习这一部分知识的兴趣;直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要正确理解概念;斜率公式要在熟练运用上多下功夫. 2.难点:一次函数与其图象的对应关系、直线方程与直线的对应关系是难点.由于以后还要专门研究曲线与方程,对这一点只需一般介绍就可以了. 3.疑点:是否有继续研究直线方程的必要? 三、活动设计 启发、思考、问答、讨论、练习. 四、教学过程 (一)复习一次函数及其图象 已知一次函数y=2x+1,试判断点A(1,2)和点B(2,1)是否在函数图象上. 初中我们是这样解答的:

∵A(1,2)的坐标满足函数式, ∴点A在函数图象上. ∵B(2,1)的坐标不满足函数式, ∴点B不在函数图象上. 现在我们问:这样解答的理论依据是什么?(这个问题是本课的难点,要给足够的时间让学生思考、体会.) 讨论作答:判断点A在函数图象上的理论依据是:满足函数关系式的点都在函数的图象上;判断点B不在函数图象上的理论依据是:函数图象上的点的坐标应满足函数关系式.简言之,就是函数图象上的点与满足函数式的有序数对具有一一对应关系. (二)直线的方程 引导学生思考:直角坐标平面内,一次函数的图象都是直线吗?直线都是一次函数的图象吗? 一次函数的图象是直线,直线不一定是一次函数的图象,如直线x=a连函数都不是. 一次函数y=kx+b,x=a都可以看作二元一次方程,这个方程的解和它所表示的直线上的点一一对应. 以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解.这时,这个方程就叫做这条直线的方程;这条直线就叫做这个方程的直线. 上面的定义可简言之:(方程)有一个解(直线上)就有一个点;(直线上)有一个点(方程)就有一个解,即方程的解与直线上的点是一一对应的. 显然,直线的方程是比一次函数包含对象更广泛的一个概念. (三)进一步研究直线方程的必要性 通过研究一次函数,我们对直线的方程已有了一些了解,但有些问题还没有完全解决,如 y=kx+b中k的几何含意、已知直线上一点和直线的方向怎样求直线的方程、怎样通过直线的方程来研究两条直线的位置关系等都有待于我们继续研究. (四)直线的倾斜角 一条直线l向上的方向与x轴的正方向所成的最小正角,叫做这条直线的倾斜角,如图1-21中的α.特别地,当直线l和x轴平行时,我们规定它的倾斜角为0°,因此,倾斜角的取值范围是0°≤α<180°.

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 22)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++= =AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高中数学必修二《圆的标准方程》教案

教案说明 圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。 一、设计理念 设计的根本出发点是促进学生的发展。教师以合作者的身份参与,课堂上建立平等、互助、融洽的关系,师生共同研究,共同提高。 二、设计思路 (1)突出重点抓住关键突破难点 求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路。在例题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。 (2)学生主体教师主导探究主线 本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我在例题2的教学,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,他们体验到成功的快乐,感受到数学的魅力。在一个个问题的驱动下,高效的完成本节的学习任务。 三、媒体设计 本节采用powerpoint媒体,知识容量大,同时又有图形。为了在短时间内完成教学内容,故采用演示文稿的方式,增加信息量,节省时间。同时

动态演示图形,刺激学生的感官,引起更强的注意,提高课堂教学效率。

人教版高中数学必修二圆与方程题库完整

(数学2必修)第四章 圆与方程 [基础训练A 组] 一、选择题 1.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A .22(2)5x y -+= B .22(2)5x y +-= C .22(2)(2)5x y +++= D .22(2)5x y ++= 2.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x B. 032=-+y x C. 01=-+y x D. 052=--y x 3.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 21+ D .221+ 4.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与 圆22 240x y x y ++-=相切,则实数λ的值为( ) A .37-或 B .2-或8 C .0或10 D .1或11 5.在坐标平面,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 6.圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x 二、填空题 1.若经过点(1,0)P -的直线与圆03242 2=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________. 2.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0 ,,60A B APB ∠=,则动点P 的轨迹方程为 。 3.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 . 4.已知圆()4322 =+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ?的值为________________。

高中数学-圆的标准方程练习题

高中数学-圆的标准方程练习题 5分钟训练(预习类训练,可用于课前) 1.圆心是O(-3,4),半径长为5的圆的方程为( ) A.(x-3)2+(y+4)2=5 B.(x-3)2+(y+4)2 =25 C.(x+3)2+(y-4)2=5 D.(x+3)2+(y-4)2 =25 解析:以(a,b)为圆心,r 为半径的圆的方程是(x-a)2+(y-b)2=r 2 . 答案:D 2.以点A(-5,4)为圆心,且与x 轴相切的圆的标准方程为( ) A.(x+5)2+(y-4)2=16 B.(x-5)2+(y+4)2 =16 C.(x+5)2+(y-4)2=25 D.(x-5)2+(y+4)2 =25 解析:∵圆与x 轴相切,∴r=|b|=4.∴圆的方程为(x+5)2+(y-4)2 =16. 答案:A 3.圆心在直线y=x 上且与x 轴相切于点(1,0)的圆的方程为____________. 解析:设其圆心为P(a,a),而切点为A(1,0),则P A⊥x 轴,∴由PA 所在直线x=1与y=x 联立,得a=1.故方程为(x-1)2+(y-1)2 =1.也可通过数形结合解决,若圆与x 轴相切于点(1,0),圆心在y=x 上,可推知与y 轴切于(0,1). 答案:(x-1)2+(y-1)2 =1 10分钟训练(强化类训练,可用于课中) 1.设实数x 、y 满足(x-2)2 +y 2 =3,那么 x y 的最大值是( ) A. 2 1 B.33 C.23 D.3 解析:令 x y =k,即y=kx ,直线y=kx 与圆相切时恰好k 取最值. 答案:D 2.过点A(1,-1)、B(-1,1),且圆心在直线x+y-2=0上的圆的方程是( ) A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2 =4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2 =4 解:由题意得线段AB 的中点C 的坐标为(2 1 1, 211+--),即(0,0),直线AB 的斜率为k AB =11)1(1----=-1,则过点C 且垂直于AB 的直线方程为y-0=1 1--(x-0),即y=x.所以圆心坐标 (x,y)满足?? ?=-+=. 02, y x x y 得y=x=1. ∴圆的半径为])1(1[)11(2 2 --+-=2.因此,所求圆的方程为(x-1)2 +(y-1)2 =4. 答案:C 3.设点P(2,-3)到圆(x+4)2+(y-5)2 =9上各点距离为d,则d 的最大值为_____________. 解析:由平面几何性质,所求最大值为P(2,-3)到圆(x+4)2+(y-5)2 =9的圆心距离加上圆的半径,即d max =2 2 )53()42(--+++3=13.

圆的标准方程与一般方程教案

圆的标准方程 【自主预习】 1、在平面直角坐标系中,确定一个圆的要素有哪些? 2、①若一个圆的圆心是(0,0),半径是2,圆的方程是什么? ②若一个圆的圆心是(-2,1),半径是3,圆的方程是什么? ③若一个圆的圆心是(a ,b ),半径是r(y>0),圆的方程是什么? 3、分析圆的标准方程有何特点? 4、写出下列圆的方程 ⑴圆心在原点,半径为3 ⑵圆心在点C(3,4),半径为5 ⑶经过点P (5,1),圆心在点C(8,-3) ⑷已知点A(-4,-5),B(6,-1),求以AB 为直径的圆的方程。 特殊的:过直径两端点A (x 1,y 1)、B(x 2,y 2)的圆的方程为(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0 5、根据圆的方程写出圆心和半径 ⑴ 5)3()222=-+-y x ( ⑵2 222()2)(-=++y x 【典例探究】 (点与圆的位置关系)例题1 已知圆心在C(-3,-4),且经过原点,求该圆的标准方程,并判 断点)4,3(),1,1(),0,1(321---p p p 和圆的位置关系。

的条件呢?的条件是什么?在圆外内 在圆(思考:点)0()()),(22200>=-+-r r b y a x y x M 判定方法 1、几何法 2、代数法 (三角形外接圆)例题2、△ABC 的三个顶点的坐标分别是A(-2,4),B(-1,3),C(2,6),求 它的外接圆的方程。 变式:已知四点A (0,1)、B (2,1)、C (3,4)、D (-1,2),这四点是否在同一个圆上,为什 么? (圆的标准方程)例题3 已知一个圆C 经过两个点A (2,-3),B (-2,-5),且圆心在直线 032:=--y x l 上,求此圆的方程。

高中数学圆与方程讲义练习及答案

第四章 圆方程 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。 2 (1 点00(,)M x y 与圆2 2 2 ()()x a y b r -+-=的位置关系: 当22 00()()x a y b -+->2r ,点在圆外 当22 00()()x a y b -+-=2r ,点在圆上 当22 00()()x a y b -+-<2r ,点在圆内 (2当04>-+F E D 时,方程表示圆,此时圆心为? ? ? ? ?--2,2 E D ,半径为 F E D r 42 122-+= 当0422 =-+F E D 时,表示一个点; 当042 2<-+F E D 时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况: (1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为 相离与C l r d ?>;相切与C l r d ?=;相交与C l r d ?< (2)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,求解k ,得到方程【一定两解】 程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。 设圆()()221211:r b y a x C =-+-,()()22 2222:R b y a x C =-+- 两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。 当r R d +>时两圆外离,此时有公切线四条; 当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点

新人教版必修二高中数学 《圆的标准方程》 教学设计-2019最新整理

新人教版必修二高中数学《圆的标准方程》教学设计-2019 最新整理 知识与技能:1、掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径; 2、会用两种方法求圆的标准方程:(1)待定系数法;(2)利用几何性质 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法和几何性质求圆的标准方程。 教学过程: 情境设置: 问题:①圆的定义? 学生回忆所学知识:①圆是平面内到定点的距离等于定长的点的集合,确定圆的要素是圆心和半径。 问题:②如果把直线放在直角坐标系下,那么其对应的方程是二元一次方程,那么如果把一个圆放在坐标系下,其方程有什么特征?如何写出这个圆的所在的方程? 二、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径

为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点 间的距离公式让学生写出点M 适合的条件 ①r 化简可得: ②222()()x a y b r -+-= 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的 标准方程。 总结出点与圆的关系的判断方法:00(,)M x y 222()()x a y b r -+-= (1)=点在圆上 2200()()x a y b -+-2r ? (2)<点在圆内220 0()()x a y b -+-2r ? (3)>点在圆外 2200()()x a y b -+-2r ? 三、知识应用与解题研究 (一)练习 1、指出下列方程表示的圆心坐标和半径: (1); 222=+y x (2); 5)1()3(22=-+-y x (3)()。222)1()2(a y x =+++0≠a 2、写出下列圆的标准方程:(P120-121练习1、3、4) (1)圆心在C(-3,4),半径长为;5 (2)圆心在C(8,-3),且经过点M(5,1); (3)圆心在(-1,2),与y 轴相切 (4)以P1(4,9)、P2(6,3)为直径的圆; (5)已知△ABC的顶点坐标分别是A(4,0),B(0,3),

高中数学圆与方程知识点

高中数学圆与方程知识点分析 1. 圆的方程:(1)标准方程:2 22()()x a y b r -+-=(圆心为A(a,b),半径为r ) (2)圆的一般方程:022=++++F Ey Dx y x (0422>-+F E D ) 圆心(-2D ,-2 E )半径 F E D 421 22-+ 2. 点与圆的位置关系的判断方法:根据点与圆心的距离d 与r 在大小关系判断 3. 直线与圆的位置关系判断方法 (1)几何法:由圆心到直线的距离和圆的半径的大小关系来判断。 d=r 为相切,d>r 为相交,d0为相交,△<0为相离。利用这种方法,可以很简单的求出直线与圆有交点时的交点坐标。 4.圆与圆的位置关系判断方法 (1)几何法:两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点: 1)当21r r l +>时,圆1C 与圆2C 相离;2)当21r r l +=时,圆1C 与圆2C 外切; 3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;4)当||21r r l -=时,圆1C 与圆2C 内切; 5)当||21r r l -<时,圆1C 与圆2C 内含; (2)代数法:由两圆的方程联立得到关于x 或y 的一元二次方程, 然后由判别式△来判断。△=0为外切 或内切,△>0为相交,△<0为相离或内含。若两圆相交,两圆方程相减得公共弦所在直线方程。 5. 直线与圆的方程的应用:利用平面直角坐标系解决直线与圆的位置关系 题型一 求圆的方程 例1.求过点A( 2,0),圆心在(3, 2)圆的方程。 变式1求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标。 解:设所求的圆的方程为:02 2=++++F Ey Dx y x (也可设圆的标准方程求) ∵(0,0),(11A B φ,),C(4,2)在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于F E D ,,的三元一次方程组. 即??? ??=+++=+++=02024020F E D F E D F 解此方程组,可得:0,6,8==-=F E D 王新敞 ∴所求圆的方程为: 0682 2=+-+y x y x 王新敞

新人教版必修二高中数学《圆的标准方程》教学设计

高中数学 《圆的标准方程》 教学设计 新人教版必修二2 知识与技能:1、掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径; 2、会用两种方法求圆的标准方程:(1)待定系数法;(2)利用几何性质 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法和几何性质求圆的标准方程。 教学过程: 情境设置: 问题:①圆的定义? 学生回忆所学知识:①圆是平面内到定点的距离等于定长的点的集合,确定圆的要素是圆心和半径。 问题:②如果把直线放在直角坐标系下,那么其对应的方程是二元一次方程,那么如果把一个圆放在坐标系下,其方程有什么特征?如何写出这个圆的所在的方程? 二、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出) P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222()()x a y b r -+-= ② 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 总结出点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+-=2r ?点在圆上 (2)2200()()x a y b -+-<2r ?点在圆内 (3)2200()()x a y b -+->2r ?点在圆外 三、知识应用与解题研究 (一)练习 1、指出下列方程表示的圆心坐标和半径: (1) 222=+y x ; (2) 5)1()3(22=-+-y x ; (3)222)1()2(a y x =+++(0≠a )。

高中数学人教A版必修2 第四章 圆与方程辅导教案

教案 学生姓名性别年级学科 授课教师上课时间年月日 第()次课 共()次课 课时:2课时教学课题人教版必修2第四章圆与方程 教学目标 知识目标:明确圆的基本要素,能用定义推导圆的标准方程;正确理解圆的一般方程及其特点. 理解直线与圆三种位置关系、掌握用圆心到直线的距离d与圆的半径r比较,以及通过方程组解 的个数判断直线与圆位置关系的方法,能说出空间直角坐标系的构成,会自己画出空间直角坐标 系、能够在空间直角坐标系下表示点。 教学重点 与难点 教学重点: 1、圆的标准方程及一般方程的求法及其应用. 2、会根据不同的已知条件,利用待定系数法求圆的标准方程及一般方程. 3、比较直线到圆心距离与圆半径的大小关系,判定直线与圆的位置关系。 4、通过解直线与圆方程组成的方程,根据解的个数,判定直线与圆的位置关系。 5、空间直角坐标系的建立过程 教学难点: 1、学生体会和理解解析法解决几何问题的数学思想。 2、位置关系《=》大小关系式《=》解的个数 3、根据弦长求直线方程 4、空间任意点的坐标如何表示 (一)圆的方程 知识梳理 1、圆的标准方程 基本要素:当圆心的位置与半径的大小确定后,圆就唯一确定了,因此,确定一个圆的基本要素是_____和______标准方程: 圆心为C(a,b),半径为r的圆的标准方程是___________________ 图示: 说明: 若点M(x,y)在圆C上,则点M的_______适合方程(x-a)2+(y-b)2=r2;反之,若点M(x,y)的坐标适合方程(x-a)2+(y-b)2=r2,则点M在_____ 上 [拓展] 特殊位置圆的标准方程 如下表所示. 条件方程形式 圆过原点(x-a)2+(y-b)2=a2+b2(a2+b2≠0)

(完整版)高中数学必修2圆与方程典型例题(可编辑修改word版)

标准方程(x - a )2 + (y - b )2 = r 2 ,圆心 (a , b ),半径为 r 11 11 11 11 0 0 第二节:圆与圆的方程典型例题 一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。二、圆的方程 (1) ; 点 M (x , y ) 与圆(x - a )2 + ( y - b )2 = r 2 的位置关系: 当(x - a )2 + ( y - b )2 > r 2 ,点在圆外 当(x - a )2 + ( y - b )2 = r 2 ,点在圆上 当(x - a )2 + ( y - b )2 < r 2 ,点在圆内 (2) 一般方程 x 2 + y 2 + Dx + Ey + F = 0 当 D 2 + E 2 - 4F > 0 时,方程表示圆,此时圆心为?- D E ? ,半径为r = 当 D 2 + E 2 - 4F = 0 时,表示一个点; 当 D 2 + E 2 - 4F < 0 时,方程不表示任何图形。 ,- ? ? 2 2 ? 2 (3) 求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a ,b ,r ;若利用一般方程,需要求出 D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 例 1 已知方程 x 2 + y 2 - 2(m - 1)x - 2(2m + 3) y + 5m 2 + 10m + 6 = 0 . (1) 此方程表示的图形是否一定是一个圆?请说明理由; (2) 若方程表示的图形是是一个圆,当 m 变化时,它的圆心和半径有什么规律?请说明理由. 答案:(1)方程表示的图形是一个圆;(2)圆心在直线 y =2x +5 上,半径为 2. 练习: 1.方程 x 2 + y 2 + 2x - 4 y - 6 = 0 表示的图形是( ) A.以(1,- 2) 为圆心, 为半径的圆 B.以(1,2) 为圆心, 为半径的圆 C.以(-1,- 2) 为圆心, 为半径的圆 D.以(-1,2) 为圆心, 为半径的圆 2.过点 A (1,-1),B (-1,1)且圆心在直线 x +y -2=0 上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 3.点(1,1) 在圆(x - a )2 + ( y + a )2 = 4 的内部,则 a 的取值范围是( ) A. -1 < a < 1 B. 0 < a < 1 C. a < -1 或 a > 1 D. a = ±1 4.若 x 2 + y 2 + ( -1)x + 2y + = 0 表示圆,则的取值范围是 5. 若圆 C 的圆心坐标为(2,-3),且圆 C 经过点 M (5,-7),则圆 C 的半径为 . 6. 圆心在直线 y =x 上且与 x 轴相切于点(1,0)的圆的方程为 . 7. 以点 C (-2,3)为圆心且与 y 轴相切的圆的方程是 . 1 D 2 + E 2 - 4F

高中数学-圆的标准方程教案

第四章 圆与方程 4.1.1 圆的标准方程 三维目标: 知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。 过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方 程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。 情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。 教学过程: 1、情境设置: 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222 ()()x a y b r -+-= ② 引导学生自己证明2 2 2 ()()x a y b r -+-=为圆的 方程,得出结论。 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 3、知识应用与解题研究

例(1):写出圆心为(2,3)A -半径长等于5的圆的方程, 并判断点12(5,7),(1)M M --是否在这个圆上。 分析探求:可以从计算点到圆心的距离入手。 探究:点00(,)M x y 与圆222 ()()x a y b r -+-=的关系的判断方法: (1)22 00()()x a y b -+->2r ,点在圆外 (2)22 00()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2 r ,点在圆内 例(2): ABC V 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程 师生共同分析:从圆的标准方程2 2 2 ()()x a y b r -+-= 可知,要确定圆的标准方程,可用 待定系数法确定a b r 、、三个参数.(学生自己运算解决) 例(3):已知圆心为C 的圆:10l x y -+=经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程. 师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C 的圆经过点(1,1)A 和 (2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在险段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长 等于CA 或CB 。 (教师板书解题过程。) 总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、 例(3)可得出ABC V 外接圆的标准方程的两种求法: ①、根据题设条件,列出关于a b r 、、的方程组,解方程组得到a b r 、、得值,写出圆的标准方程. 根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程. 提炼小结: 1、 圆的标准方程。 2、 点与圆的位置关系的判断方法。 3、 根据已知条件求圆的标准方程的方法。

教师资格证面试教案模板:高中数学《圆的一般方程》(Word版)

教师资格证面试教案模板:高中数学《圆的 一般方程》 (2021最新版) 作者:______ 编写日期:2021年__月__日 一、教学目标 【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径。掌握方程表示圆的条件。 【过程与方法】通过对方程表示圆的条件的探究,学生探索发现

及分析解决问题的实际能力得到提高 【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。 二、教学重难点 【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。 【难点】二元二次方程与圆的一般方程及标准圆方程的关系。 三、教学过程 (一)复习旧知,引出课题 1.复习圆的标准方程,圆心、半径。 2.提问1:已知圆心为(1,-2)、半径为2的圆的方程是什么? (二)交流讨论,探究新知 1.提问2:方程是什么图形?方程表示什么图形?任何圆的方程都

是这样的二元二次方程吗?(通过此例分析引导学生使用配方法) 2.方程什么条件下表示圆?(配方和展开由学生相互讨论交流完成,教师最后展示结果) 将配方得: 3.学生在教师的引导下对方程分类讨论,最后师生共同总结出3种情况,即圆的一般方程表示圆的条件。从而得出圆的一般方程式: 4.由学生归纳圆的一般方程的特点,师生共同总结。 (三)例题讲解,深化新知 例1.判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径。 (1)(2) 例2.求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。

相关文档
最新文档