Strassen算法-介绍

Strassen算法-介绍
Strassen算法-介绍

Strassen算法

在了解Strassen算法之前,先来了解一下矩阵乘法:

矩阵乘法的c语言程序:

#include"stdio.h"

float main()

{

float a[100][100],b[100][100],c[100][100]; //定义三个数组分别储存三个矩阵A,B,C

int m1,n1,m2,n2,i1,j1,i2,j2,i3,j3,i4,j4,k;

float s[100][100]={0}; //初始化数组s

printf("请输入矩阵A的行数m1和列数n1:");

scanf("%d%d",&m1,&n1);

printf("请输入矩阵B的行数m2和列数n2:");

scanf("%d%d",&m2,&n2);

printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>\n"); //便于观看结果,将结果与输入分开

if(n1!=m2) printf("不可以相乘!!!\n\n");

if(m1>100||n1>100||m2>100||n2>100) printf("数目过多,溢出!!!\n\n");

else{ for(i2=1;i2<=m2;i2++)

for(j2=1;j2<=n2;j2++)

{ printf("A[%d][%d]=",i2,j2); scanf("%f",&a[i2][j2]); } //输入矩阵A的元素

printf(">>>>>>>>>>>>>>>>>>>>>>\n");

for(i2=1;i2<=m2;i2++)

{ for(j2=1;j2<=n2;j2++)

{ printf("B[%d][%d]=",i2,j2); scanf("%f",&b[i2][j2]); } //输入矩阵B的元素

}

}

printf("矩阵A\n\n"); //打印矩阵A便于观看与检查

for(i3=1;i3<=m1;i3++)

{ for(j3=1;j3<=n1;j3++)

{printf("%f\t",a[i3][j3]); if(j3==n1)printf("\n");}

}

printf(">>>>>>>>>>>>>>>>>>>>>>>>>\n\n矩阵B:"); //与矩阵B的打印隔开,便于观看for(i4=1;i4<=m2;i4++)

{ for(j4=1;j4<=n2;j4++)

{printf("%f\t",b[i4][j4]); if(j4==n2)printf("\n"); }}

printf(">>>>>>>>>>>>>>>>>>>>>>>>>\n\n矩阵C=A*B= \n");

for(i4=1;i4<=m1;i4++)

{ for(j4=1;j4<=n2;j4++)

{for(k=1;k<=n1;k++)

{s[i4][j4]=s[i4][j4]+a[i4][k]*b[k][j4]; }//定义矩阵的乘法,相乘时,有一个指标是一样的,都用k c[i4][j4]=s[i4][j4];}

printf("矩阵C是:\n");

for(i4=1;i4<=m1;i4++)

{ for(j4=1;j4<=n2;j4++)

{printf("%f\t",c[i4][j4]);if(j4==n2)printf("\n");}

}

return 0;

}}

设甲,乙两个方阵通过环?。我们要计算的矩阵产品?

如果2型? ×2 矩阵甲,乙,ň我们填零丢失的行和列。我们分区甲,乙,?成大小相等的块矩阵

If the matrices A, B are not of type 2n x 2n we fill the missing rows and columns with zeros.

We partition A, B and C into equally sized block matrices】

The left column represents 2x2 matrix multiplication. Na?ve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns represents a single one of t he 7 multiplications in the algorithm, and the sum of the columns gives the full matrix multiplication on the left. 【左边的列表示的2x2 矩阵乘法。朴素的矩阵乘法,需要为每一个“1”的左边的列的一个乘法。7乘法算法的其他列中的每一个都代表一个单一的一个,并在左侧的列的总和给出了完整的矩阵乘法。】

with

Then

采用这种结构,我们并没有减少乘法的次数。我们还需要8次乘法计算C[I,J]矩阵,我们需要的时候使用标准的矩阵乘法相同数量的乘法。

现在来的重要组成部分。我们定义新的矩阵

只使用7的乘法(每个M k个之一)而不是8。现在我们就可以在M K 表示C[i.j]是这样的

[We may now express the C i,j in terms of M k , like this:]

【We iterate this division process n times (recursively) until the submatrices degenerate into numbers (elements of the ring R). The resulting product will be padded with zeroes just like A and B, and should be stripped of the corresponding rows and columns.

Practical implementations of Strassen's algorithm switch to standard methods of matrix multiplication for small enough submatrices, for which those algorithms are more efficient. The particular crossover point for which Strassen's algorithm is more efficient depends on the specific implementation and hardware. Earlier authors had estimated that Strassen's algorithm is faster for matrices with widths from 32 to 128 for optimized implementations.[1] However, it has been observed that this crossover point has been increasing in recent years, and a 2010 study found that even a single step of Strassen's algorithm is often not beneficial on current architectures, compared to a highly optimized traditional multiplication, until matrix sizes exceed 1000 or more, and even for matrix sizes of several thousand the benefit is typically marginal at best (around 10% or less).[2]

我们本的分裂过程?次(递归)重复,直到子矩阵退化成号(环?的元素)。将所得的产物将被填充零就像甲和乙,并应被剥离的相应的行和列。

实用的Strassen算法开关矩阵乘法的足够小的子矩阵的标准方法的实现,这些算法是更有效的。取决于具体的实现和硬件的特定的交叉点的Strassen算法是更有效的。此前笔者曾预计,Strassen重的算法是更快的矩阵与宽度从32到128优化的实现。[ 1 ]然而,它已被观察到,这个交叉点已被越来越多,近年来,和一个2010年的研究发现,即使一个单步骤的Strassen重的算法是不利于对当前的体系结构中,一个高度优化的传统乘法相比,直到矩阵大小超过1000个或更多,和甚至为矩阵大小几千的好处是通常边际充其量(约10%或更少的)[ 2 ]

渐近复杂性(Asymptotic complexity)

标准的矩阵乘法大约需要2 ?3(? = 2 ?)算术运算(加法和乘法)的渐近复杂度为O(?3)。

Strassen算法所需的加法和乘法的数目可以计算如下:让f ()的操作的数量为2 ? ×2 n的矩阵。然后通过递归应用Strassen算法,我们看到,f ( n )的= 7 f(? -1)+ 14正,对于某个常数,在每个应用程序的算法进行的加法的数目取决于。因此,f(?)=(7 + O(1))?,即乘以矩阵大小? = 2 n的Strassen算法的渐近复杂性

然而,算术运算的数目的减少在一个有所减少的数值稳定性的价格,并且该算法也需要天真算法相比显着更多的内存。必须具有它们的尺寸扩展到在存储多达四次一样多的元素的下一个2的幂,从而导致这两个初始矩阵,和七个辅助矩阵的每一个包含在扩大的四分之一的元素

【The reduction in the number of arithmetic operations however comes at the price of a somewhat

reduced numerical stability, and the algorithm also requires significantly more memory compared to the

naive algorithm. Both initial matrices must have their dimensions expanded to the next power of 2, which

results in storing up to four times as many elements, and the seven auxiliary matrices each contain a quarter of the elements in the expanded ones.】

等级或双线性复杂的(Rank or bilinear complexity)

【The bilinear complexity or rank of a bilinear map is an important concept in the asymptotic complexity of matrix multiplication. The rank of a bilinear map over a field F is defined as (somewhat of an abuse of notation)】一个双线性映射的双线性的复杂性或职级的渐近复杂的矩阵乘法的一个重要概念。被定义为一个双线性映射的排名超过F(有点滥用的符号)

Strassen's algorithm shows that the rank of 2×2 matrix multiplication is no more than seven. To see this, let us express this algorithm (alongside the standard algorithm) as such a bilinear computation. In the case of matrices,

】换句话说,一个双线性映射的排名是长度最短的双线性计算。

是不超过7。为了说明这一点,让我们表达这种算法的

标准算法一起,这样的双线性计算。在矩阵的情况下,

【It can be shown that the total number of elementary multiplications L required for matrix multiplication is tightly asymptotically bound to the rank R, i.e. , or more specifically, since the constants are known, One useful property of the rank is that it is submultiplicative

for tensor products, and this enables one to show that 2n×2n×2n matrix multiplication can be accomplished with no more than 7n elementary multiplications for any n. (This n-fold tensor product of the 2×2×2 matrix multiplication map with itself—an n th tensor power—is realized by the recursive step in the algorithm shown.)】它可以表明初等所需的乘法大号,矩阵乘法的总数目是紧密渐近绑定到的秩R,即

,或者更具体地说,因为常数是已知的,秩的一个有用的特性是,它是submultiplicative的张量产品,并且这使得一个表明2 ? ? ×2 ×2 n的矩阵乘法,可以完成与不超过7 ?初等乘法对任意 n 。(此n折式张量积的2×2×2的矩阵乘法地图本身的第n个张量电源实现所示的算法的递归步骤中。)

AOPA最新理论题库第7章任务规划

G001、无人机是指根据无人机需要完成的任务、无人机的数量以及携带任务载荷的类型,对无人机制定飞行路线并进行任务分配。 A.航迹规划 B.任务规划 C.飞行规划 正确答案: B(解析:P174) G002、任务规划的主要目标是依据地形信息和执行任务环境条件信息,综合考虑无人机的性能,到达时间、耗能、威胁以及飞行区域等约束条件。为无人机规划出一条或多条自 的,保证无人机高效,圆满的完成飞行任务,并安全返回基地。 A.起飞到终点,最短路径 B.起飞点到着陆点,最佳路径 C.出发点到目标点,最优或次优航迹 正确答案: C(解析:P174) G003、无人机任务规划是实现的有效途径,他在很大程度上决定了无人机执行任务的效率 A.自主导航与飞行控制 B.飞行任务与载荷导航 C.航迹规划与自主导航 正确答案: A(解析:P174) G004、无人机任务规划需要实现的功能包括 A.自主导航功能,应急处理功能,航迹规划功能 B.任务分配功能,航迹规划功能,仿真演示功能 C.自主导航功能,自主起降功能,航迹规划功能 正确答案: B(解析:P174) G005、无人机任务规划需要考虑的因素有、,无人机物理限制,实时性要求 A.飞行环境限制,飞行任务要求 B.飞行赶任务范围,飞行安全限制 C.飞行安全限制,飞行任务要求 正确答案: A(解析:P175) G006、无人机物理限制对飞行航迹有以下限制:,最小航迹段较长度,最低安全飞行高度 A.最大转弯半径,最小俯仰角 B.最小转弯半径,最小俯仰角 C.最小转弯半径,最大俯仰角 正确答案: C(解析:P175) G007、动力系统工作恒定的情况下,限制了航迹在垂直平面内上升和下滑的最大角度 A.最小转弯半径 B.最大俯仰角

数据结构课程设计计算器

数据结构课程设计报告 实验一:计算器 设计要求 1、问题描述:设计一个计算器,可以实现计算器的简单运算,输出并检验结果的正确性,以及检验运算表达式的正确性。 2、输入:不含变量的数学表达式的中缀形式,可以接受的操作符包括+、-、*、/、%、(、)。 具体事例如下: 3、输出:如果表达式正确,则输出表达式的正确结果;如果表达式非法,则输出错误信息。 具体事例如下: 知识点:堆栈、队列 实际输入输出情况: 正确的表达式

对负数的处理 表达式括号不匹配 表达式出现非法字符 表达式中操作符位置错误 求余操作符左右出现非整数 其他输入错误 数据结构与算法描述 解决问题的整体思路: 将用户输入的中缀表达式转换成后缀表达式,再利用转换后的后缀表达式进行计算得出结果。 解决本问题所需要的数据结构与算法: 用到的数据结构是堆栈。主要算法描述如下: A.将中缀表达式转换为后缀表达式: 1. 将中缀表达式从头逐个字符扫描,在此过程中,遇到的字符有以下几种情况: 1)数字 2)小数点 3)合法操作符+ - * / %

4)左括号 5)右括号 6)非法字符 2. 首先为操作符初始化一个map priority,用于保存各个操作符的优先级,其中+ -为0,* / %为1 3. 对于输入的字符串from和输出的字符串to,采用以下过程: 初始化遍历器std::string::iterator it=infix.begin() 在当it!=from.end(),执行如下操作 4. 遇到数字或小数点时将其加入到后缀表达式: case'1':case'2':case'3':case'4':case'5':case'6':case'7':case '8':case'9':case'0':case'.': { to=to+*it; break; } 5. 遇到操作符(+,-,*,/,%)时,如果此时栈顶操作符的优先级比此时的操作符优先级低,则将其入栈,否则将栈中的操作符从栈顶逐个加入到后缀表达式,直到栈空或者遇到左括号,并将此时的操作符加入到栈中,在此过程中需判断表达式中是否出现输入错误: case'+':case'-':case'*':case'/':case'%': { if((it+1)==from.end()) { cout<<"输入错误:运算符号右边缺少运算数"<

简易计算器

单片机十进制加法计算器设计 摘要 本设计是基于51系列的单片机进行的十进制计算器系统设计,可以完成计 算器的键盘输入,进行加、减、乘、除3位无符号数字的简单四则运算,并在LED上相应的显示结果。 设计过程在硬件与软件方面进行同步设计。硬件方面从功能考虑,首先选择内部存储资源丰富的AT89C51单片机,输入采用4×4矩阵键盘。显示采用3位7段共阴极LED动态显示。软件方面从分析计算器功能、流程图设计,再到程序的编写进行系统设计。编程语言方面从程序总体设计以及高效性和功能性对C 语言和汇编语言进行比较分析,针对计算器四则运算算法特别是乘法和除法运算的实现,最终选用全球编译效率最高的KEIL公司的μVision3软件,采用汇编语言进行编程,并用proteus仿真。 引言 十进制加法计算器的原理与设计是单片机课程设计课题中的一个。在完成理论学习和必要的实验后,我们掌握了单片机的基本原理以及编程和各种基本功能的应用,但对单片机的硬件实际应用设计和单片机完整的用户程序设计还不清楚,实际动手能力不够,因此对该课程进行一次课程设计是有必要的。 单片机课程设计既要让学生巩固课本学到的理论,还要让学生学习单片机硬件电路设计和用户程序设计,使所学的知识更深一层的理解,十进制加法计算器原理与硬软件的课程设计主要是通过学生独立设计方案并自己动手用计算机电路设计软件,编写和调试,最后仿真用户程序,来加深对单片机的认识,充分发挥学生的个人创新能力,并提高学生对单片机的兴趣,同时学习查阅资料、参考资料的方法。 关键词:单片机、计算器、AT89C51芯片、汇编语言、数码管、加减乘除

目录 摘要 (01) 引言 (01) 一、设计任务和要求............................. 1、1 设计要求 1、2 性能指标 1、3 设计方案的确定 二、单片机简要原理............................. 2、1 AT89C51的介绍 2、2 单片机最小系统 2、3 七段共阳极数码管 三、硬件设计................................... 3、1 键盘电路的设计 3、2 显示电路的设计 四、软件设计................................... 4、1 系统设计 4、2 显示电路的设计 五、调试与仿真................................. 5、1 Keil C51单片机软件开发系统 5、2 proteus的操作 六、心得体会.................................... 参考文献......................................... 附录1 系统硬件电路图............................ 附录2 程序清单..................................

微机课设简易计算器

微机课程设计报告 题目简易计算器仿真 学院(部)信息学院 专业通信工程 班级2011240401 学生姓名张静 学号33 12 月14 日至12 月27 日共2 周 指导教师(签字)吴向东宋蓓蓓

单片机十进制加法计算器设计 摘要 本设计是基于51系列的单片机进行的十进制计算器系统设计,可以完成计 算器的键盘输入,进行加、减、乘、除3位无符号数字的简单四则运算,并在LED上相应的显示结果。 软件方面从分析计算器功能、流程图设计,再到程序的编写进行系统设计。编程语言方面从程序总体设计以及高效性和功能性对C语言和汇编语言进行比较分析,针对计算器四则运算算法特别是乘法和除法运算的实现,最终选用全球编译效率最高的KEIL公司的μVision3软件,采用汇编语言进行编程,并用proteus仿真。 引言 十进制加法计算器的原理与设计是单片机课程设计课题中的一个。在完成理论学习和必要的实验后,我们掌握了单片机的基本原理以及编程和各种基本功能的应用,但对单片机的硬件实际应用设计和单片机完整的用户程序设计还不清楚,实际动手能力不够,因此对该课程进行一次课程设计是有必要的。 单片机课程设计既要让学生巩固课本学到的理论,还要让学生学习单片机硬件电路设计和用户程序设计,使所学的知识更深一层的理解,十进制加法计算器原理与硬软件的课程设计主要是通过学生独立设计方案并自己动手用计算机电路设计软件,编写和调试,最后仿真用户程序,来加深对单片机的认识,充分发挥学生的个人创新能力,并提高学生对单片机的兴趣,同时学习查阅资料、参考资料的方法。 关键词:单片机、计算器、AT89C52芯片、汇编语言、数码管、加减乘除

基于安卓的计算器的设计与实现

安卓应用程序设计 ——简易计算器的实现院(系)名称 专业名称 学生姓名 学生学号 课程名称 2016年6月日

1.系统需求分析 Android是以Linux为核心的手机操作平台,作为一款开放式的操作系统,随着Android 的快速发展,如今已允许开发者使用多种编程语言来开发Android应用程序,而不再是以前只能使用Java开发Android应用程序的单一局面,因而受到众多开发者的欢迎,成为真正意义上的开放式操作系统。计算器通过算法实行简单的数学计算从而提高了数学计算的效率,实现计算器的界面优化,使界面更加友好,操作更加方便。基于android的计算器的设计,系统具有良好的界面;必要的交互信息;简约美观的效果。使用人员能快捷简单地进行操作,即可单机按钮进行操作,即时准确地获得需要的计算的结果,充分降低了数字计算的难度和节约了时间。 2.系统概要设计 2.1计算器功能概要设计 根据需求,符合用户的实际要求,系统应实现以下功能:计算器界面友好,方便使用,,具有基本的加、减、乘、除功能,能够判断用户输入运算数是否正确,支持小数运算,具有清除功能。 图2.1系统功能图 整个程序基于Android技术开发,除总体模块外主要分为输入模块、显示模块以及计算模块这三大部分。在整个系统中总体模块控制系统的生命周期,输入模块部分负责读取用户输入的数据,显示模块部分负责显示用户之前输入的数据以及显示最终的计算结果,计算模块部分负责进行数据的运算以及一些其他的功能。具体的说,总体模块的作用主要是生成应用程序的主类,控制应用程序的生命周期。 输入模块主要描述了计算器键盘以及键盘的监听即主要负责读取用户的键盘输入以及 响应触屏的按键,需要监听手机动作以及用指针事件处理方法处理触屏的单击动作。同时提供了较为直观的键盘图形用户界面。 显示模块描述了计算器的显示区,即该区域用于显示用户输入的数据以及最终的计算结

计算器制作

VB应用程序的设计方法 ——“简易计算器”教学设计 揭阳第一中学卢嘉圳 教学内容:利用所学知识制作Visual Basic程序“简易计算器” 教学目标:能熟练运用CommandButton控件及TextBox控件进行Visual Basic(以下简称VB)程序的设计,能熟练运用条件语句编写代码 教学重点:运用开发VB程序一般过程的思路来开发“简易计算器” 教学难点:分析得出实现“简易计算器”各运算功能的算法。 教材分析: 当我刚开始进行程序设计的教学时,便感觉比较难教。这是因为程序设计本身枯燥、严谨,较难理解,而且学生大多数都是初学者,没有相应的知识基础。对于《程序设计实例》,我们选用的教材是广东教育出版社出版的《信息技术》第四册,该书采用的程序设计语言是VB,而学生是仅学过了一点点简单的QB编程之后就进入《程序设计实例》的学习的。 教材为我们总结了设计VB程序的一般步骤:创建用户界面;设置控件属性;编写事件程序代码;运行应用程序。我总结了一下,其实VB程序设计可分为设计用户界面及编写程序代码两个环节。 教学过程: 一、引入新课 任务:让学生按照书上提示完成一个非常简单的VB程序——“计算器”(仅包含开方、平方、求绝对值功能)的制作。 目的:加强对CommandButton控件及TextBox控件的掌握,复习对开方、求绝对值函数的使用。 引入本节课的学习任务:设计一个简易计算器,包含加、减、乘、除、开方、平方等运算。程序界面可参考下图。 具体功能为:在Text1中输入一个数值,然后单击代表运算符的按钮则运算结果会在text2中显示出来;比如在text1中输入一个2,然后按“+”按钮,再输入一个3按“-”按钮,再输入一个-4按“*”按钮,则实际为(2-3)*(-4);最后在text2中显示结果为4。

模拟计算器程序-课程设计

模拟计算器 学生姓名:**** 指导老师:**** 摘要本课程设计的课题是设计一个模拟计算器的程序,能够进行表达式的计算,并且表达式中可以包含Abs()和Sqrt()运算。在课程设计中,系统开发平台为Windows ,程序设计设计语言采用C++,程序运行平台为Windows 或*nix。本程序的关键就是表达式的分离和处理,在程序设计中,采用了将输入的中缀表达式转化为后缀表达式的方法,具有可靠的运行效率。本程序做到了对输入的表达式(表达式可以包含浮点数并且Abs()和Sqrt()中可以嵌套子表达式)进行判定表达式是否合法并且求出表达式的值的功能。经过一系列的调试运行,程序实现了设计目标,可以正确的处理用户输入的表达式,对海量级数据都能够通过计算机运算快速解决。 关键词C++程序设计;数据结构;表达式运算;栈;中缀表达式;后缀表达式;字符串处理;表达式合法判定;

目录 1 引言 (3) 1.1课程设计目的 (3) 1.2课程设计内容 (3) 2 设计思路与方案 (4) 3 详细实现 (5) 3.1 表达式的合法判定 (5) 3.2 中缀表达式转化为后缀表达式 (5) 3.3 处理后缀表达式 (7) 3.4 表达式嵌套处理 (8) 4 运行环境与结果 (9) 4.1 运行环境 (9) 4.2 运行结果 (9) 5 结束语 (12) 参考文献 (13) 附录1:模拟计算器源程序清单 (14)

1 引言 本课程设计主要解决的是传统计算器中,不能对表达式进行运算的问题,通过制作该计算器模拟程序,可以做到快速的求解表达式的值,并且能够判定用户输入的表达式是否合法。该模拟计算器的核心部分就在用户输入的中缀表达式的转化,程序中用到了“栈”的后进先出的基本性质。利用两个“栈”,一个“数据栈”,一个“运算符栈”来把中缀表达式转换成后缀表达式。最后利用后缀表达式来求解表达式的值。该算法的复杂度为O(n),能够高效、快速地求解表达式的值,提高用户的效率。 1.1课程设计目的 数据结构主要是研究计算机存储,组织数据,非数值计算程序设计问题中所出现的计算机操作对象以及它们之间的关系和操作的学科。数据结构是介于数学、计算机软件和计算机硬件之间的一门计算机专业的核心课程,它是计算机程序设计、数据库、操作系统、编译原理及人工智能等的重要基础,广泛的应用于信息学、系统工程等各种领域。学习数据结构是为了将实际问题中涉及的对象在计算机中表示出来并对它们进行处理。通过课程设计可以提高学生的思维能力,促进学生的综合应用能力和专业素质的提高。 模拟计算器程序主要利用了“栈”这种数据结构来把中缀表达式转化为后缀表达式,并且运用了递归的思想来解决Abs()和Sqrt()中嵌套表达式的问题,其中还有一些统计的思想来判定表达式是否合法的算法。 1.2课程设计内容 本次课程设计为计算器模拟程序,主要解决表达式计算的问题,实现分别按表达式处理的过程分解为几个子过程,详细的求解过程如下:1 用户输入表达式。 2 判定表达式是否合法。 3 把中缀表达式转化为后缀表达式。 4 求出后缀表达式的结果。 5 输出表达式的结果。通过设计该程序,从而做到方便的求出一个表达式的值,而不需要一步一步进行运算。

比较PageRank算法和HITS算法的优缺点

题目:请比较PageRank算法和HITS算法的优缺点,除此之外,请再介绍2种用于搜索引擎检索结果的排序算法,并举例说明。 答: 1998年,Sergey Brin和Lawrence Page[1]提出了PageRank算法。该算法基于“从许多优质的网页链接过来的网页,必定还是优质网页”的回归关系,来判定网页的重要性。该算法认为从网页A导向网页B的链接可以看作是页面A对页面B的支持投票,根据这个投票数来判断页面的重要性。当然,不仅仅只看投票数,还要对投票的页面进行重要性分析,越是重要的页面所投票的评价也就越高。根据这样的分析,得到了高评价的重要页面会被给予较高的PageRank值,在检索结果内的名次也会提高。PageRank是基于对“使用复杂的算法而得到的链接构造”的分析,从而得出的各网页本身的特性。 HITS 算法是由康奈尔大学( Cornell University ) 的JonKleinberg 博士于1998 年首先提出。Kleinberg认为既然搜索是开始于用户的检索提问,那么每个页面的重要性也就依赖于用户的检索提问。他将用户检索提问分为如下三种:特指主题检索提问(specific queries,也称窄主题检索提问)、泛指主题检索提问(Broad-topic queries,也称宽主题检索提问)和相似网页检索提问(Similar-page queries)。HITS 算法专注于改善泛指主题检索的结果。 Kleinberg将网页(或网站)分为两类,即hubs和authorities,而且每个页面也有两个级别,即hubs(中心级别)和authorities(权威级别)。Authorities 是具有较高价值的网页,依赖于指向它的页面;hubs为指向较多authorities的网页,依赖于它指向的页面。HITS算法的目标就是通过迭代计算得到针对某个检索提问的排名最高的authority的网页。 通常HITS算法是作用在一定范围的,例如一个以程序开发为主题的网页,指向另一个以程序开发为主题的网页,则另一个网页的重要性就可能比较高,但是指向另一个购物类的网页则不一定。在限定范围之后根据网页的出度和入度建立一个矩阵,通过矩阵的迭代运算和定义收敛的阈值不断对两个向量authority 和hub值进行更新直至收敛。 从上面的分析可见,PageRank算法和HITS算法都是基于链接分析的搜索引擎排序算法,并且在算法中两者都利用了特征向量作为理论基础和收敛性依据。

用计算器计算(教案)

课题:用计算器计算 教学内容:三年级下册第48—51页内容 教学目标: 1、在运算中了解计算器的结构和基本功能;能正确、熟练地运用计算器进行一、两步的式题运算。 2、能运用计算器解决一些简单的实际问题,探索一些基本的数学规律。 3、培养观察、比较、分析、归纳、概括等能力。 教学过程: 一、尝试运用 师:开学到现在,我们一直在学习计算,下面这些题,哪些你一眼能看出来答案的,直接说的得数。 1、初步尝试 90+56= 45×99≈ 87546—3469= 42×30= 2102÷30≈ 43×365= 师:最后两道看来有困难,列竖式算算。 师:先不报答案,要你自己检验做的对不对,你准备怎么样?试一试用计算器来验算,你们会吗? 师:谁愿意带上你的竖式计算上来展示意下,向大家演示一下你用计算器验算的过程可以吗?(鼓励和表扬) 师:看来,大家还真的会用计算器!想不想“再显身手”? 2、再次尝试:探索用计算器进行混合运算的方法 ①546×28-4276 ②2940 ÷28+763 ③15021-87×99 ④25120÷(449-289) (1)这4题与上面4题相比,有什么不一样?会做吗?请试一试。 (2)交流操作方法。 (3)你有没有感觉到这4道题在计算过程中有什么不一样? (4)用计算器计算③、④该怎么操作呢?我们以第③题为例,谁来介绍介绍?

(突出“记住中间数”、“使用MR键”、倒减等方法。) (①、②两题只要按顺序依次输入,③、④题要先算后一步,③④可以“记住过程得数”,③还可以倒减等) (5)介绍用存储键计算,尝试用“MR键”计算③④题。 二、解决生活问题 师:通过这几道题计算,你感觉计算器怎么样?你们喜欢用计算器吗?下面我们就发挥计算器的作用,用它来完成一个非常有价值的问题。 1、出示:一个水龙头滴水的动态画面。据统计一个没有关紧的水龙头,每天大约滴18千克的水,这些水就这样白白流掉了。 (1)照这样计算一年(按365天计算)要浪费多少千克水? (2)把这些水分别装在饮水桶中(每桶约重15千克)算算大约能装多少桶? (3)你家每月用几桶水?算算这些水够你家用几个月?大约合多少年? 师:目前我国西南大旱,一些地区粮食因为缺水绝收。云南山区的孩子们喝脏水解渴。联系我们刚才的这些计算数据,你想到什么? 三、探索计算规律: 师:既然人们发明了这么好的计算器,我们就应该更好地运用它。让我们来挑战一下自己,探索计算的规律好不好? 1、找出规律后再填写每组的后2题得数,并用计算器检验。 19+9×9= 118+98×9= 1117+987×9= 11116+9876×9= 111115+98765×9= 学生汇报自己的发现。按这样一种规律写下去,下一题该是什么样的? 2、自己探索规律。 1122÷34= 111222÷334= 11112222÷3334= …… 111…1222…2÷333…34= 2001个1 2001个2 2000个3

移动应用开发实验---简单计算器

“移动应用开发”实验报告 1

而受至到众多开发者的欢迎,成为真正意义上的开放式操作系统。计算器通 过算法实行简单的或学计算从而提高了数学计算的效率,实现计算器的界面 优化,使界面更加友好,操作更加方便。基于android的计算器的设计系统具 有良好的界面;必要的英互信息:简约美观的效票,使用人员能快捷简单地 进行操作,即可单机按钮进行操作,即时准确地获得需要的计算的结果,充 分降低了数字计算的难度和节约了时间。 2.系统概要设计 2.1计算器功能概要设计 根据需求,符合用户的实际需求,系统应实现以下功能:计算器界面友好, 方便使用,具有基本的加,减,乘,除功能。能够判断用户输入运算数是否 正确,支持小数运算,具有清除功能。 整个程序基于Android 技术开发,除总体模块外主要分为输入模块、显 示模块以及计算模块这三大部分。在整个系统中总体模块控制系统的生命周期,输入模块部分负责读取用户输入的数据,显示模块部分负责显示用户之 前输入的数据以及显示最终的计算结果,计算模块部分负责进行数据的运算 以及一些其他的功能。具体的说,总体模块的作用主要是生成应用程序的主类,控制应用程序的生命周期。 输入模块主要描述了计算器键盘以及键盘的监听即主要负责读取用户的 键盘输入以及响应触屏的按键,需要监听手机动作以及用指针事件处理方法 处理触屏的单击动作。同时提供了较为直观的键盘图形用户界面。 显示模块描述了计算器的显示区,即该区域用于显示用户输入的数据以 及最终的计算结果,同时负责显示一些其他的信息。 计算器模块主要描述了计算器的整体,实现了计算器的界面,负责用户 2

输入数据,计算,显示,清零等功能。 2.2输入模块设计 系统如果想完成计算器中各种功能,首先用户要能进行数据输入,由于 是在触屏手机上开发计算器程序,所以要求输入可以直接使用触屏进行,所 以在设计的时候就要充分的考虑这一点。正是由于考虑到这个特殊的地方, 所以在进行模块设计中,选择编写输入模块类的时候会特意选取使用可以支 持触屏输入的特殊增强型图形用户界面类。 输入模块主要的任务是描述计算器键盘以及实现键盘的监听,即当用户 点击按键或者屏幕的时候监听会去调用相应的处理办法,本模块还需要为系 统提供一个较为直观的键盘图形用户界面。输入模块的功能图如图 2.3显示模块设计 作为手机计算器系统,显示部分也是必不可少的一部分。没有显示部分 就没有办法显示用户输入的数字是否正确,甚至不能显示计算出的结果,由 此可见显示模块即包括输入的部分(因个人技术原因不能显示表达式的形式)也包括输出的部分。 显示模块主要完成的任务是描述计算器的显示区,该区域用于显示用户 输入的数据以及最终的计算结果和一些其他信息。同时本模块还将提供调用 和设置显示的具体方法。 3

计算器算法原理

计算器算法原理 除法也用类似竖式的方法,从高位到低位逐一得出结果。大概过程如下:(注意,是二进制运算) 1、先左移除数,直到除数不小于被除数,同时记录移动的位数; 2、开始循环,循环次数为前一步移动的位数加1; 3、比较被除数与除数的大小,如果被除数不小于除数,则该位结果为1,否则为0; 4、除数右移一位,继续循环。 这种方法同样可以进行小数运算,根据需要的有效数字位数确定循环次数。 漏了一点,修改一下: 3、比较被除数与除数的大小,如果被除数不小于除数,则该位结果为1,并把被除数减去除数,否则为0 加减乘除求余: #include #include #include #include #define DEF_32 #ifdef DEF_32 typedef unsigned int uint; const uint low_mask = 0xffff; const uint hig_mask = 0xffff0000; #else typedef unsigned long long uint; const uint low_mask = 0xffffffff; const uint hig_mask = 0xffffffff00000000; #endif const uint alignment = 8; struct _DATA_ ...{ size_t capacity;//容量 size_t len;//使用的存储单元 uint *p;//内容 }; typedef struct _DATA_ BigNumber; typedef BigNumber* BigNumberPtr; BigNumberPtr NewBigNumber(size_t len ); BigNumberPtr CopyNewBigNumber(BigNumberPtr p); void CopyBigNumber(BigNumberPtr o,BigNumberPtr n);

计算机中的常用算法

奥地利符号计算研究所(Research Institute for Symbolic Computation,简称RISC)做了一个调查,投票选出32个最重要的算法: 1.A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一 种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定 次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。 2.集束搜索(又名定向搜索,Beam Search)——最佳优先搜索算法的优化。使用启 发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最 前面的m个最符合条件的节点,m是固定数字——集束的宽度。 3.二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半 不符合要求的数据。 4.分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决 方案的算法,特别是针对离散、组合的最优化。 5.Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几 里得算法和线性系统中高斯消元法的泛化。 6.数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对 信息编码的过程,又叫来源编码。 7.Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况 下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一 起,加密后续通讯。 8.Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。 9.离散微分算法(Discrete differentiation) 10.动态规划算法(Dynamic Programming)——展示互相覆盖的子问题和最优子架构 算法 11.欧几里得算法(Euclidean algorithm)——计算两个整数的最大公约数。最古老的 算法之一,出现在公元前300前欧几里得的《几何原本》。 12.期望-最大算法(Expectation-maximization algorithm,又名EM-Training)——在 统计计算中,期望-最大算法在概率模型中寻找可能性最大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其最大可能估计值;第二步是最大化,最大化在第一 步上求得的最大可能值来计算参数的值。 13.快速傅里叶变换(Fast Fourier transform,FFT)——计算离散的傅里叶变换(DF T)及其反转。该算法应用范围很广,从数字信号处理到解决偏微分方程,到快速计算大整数乘积。 14.梯度下降(Gradient descent)——一种数学上的最优化算法。 15.哈希算法(Hashing) 16.堆排序(Heaps) 17.Karatsuba乘法——需要完成上千位整数的乘法的系统中使用,比如计算机代数系统 和大数程序库,如果使用长乘法,速度太慢。该算法发现于1962年。 18.LLL算法(Lenstra-Lenstra-Lovasz lattice reduction)——以格规约(lattice)基数 为输入,输出短正交向量基数。LLL算法在以下公共密钥加密方法中有大量使用: 背包加密系统(knapsack)、有特定设置的RSA加密等等。

基于Java的计算器算法(源代码).(精选)

import java.awt.BorderLayout; import java.awt.Color; import java.awt.GridLayout; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.JButton; import javax.swing.JFrame; import javax.swing.JPanel; import javax.swing.JTextField; /** * 一个计算器,与Windows附件自带计算器的标准版功能、界面相仿。但还不支持键盘操作。 */ public class Calculator extends JFrame implements ActionListener { /** 计算器上的键的显示名字*/ private final String[] KEYS = { "7", "8", "9", "/", "sqrt", "4", "5", "6", "*", "%", "1", "2", "3", "-", "1/x", "0", "+/-", ".", "+", "=" }; /** 计算器上的功能键的显示名字*/ private final String[] COMMAND = { "Backspace", "CE", "C" }; /** 计算器左边的M的显示名字*/ private final String[] M = { " ", "MC", "MR", "MS", "M+" }; /** 计算器上键的按钮*/ private JButton keys[] = new JButton[KEYS.length]; /** 计算器上的功能键的按钮*/ private JButton commands[] = new JButton[COMMAND.length]; /** 计算器左边的M的按钮*/ private JButton m[] = new JButton[M.length]; /** 计算结果文本框*/ private JTextField resultText = new JTextField("0"); // 标志用户按的是否是整个表达式的第一个数字,或者是运算符后的第一个数字 private boolean firstDigit = true; // 计算的中间结果。 private double resultNum = 0.0; // 当前运算的运算符 private String operator = "="; // 操作是否合法 private boolean operateValidFlag = true; /** * 构造函数 */

pagerank算法实验报告

PageRank算法实验报告 一、算法介绍 PageRank是Google专有的算法,用于衡量特定网页相对于搜索引擎索引中的其他网页而言的重要程度。它由Larry Page 和Sergey Brin在20世纪90年代后期发明。PageRank实现了将链接价值概念作为排名因素。 PageRank的核心思想有2点: 1.如果一个网页被很多其他网页链接到的话说明这个网页比较重要,也就是pagerank值会相对较高; 2.如果一个pagerank值很高的网页链接到一个其他的网页,那么被链接到的网页的pagerank值会相应地因此而提高。 若页面表示有向图的顶点,有向边表示链接,w(i,j)=1表示页面i存在指向页面j的超链接,否则w(i,j)=0。如果页面A存在指向其他页面的超链接,就将A 的PageRank的份额平均地分给其所指向的所有页面,一次类推。虽然PageRank 会一直传递,但总的来说PageRank的计算是收敛的。 实际应用中可以采用幂法来计算PageRank,假如总共有m个页面,计算如公式所示: r=A*x 其中A=d*P+(1-d)*(e*e'/m) r表示当前迭代后的PageRank,它是一个m行的列向量,x是所有页面的PageRank初始值。 P由有向图的邻接矩阵变化而来,P'为邻接矩阵的每个元素除以每行元素之和得到。 e是m行的元素都为1的列向量。 二、算法代码实现

三、心得体会 在完成算法的过程中,我有以下几点体会: 1、在动手实现的过程中,先将算法的思想和思路理解清楚,对于后续动手实现 有很大帮助。 2、在实现之前,对于每步要做什么要有概念,然后对于不会实现的部分代码先 查找相应的用法,在进行整体编写。 3、在实现算法后,在寻找数据验证算法的过程中比较困难。作为初学者,对于 数据量大的数据的处理存在难度,但数据量的数据很难寻找,所以难以进行实例分析。

计算器程序

用VC++6实现计算器具有优先功能(一) 摘要在计算器的设计中,加、减、乘、除和括号功能是有优先级的,括号优先于乘除,乘除优先于加减,实现了这部分功能,就完成了计算器的主要框架的设计,在此基础上就可 扩充其它的功能,如各种函数功能。 关键词计算器,加、减、乘、除、括号,优先级 所使用的计算器一般具备加、减、乘、除功能,好一点的计算器还具有括号功能,使计算器能完成较复杂一些的设计,更好一点的计算器还具有各种函数功能,使计算器用起来更加实用和方便。总之,加、减、乘、除功能和括号功能是科学计算器所必须具有的功能,在此基础上可以很容易地扩充各种函数功能,如sin、cos、tan、log、lnx、x n等等,以实现复杂的运算。 一、优先功能 任何一个计算表达式,如a+b×c÷( d-e×f+g )-h,计算的规则是:先乘、除后,加、减,遇到括号先执行括号里的表达式,并且括号里的表达式同样遵循这一原则。因此,要获得正确的运算结果,首先是如何来实现先乘除后加减呢?这就要对操作符定义一个优先级,即谁先执行,而操作符的优先级通常是用自然数来表示的,称为优先数。+、-的优先数小于×、÷的优先数,而×、÷优先数小于括号〔〕,等号“=”的优先数最低,低于+、-的优先数;由于在一个计算表达式中既有操作数(整数或实数等)和操作符(+、-、×、÷、=等),还有操作符的优先数,这就至少需要二个堆栈,一个是暂存操作数或中间结果的堆栈,简称操作数栈;另一个是暂存操作符优先数的堆栈,称为操作符栈。为了编程的方便,这里操作符栈用了二个,一个用于暂存操作符的字符堆栈,另一个用于暂存操作符优先数(自然数)的堆栈。三个堆栈的栈深M取为常数,这里取M=50,用定长数组来表示,可保证堆栈不会出现上溢,当然用可变数组或链栈来表示则最好。 加、减的优先数,用整数int ADD=SUB=1来表示;乘、除的优先数用整数int MUL=DIV=2来表示。当然你可以取其它整数来表示,只要乘、除的优先数大于加、减的优先数即可。等号的优先数最低,用int EQU=0来表示。从上述表达式可看出,左括号“(”的优先数高于左边操作符的优先数,而低于右边操作符的优先数,这样一个左括号就有二个优先数,这样会使编程复杂化,因此须对左括号作特殊处理:就是遇到左括号直接压栈,而不做优先数的比较。另外,为了保证左括号右边的操作符能正常压栈,因此,左括号的优先数应低于加、减操作符的优先数,即左括号的优先数应取为int LPARENT=0;而对右括号的处理是:右括号一律不进栈。 实现加、减、乘、除和括号功能的算法步骤:首先从左向右读取计算表达式,读一个操作数或一个操作符,统称为读一个单词。 ⑴从左向右扫描表达式,读一个单词。 1)当前单词是操作数,压栈;继续本步。 2)当前单词是操作符,则转⑵。 3)当前单词是左括号“(”,则转⑶。 4)当前单词是右括号“)”,则转⑷。 5)当表达式扫描完毕,即单词是等号,则转⑸。 ⑵若操作符栈空,则操作符进栈,转⑴;若操作符栈不空,则比较当前操作符与栈顶操作符的优 先数。

计算器的设计与实现

J I A N G S U U N I V E R S I T Y 科学计算器的的设计 —windows窗体应用程序学院:计算机科学与通信工程 专业班级:计算机科学与技术1102班 姓名:戴桂明 学号: 3110602041 指导老师:曹汉青 日期:2013年12月20日

目录 1选题原因及理由..................... 错误!未定义书签。2设计思想及框架................................ 错误!未定义书签。 一. 主体功能.............................................. 错误!未定义书签。 二. 开发环境 (3) 3相关表格和流程图 ............................. 错误!未定义书签。 一. 系统功能表 (4) 二. 系统流程图 (5) 4设计特点及关键算法........................... 错误!未定义书签。 5 测试结果及测试分析 (6) 6设计总结 (7) 7附录(源代码) (8)

计算器的设计与实现 1 选题原因及理由 我们在学习生活中,常会遇到一些繁杂的数值运算,这时候我们就必须用到科学计算器,所以便着手开发了这个计算器程序,以便用于自己的学习工作。要计算功能有以下几个方面:加法,减法,乘法,除法,求幂,求e的指数次方,求平方根,求Sin,求Cos,求Tan及其反函数等。 也可达到以下目的: 1、巩固并加深学生对C++语言程序设计知识的理解; 2、培养学生面向对象的程序设计思想,使学生认识面向过程和面向对象两种设计方法的区别; 3、进一步掌握和应用VC++ 2008集成开发环境; 4、提高运用C++语言解决实际问题的能力; 5、初步掌握开发小型实用软件的基本方法,能独立设计、实现基本的窗体应用系统; 6、掌握书写程序设计开发文档的能力。 2 设计思想及框架 课题名称:高级计算器的实现 说明:实现一个计算器。 要求: 1)用“计算器”的标准视图执行简单的计算。 2)用其科学型视图执行高级的科学计算。 一.主体功能 1、十进制数的加、减、乘、除、乘方、取模等简单计算。 2、科学计算函数,包括(反)正弦、(反)余弦、(反)正切、(反)余切、开方、指数等函数运算。 3、以角度、弧度两种方式实现上述部分函数。 二.开发环境 VC++ 2008

PageRank算法的核心思想

如何理解网页和网页之间的关系,特别是怎么从这些关系中提取网页中除文字以外的其他特性。这部分的一些核心算法曾是提高搜索引擎质量的重要推进力量。另外,我们这周要分享的算法也适用于其他能够把信息用结点与结点关系来表达的信息网络。 今天,我们先看一看用图来表达网页与网页之间的关系,并且计算网页重要性的经典算法:PageRank。 PageRank 的简要历史 时至今日,谢尔盖·布林(Sergey Brin)和拉里·佩奇(Larry Page)作为Google 这一雄厚科技帝国的创始人,已经耳熟能详。但在1995 年,他们两人还都是在斯坦福大学计算机系苦读的博士生。那个年代,互联网方兴未艾。雅虎作为信息时代的第一代巨人诞生了,布林和佩奇都希望能够创立属于自己的搜索引擎。1998 年夏天,两个人都暂时离开斯坦福大学的博士生项目,转而全职投入到Google 的研发工作中。他们把整个项目的一个总结发表在了1998 年的万维网国际会议上(WWW7,the seventh international conference on World Wide Web)(见参考文献[1])。这是PageRank 算法的第一次完整表述。 PageRank 一经提出就在学术界引起了很大反响,各类变形以及对PageRank 的各种解释和分析层出不穷。在这之后很长的一段时间里,PageRank 几乎成了网页链接分析的代名词。给你推荐一篇参考文献[2],作为进一步深入了解的阅读资料。

PageRank 的基本原理 我在这里先介绍一下PageRank 的最基本形式,这也是布林和佩奇最早发表PageRank 时的思路。 首先,我们来看一下每一个网页的周边结构。每一个网页都有一个“输出链接”(Outlink)的集合。这里,输出链接指的是从当前网页出发所指向的其他页面。比如,从页面A 有一个链接到页面B。那么B 就是A 的输出链接。根据这个定义,可以同样定义“输入链接”(Inlink),指的就是指向当前页面的其他页面。比如,页面C 指向页面A,那么C 就是A 的输入链接。 有了输入链接和输出链接的概念后,下面我们来定义一个页面的PageRank。我们假定每一个页面都有一个值,叫作PageRank,来衡量这个页面的重要程度。这个值是这么定义的,当前页面I 的PageRank 值,是I 的所有输入链接PageRank 值的加权和。 那么,权重是多少呢?对于I 的某一个输入链接J,假设其有N 个输出链接,那么这个权重就是N 分之一。也就是说,J 把自己的PageRank 的N 分之一分给I。从这个意义上来看,I 的PageRank,就是其所有输入链接把他们自身的PageRank 按照他们各自输出链接的比例分配给I。谁的输出链接多,谁分配的就少一些;反之,谁的输出链接少,谁分配的就多一些。这是一个非常形象直观的定义。

相关文档
最新文档