描述圆周运动的物理量匀速圆周运动(最新整理)

描述圆周运动的物理量匀速圆周运动(最新整理)
描述圆周运动的物理量匀速圆周运动(最新整理)

描述圆周运动的物理量匀速圆周运动

学习目标

(1)理解并记住描述圆周运动的物理量。

(2)学会解匀速圆周运动的运动学问题。

知识整合

1.描述圆周运动的物理量

(1)线速度:是描述质点绕圆周 的物理量,某点线速度的方向即为该点 方向,其大小的定义式为 .

(2)角速度:是描述质点绕圆心 的物理量,其定义式为ω= ,国际单位为 .

(3)周期和频率:周期和频率都是描述圆周 的物理量,用周期和频率计算线速度的公式为,用周期和频率计算角速度的公式为 .

2.描述匀速圆周运动的物理量之间的关系

共轴转动的物体上各点的_________相同,不打滑的皮带传动的两轮边缘上各点_____大小相等.

即:(1)同轴转动的轮子或同一轮子上的各点的_____速度大小相等.

(2)皮带传动的两轮,皮带不打滑时,皮带接触处的_____速度大小相等.

(3)齿轮的齿数与半径成正比即周长=齿数×齿间距

3.线速度、角速度大小的比较

在分析传动装置的各物理量时.要抓住不等量和相等量的关系.同轴的各点角速度ω和n相等,而线速度v=ωr 与半径r成正比.在不考虑皮带打滑的情况下.传动皮带与皮带连接的两轮边缘的各点线速度大小相等,而角速度ω=

v/r与半径r成反比.

【例1】如图所示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两轮用皮带传动,三轮半径关系是rA=rC=2rB.若皮带不打滑,求A、B、C轮边缘的a、b、c三点的角速度之比、线速度之比和向心加速度之比.

【例2】如图所示,直径为d的纸质圆筒,以角速度ω绕轴O高速运动,有一颗子弹沿直径穿

过圆筒,若子弹穿过圆筒时间小于半个周期,在筒上先、后留下a、b两个弹孔,已知ao、bo间夹角为φ弧度,则子弹速度为

4.圆周运动与其它运动的结合

圆周运动和其他运动相结合,要注意寻找这两种运动的结合点:如位移关系、速度关系、

时间关系等.还要注意圆周运动的特点:如具有一定的周期性等.

【例3】如图所示,M,N是两个共轴圆筒的横截面,外筒半径为R,内筒半径比R小很多,可以

忽略不计。简的两端是封闭的,两筒之间抽成真空,两筒以相同角速度。转其中心轴线(图中垂直于

纸面)作匀速转动,设从M筒内部可以通过窄缝S(与M筒的轴线平行)不断地向外射出两种不同

速率v1和v2的微粒,从S处射出时初速度方向都是沿筒的半径方向,微粒到达N筒后就附着在N筒上,如果R、v1和v2都不变,而ω取某一合适的值,则()

A.有可能使微粒落在N筒上的位置都在c处一条与S缝平行的窄条上

B.有可能使微粒落在N筒上的位置都在某一处如b处一条与S缝平行的窄条上

C.有可能使微粒落在N筒上的位置分别在某两处如b处和C处与S缝平行的窄条上

D.只要时间足够长,N筒上将到处落有微粒

【例4】如图所示为一实验小车中利用光脉冲测量车速和行程的装置的示意图,A为光

源,B为电接收器,A、B均固定在车身上,C为小车的车轮,D为与C同轴相连的齿

轮.车轮转动时,A发出的光束通过旋转齿轮上齿的间隙后变成脉冲光信号,被B接收

并转换成电信号,由电子电路记录和显示.若实验显示单位时间内的脉冲数为n,累计

脉冲数为N,则要测出小车的速度和行程还必须测量的物理量或数据是;车速度的表达式为v= ;行程的表达式为s=

【例5】若近似认为月球绕地公转与地球绕日公转的轨道在同一平面内,且均为正圆,又

知这两种转动同向,如图所示,月相变化的周期为29.5 天(图示是相继两次满月时,

月、地、日相对位置的示意图)。求:月球绕地球转一周所用的时间T = 天(因

月球总是一面朝向地球,故T恰是月球自转周期)。(提示:可借鉴恒星日、太阳日的解

释方法)。

【例6】如图所示,半径为R的圆板做匀速转动,当半径OB转到某一方向时,在圆板中心正上方高h处,以平行于OB 方向水平抛出一小球。要使小球与圆板只碰撞一次,且落点为B,求小球水平抛出时的速度v0及圆板转动的角速度ω

分别是多少?

课后练习:

1.在地球上,赤道附近的物体A 和北京附近的物体B ,随地球的自转而做匀速圆周运动.可以判断( )

A .物体A 与物体

B 的向心力都指向地心

B .物体A 的线速度的大小小于物体B 的线速度的大小

C .物体A 的角速度的大小大于物体B 的角速度的大小

D .物体A 的向心加速度的大小大于物体B 的向心加速度的大小

2.某型石英表中的分针与时针可视为做匀速转动,分针的长度是时针长度的1.5倍,则下列说法中正确的是( )

A .分针的角速度与时针的角速度相等

B .分针的角速度是时针的角速度的60倍

C .分针端点的线速度是时针端点的线速度的18倍

D .分针端点的向心加速度是时针端点的向心加速度的1.5倍

3.一种玩具的结构如图所示,竖直放置的光滑铁圆环的半径为R=20 cm ,环上有一个穿孔的

小球m ,仅能沿环做无摩擦滑动,如果圆环绕着通过环心的竖直轴O 1O 2以10 rad /s 的角速

度旋转,(g 取10m /s 2)则小球相对环静止时与环心O 的连线与O 1O 2的夹角θ可能是

( )

A .30°

B .45°

C .60°

D .75

4.图示为某一皮带传动装置。主动轮的半径为r 1,从动轮的半径为r 2。已知主动轮做顺时

针转动,转速为n ,转动过程中皮带不打滑。下列说法正确的是( )

A.从动轮做顺时针转动

B.从动轮做逆时针转动

C.从动轮的转速为n

D.从动轮的转速为n 21

r r 12r r 5. 如图所示,甲、乙、丙三个轮子依靠摩擦传动,相互之间不打滑,其半径分别为r 1、r 2、r

3.若甲轮的角速度为

,则丙轮的角速度为( )

A .

B .

C .

D .

6、如右图所示是磁带录音机的磁带盒的示意图,A 、B

为缠绕磁带的两个轮子,其半径均为

r ,在放音结束时,磁带全部绕到了B 轮上,磁带的外缘半径为R ,且R =3r .现在进行倒带,使磁带绕到A 轮

上.倒带时A 轮是主动轮,其角速度是恒定的.B 轮是从动轮.经测定,磁带全部绕

到A 轮上需要的时间为t ,则从开始倒带到A 、B 两轮的角速度相等所需要的时间是

( )

N

A .等于

B .大于t 2t 2

C .小于

D .此时间无法确定t 2

7.一水平放置的圆盘绕竖直固定轴转动,在圆盘上沿半径开有一条宽度为2mm 的均匀狭缝.将激光器与传感器上下对准,使二者间连线与转轴平行,分别置于圆盘的

123456姓 名上下两侧,且可以同步地沿圆盘半径方向匀速移动,激光器连续向下发射激光束.在圆盘转动过程中,当狭缝经过激光器与传感器之间时,传感器接收到一个激光信号,并将其输入计算机,经处理后画出相应图线.图(a)为该装置示意图,图(b)为所接收的光信号随时间变化的图线,横坐标表示时间,纵坐标表示接收到的激光信号强度,图中Δt 1 =1.0×10-3s ,Δt 2 =0.8×10-3s .

(1)利用图(b)中的数据求1s 时圆盘转动的角速度;

(2)说明激光器和传感器沿半径移动的方向;

(3)求图(b)中第三个激光信号的宽度Δt 3.

8.如图所示,一个水平放置的圆桶绕轴OO ′匀速转动,转动角速度ω=2.5 rad/s,桶壁上P 处有一圆孔,桶壁很薄,桶π的半径R=2 m.当圆孔运动到桶的上方时,在圆孔的正上方h=3.2 m 处有一个小球由静止开始下落,已知圆孔的半径略大

于小球的半径.试通过计算判断小球是否和圆桶碰撞.(不考虑空气阻力,g=10 m/s 2)

9.如图所示,在圆柱形房屋天花板中心O 点悬挂一根长为L 的细绳,绳的下端挂一个质量为m 的小球,已知绳能承受的最大拉力为2mg ,小球在水平面内做圆周运动,当速度逐渐增大到绳断裂后,小球恰好以速度v 2=

落到墙脚边.求(1)绳断裂瞬间的速度v 1;(2)圆柱形房屋的高度H 和半径.gL 7

圆周运动与平抛运动相结合的专题练习题(无答案)

1、质量为m的滑块从半径为R的半球形碗的边缘滑向碗底,过碗底时速度为v,若滑块与碗间的动摩擦因数为口,则在过碗底时滑块受到摩擦力的大小为( ) v2v2V2 A.(! mg B.(i m— C .口m(g+ ) D .口m(——g) R R R 2、质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的 临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力大小是() A. 0 B . mg C . 3mg D . 5mg 3、质量为m的小球在竖直平面内的圆形轨道内侧运动,经过最高点时恰好不脱离轨道的临界速度为v o,则: (1)当小球以2v o的速度经过轨道最高点时,对轨道的压力为多少? (2)当小球以后吩的速度经过轨道最低点时.轨道对小球的弾力为事少? 4、如图所示,长度为L=1.0m的绳,系一小球在竖直面内做圆周运 动, 小球半径不计,小球在通过最低点的速度大小为v=20m/s,试求: (1)小球在最低点所受绳的拉力(2)小球在最低的向心加速度 小球的质量为M=5kg 1 5、如图所示,位于竖直平面上的丄圆弧轨道光滑,半径为R, OB沿竖直 4 方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,到达 B点时的速度为,2gR,最后落在地面上C点处,不计空气阻力,求: (1) 小球刚运动到B点时的加速度为多大,对轨道的压力多大; (2) 小球落地点C与B点水平距离为多少。 6、质量为m的小球被一根细线系于O点,线长为L,悬点O距地面的高度为2L, 当小球被拉到与O点在同一水平面上的A点时由静止释放,球做圆周运动至最低 点B时,线恰好断裂,球落在地面上的C点,C点距悬点0的水平距离为S (不计 空气阻力).求: (1)小球从A点运动到B点时的速度大小; (2)悬线能承受的最大拉力; 7、如图,AB为竖直半圆轨道的竖直直径,轨道半径R=10m ,轨道A端与水平面 相切.光滑木块从水平面上以一定初速度滑上轨道,若木块经B点时,对轨道的 压力恰好为零,g取10m/s 2,求: (1)小球经B点时的速度大小;(2)小球落地点到A点的距离. 时,对管壁上部的压力为3mg , b通过最高点A时,对管壁下部的压力为 0.75mg ,求: (1) a球在最高点速度. (2) b球在最高点速度. (3) a、b两球落地点间的距离

圆周运动知识点及题型--简单--已整理

描述圆周运动的物理量及相互关系 匀速圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。 2、分类: ⑴匀速圆周运动:质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度相等,就叫做匀速圆周运动。 物体在大小恒定而方向总跟速度的方向垂直的外力作用下所做的曲线运动。 ⑵变速圆周运动: 如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直. 3、描述匀速圆周运动的物理量 (1)轨道半径(r ):对于一般曲线运动,可以理解为曲率半径。 (2)线速度(v ): ①定义:质点沿圆周运动,质点通过的弧长S 和所用时间t 的比值,叫做匀速圆周运动的线速度。 ②定义式:t s v = ③线速度是矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上,实际上,线速度是速度在曲线运动中的另一称谓,对于匀速圆周运动,线速度的大小等于平均速率。 (3)角速度(ω,又称为圆频率): ①定义:质点沿圆周运动,质点和圆心的连线转过的角度跟所用时间的比值叫做匀速圆周运动的角速度。N ②大小:T t π? ω2= = (φ是t 时间半径转过的圆心角) ③单位:弧度每秒(rad/s ) ④物理意义:描述质点绕圆心转动的快慢 (4)周期(T ):做匀速圆周运动的物体运动一周所用的时间叫做周期。 (5)频率(f ,或转速n ):物体在单位时间完成的圆周运动的次数。 各物理量之间的关系: r t r v f T t rf T r t s v ωθππθωππ== ??? ??? ??====== 2222 注意:计算时,均采用国际单位制,角度的单位采用弧度制。

圆周运动与平抛运动相结合的专题练习题(无答案)

1、质量为m 的滑块从半径为R 的半球形碗的边缘滑向碗底,过碗底时速度为v ,若滑块与碗间的动摩擦因数为μ,则在过碗底时滑块受到摩擦力的大小为( ) A .μmg B .μm R v 2 C .μm(g +R v 2) D .μm(R v 2 -g) 2、质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力大小是( ) A .0 B .mg C .3mg D .5mg 3、质量为m 的小球在竖直平面内的圆形轨道内侧运动,经过最高点时恰好不脱离轨道的临界速度为v 0,则: (1)当小球以2v 0的速度经过轨道最高点时,对轨道的压力为多少 4、如图所示,长度为L=的绳,系一小球在竖直面内做圆周运动,小球的质量为M=5kg ,小球半径不计,小球在通过最低点的速度大小为v =20m/s,试求: (1)小球在最低点所受绳的拉力 (2)小球在最低的向心加速度 5、如图所示,位于竖直平面上的4 1圆弧轨道光滑,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m 的小球从A 点由静止释放,到 达B 点时的速度为gR 2,最后落在地面上C 点处,不计空气阻力,求: (1)小球刚运动到B 点时的加速度为多大,对轨道的压力多大; (2)小球落地点C 与B 点水平距离为多少。 6、质量为m 的小球被一根细线系于O 点,线长为L ,悬点O 距地 面的高度为2L ,当小球被拉到与O 点在同一水平面上的A 点时由 静止释放,球做圆周运动至最低点B 时,线恰好断裂,球落在地 面上的C 点,C 点距悬点O 的水平距离为S (不计空气阻力).求:

2.1 怎样描述圆周运动

2.1 怎样描述圆周运动 【教学设计】 学生在第1章已经初步掌握了处理抛体运动的一般方法——运动的分解与合成,但抛体运动的分解实质上就是用学生熟悉的直线运动来处理较复杂的曲线运动,所以比较容易接受。而本节学习的一些物理量都是第一次接触,而且又与直线运动有很大的区别,学生会感到较抽象,理解不深,以至于会给以后进一步学习带来困难。为克服这些困难,应采取以下措施: 1.多做试验以激发学生的积极性,同时把诸如角速度等一些较陌生、抽象的物理量变得具体,较易被学生接受。 2.联系生活,多用一些熟悉、感兴趣的例子来说明问题,如用手表指针针尖的运动快慢来说明为什么周期越大运动就越慢。 3.不增加难度,课堂45分钟应面向全体学生,既要考虑到基础较好的学生,更要兼顾基础较差的学生,注重分层教学的目标。 在教学中注意理论联系实际,提高学生学习物理的兴趣,并留给学生一定的思考空间。【教学目标】 1.通过生活实例,认识圆周运动的特点,知道什么是圆周运动。 2.知道描述圆周运动的两种方法:○1用在直线运动中已熟悉的方法,相关的物理量是弧长和线速度;○2用角度描述,相关物理量有角速度、周期和转速。会用它们的定义式进行计算,解决实际生活中圆周运动的问题。 3.理解线速度、角速度、周期、转速之间的关系,并能利用它们解决问题。 4.知道匀速圆周运动是变速运动。 5.知道圆周运动现象的广泛性、普遍性,能用圆周运动规律分析生活、生产中相关的现象。 【教学重难点】 教学重点:描述圆周运动的方法。线速度、角速度和周期的概念及相互之间的关系。匀速圆周运动的概念。 教学难点:匀速圆周运动线速度的方向。匀速圆周运动是变速运动。 【教学过程】 ◆新课导入 抛体运动的特点是什么?处理抛体运动的基本方法是什么? 通过回顾,引导学生了解抛体运动加速度等于重力加速度g,大小和方向均衡定,抛体运动速度与加速度不在同一直线上,所以是匀变速曲线运动。研究抛体运动的基本方法是运动的合成与分解。 同学们玩过游乐场里的过山车吗?你看他风驰电掣般的冲上一个圆环形的轨道,到达圆周顶部时,整个车子倒了过来,车上的人头朝下,脚朝上,真是惊心动魄。这种运动有什么特点呢? ◆新课展示 2.1 怎样描述圆周运动 请你举出生活中见到过的圆周运动的实例,这些运动有什么特点? 通过实例,总结出做圆周运动的物体绕着一个中心转动,物体到转动中心的距离始终不变,等于圆周半径。 我们怎样描述圆周运动呢?

曲线运动、平抛运动、圆周运动练习题

《曲线运动》练习题 一选择题 1. 关于运动的合成的说法中,正确的是() A.合运动的位移等于分运动位移的矢量和 B.合运动的时间等于分运动的时间之和 C.合运动的速度一定大于其中一个分运动的速度 D.合运动的速度方向与合运动的位移方向相同 2. 物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物体的运动情况可能是() A.静止 B.匀加速直线运动 C.匀速直线运动 D.匀速圆周运动 3.某质点做曲线运动时() A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间,位移的大小总是大于路程 C.在某段时间里质点受到的合外力可能为零 D.速度的方向与合外力的方向必不在同一直线上 5.一个质点在恒力F作用下,在xOy平面从O点运动到A点的轨迹如图所示,且在A点的速度方向与x轴平行,则恒力F的方向不可能() A.沿x轴正方向 B.沿x轴负方向 C.沿y轴正方向 D.沿y轴负方向 6在光滑水平面上有一质量为2kg的物体,受几个共点力作用做匀速直线运动。现突然将与速度反方向的2N力水平旋转90o,则关于物体运动情况的叙述正确的是() A. 物体做速度大小不变的曲线运动 B. 物体做加速度为在2m/s2的匀变速曲线运动 C. 物体做速度越来越大的曲线运动 D. 物体做非匀变速曲线运动,其速度越来越大 7. 做曲线运动的物体,在运动过程中一定变化的物理量是() A.速度 B.加速度 C.速率 D.合外力 9 关于曲线运动,下面说确的是() A. 物体运动状态改变着,它一定做曲线运动 B. 物体做曲线运动,它的运动状态一定在改变 C. 物体做曲线运动时,它的加速度的方向始终和速度的方向一致 D. 物体做曲线运动时,它的加速度的方向始终和所受到的合外力方向一致 10 物体受到几个力的作用而处于平衡状态,若再对物体施加一个恒力,则物体可能做() A. 静止或匀速直线运动 B. 匀变速直线运动 C. 曲线运动 D. 匀变速曲线运动 14.关于物体的运动,下列说法中正确的是() A. 物体做曲线运动时,它所受的合力一定不为零 B. 做曲线运动的物体,有可能处于平衡状态 C. 做曲线运动的物体,速度方向一定时刻改变 D. 做曲线运动的物体,所受的合外力的方向有可能与速度方向在一条直线上 17.加速度不变的运动( ) A.可能是直线运动B.可能是曲线运动C.可能是匀速圆周运动D.一定是匀变速运动 18.如图所示,蜡块可以在竖直玻璃管的水中匀速上升,若在蜡块从A点开始匀速上升的同时,玻璃管从AB位置水 A.直线P B.曲线Q C.曲线R D.三条轨迹都有可能

圆周运动,描述圆周运动的物理量

圆周运动、描述圆周运动的物理量 一、教学目标: 1、理解如何描述圆周运动 2、理解描述圆周运动各物理量之间的关系 3、理解向心加速度 二、教学重难点: 1、重点:描述圆周运动的物理量之间的关系、圆周运动的向心加速度 2、难点:向心加速度 三、教学内容: 圆周运动 1、物体沿圆周的运动叫圆周运动。 2、物体沿圆周运动,并且线速度大小处处相等,这种运动叫做圆周运动。 3、匀速圆周运动的线速度方向时刻发生变化,故匀速圆周运动是一种变速运动,这里的匀速指的是速率。 描述圆周运动的物理量 1、线速度:是描述质点绕圆周 运动快慢 的物理量,某点线速度的方向即为该点 切线 方向,其大小的定义式为 t l v ??=。 2、角速度:是描述质点绕圆心 运动快慢 的物理量,其定义式为ω= t ??θ,国际单位为 rad /s 。 3、周期和频率:周期和频率都是描述圆周 运动快慢 的物理量,用周期和频率计算线速度的公式为 π2π2 rf T r v ==,用周期和频率计算角速度的公式为 π2π2 f T ==ω。 向心加速度 1、定义:做匀速圆周运动的物体,加速度指向圆心,这个加速度称为向心加速度。 2、公式: 2 r v a =或 a =rω2 3、方向:总是沿着圆周运动的半径指向圆心,即方向始终与运动方向垂直,方向时刻发生改变,所以圆周运动一定是变加速运动 4、意义:描述圆周运动线速度方向改变的快慢。 典例精析 1、对匀速圆周运动的理解 【例1】关于匀速圆周运动,下列说法正确的是( ) A .匀速圆周运动是匀速运动 B .匀速圆周运动是匀变速运动 C .匀速圆周运动是加速度不变的运动 D .匀速圆周运动是线速度大小不变的运动 【答案】D 【练习1】质点做匀速圆周运动,则( ) A .在任何相等的时间里,质点的位移都相等 B .在任何相等的时间里,质点通过的路程相等 C .在任何相等的时间里,质点运动的平均速度都相等 D .在任何相等的时间里,连接质点和圆心的半径转过的角度相等 【答案】BD

描述匀速圆周运动的物理量

4描述匀速圆周运动的物理量 必记知识点 一、匀速圆周运动 (1)定义:质点沿圆周运动,若在相等的时间内通过的弧长相等,这种运动就叫匀速圆周运动. (2)运动学特征:角速度、周期和频率都是不变的;而线速度、向心加速度都是大小不变,方向时刻在变.所以,匀速圆周运动是变速运动、,是变加速运动,是变力作用下的曲线运动.所以匀速圆周中的“匀速”是指匀速率的意思,而不是指速度不变. 二、描述匀速圆周运动快慢的物理量 (1)线速度:描述质点沿圆周运动的快慢,是矢量. ①大小:t s v =,s 是质点在时间t 内走过的弧长.单位:m /s . ②方向:沿圆弧上该点的切线方向. (2)角速度:描述质点绕圆心转动的快慢.定义式:t ?ω=,(?是质点和圆心的连线在时间 t 内转过的角度.单位:rad /s .) (3)周期T :做匀速圆周运动的质点运动一周所用的时间.单位:s . (4)频率f :做匀速圆周运动的质点在单位时间内沿圆周走过的圈数,也叫转速.叫频率时单位是Hz ,叫转速时(用n 表示)单位是r /s .(转/秒) 三、v 、ω、T 、f 之间的内在关系: fR R T R t s v πωπ22==== f R v T t ππ?ω22==== f v R T 122===ωππ(注意:ω、T 、f 三 个量中任意一个确定,另外两个量也就确定了.) 四、v 、ω、T 、f 之间的外在关系: ①任何两个(或两个以上)的物体,如果绕同一根轴转动(或者绕同一圆心做圆周运动),那么它们的角速度ω、周期T 、频率f 必相等. ②任何两个通过皮带相连接的转轮(或两个相吻合的齿轮).当轮子转动时,皮带上的任意点与两轮边缘上的任何点的线速度v 大小必相等. 五、向心加速度:描述线速度方向改变的快慢,是矢量. ①大小:ωω.22 v R R v a ===. ②方向:总是指向圆心,时刻在变化. 典型题 一、慨念应用题型 1、如图所示,为皮带传动装置,右轮半径为r ,a 为它边缘上的一点,左侧是大轮轴,大轮半径为4r ,小轮半径为2r ,b 为小轮上一点,b 到小轮中心距离为r ,c .d 分别位于小轮和大轮的边缘上,若在传动中不打滑,则 ( ) A .a 点与b 点线速度大小相等 B .a 点与b 点角速度大小相等 C .a 点与c 点线速度大小相等 D .a 点与d 点向心加速度大小相等

平抛与圆周运动综合

平抛与圆周运动综合 【方法归纳】所谓平抛与圆周运动综合是指物体先做圆周运动后做平抛运动或先做平抛运动后做竖直面内的圆周运动。解答此类题的策略是:根据物体的运动过程,分别利用平抛运动的规律和圆周运动的规律列方程解得。 例34.(2010重庆理综)晓明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动,当 球某次运动到最低点时,绳突然断掉。球飞离水平距离d 后 落地,如图9所示,已知握绳的手离地面高度为d ,手与球 之间的绳长为3d/4,重力加速度为g ,忽略手的运动半径和 空气阻力。 (1) 求绳断时球的速度大小v 1,和球落地时的速度大小 v 2。 (2) 问绳能承受的最大拉力多大? (3) 改变绳长,使球重复上述运动。若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少? 【解析】(1)设绳断后球飞行时间为t ,由平抛运动规律,有 竖直方向 41d=2 1gt 2 水平方向d=v 1t , 联立解得v 1=gd 2。 由机械能守恒定律,有 21mv 22=2 1mv 12+mg (d -3d /4) 解得v 2=gd 25。 (2) 设绳能承受的拉力大小为T ,这也是球受到绳的最大拉力。 球做圆周运动的半径为R =3d/4 对小球运动到最低点,由牛顿第二定律和向心力公式有T-mg=m v 12/R , 联立解得T=3 11mg 。 (3) 设绳长为L ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有 T-mg=m v 32/L

解得v 3=L g 3 8。 绳断后球做平抛运动,竖直位移为d-L ,水平位移为x ,飞行时间为t 1,根据 平抛运动规律有d-L =2 1gt 12,x = v 3 t 1 联立解得x =4()3 L d L -. 当L=d /2时,x 有极大值,最大水平距离为x max = 332d . 【点评】此题将竖直面内的圆周运动和平抛运动有机结合,涉及的知识点由平抛运动规律、牛顿运动定律、机械能守恒定律、极值问题等,考查综合运用知识能力。 衍生题1.如图所示,一质量为M =5.0kg 的平板车静止在光滑水平地面上,平板车的上表面距离地面高h =0.8m ,其右侧足够远处有一固定障碍物A 。另一质量为m =2.0kg 可视为质点的滑块,以v 0=8m/s 的水平初速度从左端滑上平板车,同时对平板车施加一水平向右、大小为5N 的恒力F 。当滑块运动到平板车的最右端时,两者恰好相对静止。此时车去恒力F 。当平板车碰到障碍物A 时立即停止运动,滑块水平飞离平板车后,恰能无碰撞地沿圆弧切线从B 点切入光滑竖直圆弧轨道,并沿轨道下滑。已知滑块与平板车间的动摩擦因数μ=0.5,圆弧半径为R =1.0m ,圆弧所对的圆心角∠BOD =θ=106°,取g =10m/s 2,sin53°=0.8,cos53°=0.6,求: (1)平板车的长度。 (2)障碍物A 与圆弧左端B 的水平距离。 (3)滑块运动圆弧轨道最低点C 时对轨道压力的大小。

(完整版)高一物理圆周运动经典例题

4.“水流星”问题 绳系装满水的杯子在竖直平面内做圆周运动,即使到了最高点杯子中的水也不会流出,这是因为水的重力提供水做圆周运动的向心力。 (1)杯子在最高点的最小速度v min =(gL)1/2 (2)当杯子在最高点速度为v 1>v min 时,杯子内的水对杯底有压力,若计算中求得杯子在最高点速度v 2v min 时,水对杯底的压力为多大? 5.斜面、悬绳弹力的水平分力提供加速度a =gtan α的问题 a .斜面体和光滑小球一起向右加速的共同加速度a =gtan α 因为F 2=F N cos α=mg F 1=F N sin α=ma 所以a =gtan α b .火车、汽车拐弯处把路面筑成外高内低的斜坡,向心加速度和α的关系仍为a =gtan α,再用tan α=h/L,a =v 2/R 解决问题. c .加速小车中悬挂的小球、圆锥摆的向心加速度、光滑锥内不同位置的小球,都有a =gtan α的关系. 6.典型的非匀速圆周运动是竖直面内的圆周运动 这类问题的特点是:由于机械能守恒,物体做圆周运动的速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。 1.如图所示,没有物体支撑的小球,在竖直面内作圆周运动通过最高点,弹力只可能向下, 如绳拉球。这种情况下有mg R mv mg F ≥=+2 即gR v ≥,否则不能通过最高点。 ①临界条件是绳子或轨道对小球没有力的作用,在最高点v =Rg .②小球能通过最高点的条件是在最高点v >Rg .③小球不能通过最高点的条件是在最高点v

描述圆周运动的物理量专题练习带答案

描述圆周运动的物理量 知识梳理: 一、描述圆周运动的物理量 1、线速度和角速度: 2、周期和频率(转速): 3、相关模型: 共轴传动:皮带传动: 齿轮传动:n 1、n 2分别表示齿轮的齿数 v A =v B ,T A T B =r 1r 2=n 1n 2,ωA ωB =r 2r 1=n 2n 1 . 基本概念( 圆周运动是运动。填匀速或变速 ) 1.下列四组物理量中,都是矢量的一组是( ) A .线速度、转速 B .角速度、角度 C .时间、路程 D .线速度、位移 2.多选 当物体做匀速圆周运动时,下列说法中正确的是( ) A .物体处于平衡状态 B .物体由于做匀速圆周运动而没有惯性 C .物体的速度由于发生变化而会有加速度 D .物体由于速度发生变化而受合力作用 3.多选 做匀速圆周运动的物体,下列各物理量中不变的是( ) A .线速度 B .角速度 C .周期 D .转速 4.下列关于甲乙两个做匀速圆周运动的物体的有关说法中正确的是( ) A .若甲乙两物体的线速度大小相等,则角速度一定相等 B .若甲乙两物体的角速度大小相等,则线速度一定相等 C .若甲乙两物体的周期相等,则角速度一定相等 D .若甲乙两物体的周期相等,则线速度一定相等 相关模型的应用 1.如图所示,皮带转动装置转动时,皮带上A 、B 点及轮上C 点的运动情况是( ) A .v A =v B ,v B >v C B .ωA =ωB ,v B >v C C .v B =v C ,ωA =ωB D .ωA >ωB ,v B =v C 2.如图所示,O 1为皮带传动装置的主动轮的轴心,轮的半径为r 1;O 2为从动轮的轴心,轮的半径为r 2;r 3为与从动轮固定在一起的大轮的半径.已知r 2=1.5r 1,r 3=2r 1.A 、B 、C 分别是三个轮边缘上的点,那么质点A 、B 、C 的线速度之比是 ,角速度之比是 ,周期之比是 . 3.两个小球1、2固定在一根长为l 的杆的两端,绕杆上的O 点做圆周运动,如图所示,当小球1的速度为υ1时,小球2的速度为υ2,则转轴O 到小球1的距离是( ). A .112l υυυ+ B .212l υυυ+ C .121()l υυυ+ D .122 ()l υυυ+ 4.多选 如图所示,有一个环绕中心线OO' ,以角速度ω转动的球,则有关球面上的A ,B 两点的线速度和角速度的说法正确的是( ) A .A , B 两点的角速度相等 B .A ,B 两点的线速度相等 C .若θ=30°,则v A :v B =:2 D .以上答案都不对 5.如图所示,一个环绕中心线AB 以一定的角速度转动,P 、Q 为环上两点,位置如图,下列说法正确的是( ) A .P 、Q 两点的角速度相同 B .P 、Q 两点的线速度相同 C .P 、Q 两点的角速度之比为3:1 D .P 、Q 两点的线速度之比为3:1 6.多选如图所示,当正方形薄板绕着过其中心O 并与板垂直的转动轴转动时,板上A 、B 两点 的 ( ) A .角速度之比ωA ∶ω B =1∶ B .角速度之比ωA ∶ωB =1∶1 C .线速度之比v A ∶v B =1∶ D .线速度之比v A ∶v B =∶1 7.如图所示是一个玩具陀螺.a 、b 和c 是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是( ) A .a 、b 和c 三点的角速度相等 B .a 、b 和c 三点的线速度大小相等

描述圆周运动的各物理量与半径的关系(1).docx

描述圆周运动的各物理量的计算公式 一、描述圆周运动的各物理量 线速度: v= s v 2 r v r t T 角速度: φ ω = 2 v ω= t T r 周期: T=2 π/ ω 向心加速度: a=v ω=v 2/r= ω2r=(2 π/T) 2r 向心力: 物理所受的指向圆心的合外力提供向心力 二、绕中心天体运动的行星或人造卫星的线速度、角速度、周期与半径的关系 1、由 G Mm m v 2 得 : 线速度 v= GM . r 2 r r 2、由 G Mm = mω 2 r 得: 角速度 ω = GM 3 r 2 r 3、由 G Mm 3 =4 π 2 mr T=2 π r 3 T 2 得: 周期 r GM 4、由 G Mm =ma 得: 向心加速度 G M a r 2 r 2 5、由万有引力提供向心力 得: 向心力 F= G Mm r 2 讨论:( 1)绕同一中心天体运转, M 相同,此时线速度、角速度、周期、向心加速度只与轨 道半径有关。轨道半径越大,线速度、角速度、向心加速度越小,而周期越长。 ( 2)绕同一中心天体运转, M 相同,在同一轨道上的不同行星或人造卫星,其轨道半径相同,所以线速度、角速度、向心加速度、周期都相同。但不同行星或人造卫星所受的向心 力不同。原因:向心力还与行星或人造卫星本身的质量 m 有关。 Mm mr 2 可推出轨道半径的立方除以周期的平方是一个只与中心天 ( 3)由 G 2 =4 π 2 T r 体质量有关的常量。 1

高考专题训练 平抛运动与圆周运动

高考专题训练平抛运动与圆周运动 时间:40分钟分值:100分 1. (2013·陕西模拟)小船横渡一条河,小船本身提供的速度大小、方向都不变(小船速度方向垂直于河岸).已知小船的运动轨迹如图所示,则( ) A.越接近B岸,河水的流速越小 B.越接近B岸,河水的流速越大 C.由A岸到B岸河水的流速先增大后减小 D.河水的流速恒定 解析小船在垂直于河岸方向做匀速直线运动,速度大小和方向均不变,根据曲线的弯曲方向与水流方向之间的关系可知,由A岸到B岸河水的流速先增大后减小,C正确.答案 C 2. (2013·安徽省江南十校联考)如图所示,从水平地面上的A点,以速度v1在竖直平面内抛出一小球,v1与地面成θ角.小球恰好以v2的速度水平打在墙上的B点,不计空气阻力,则下面说法中正确的是( ) A.在A点,仅改变θ角的大小,小球仍可能水平打在墙上的B点 B.在A点,以大小等于v2的速度朝墙抛出小球,它也可能水平打在墙上的B点

C.在B点以大小为v1的速度水平向左抛出小球,则它可能落在地面上的A点 D.在B点水平向左抛出小球,让它落回地面上的A点,则抛出的速度大小一定等于v2解析根据平抛运动规律,在B点水平向左抛出小球,让它落回地面上的A点,则抛出的速度大小一定等于v2,选项D正确. 答案 D 3. (2013·上海市七校调研联考)如图所示,水平固定的半球形容器,其球心为O点,最低点为B点,A点在左边的内壁上,C点在右边的内壁上,从容器的边缘向着球心以初速度v0平抛一个小球,抛出点及O、A、B、C点在同一个竖直面内,则( ) A.v0大小适当时可以垂直打在A点 B.v0大小适当时可以垂直打在B点 C.v0大小适当时可以垂直打在C点 D.一定不能垂直打在容器内任何一个位置 解析若垂直打在内壁上某点,圆心O一定为水平分位移的中点,这显然是不可能的,只有D正确. 答案 D 4.

2021年高中物理 .1《描述圆周运动》教案 教科版必修

2021年高中物理 2.1《描述圆周运动》教案教科版必修2教学目标: 一、知识目标: 1.知道什么是匀速圆周运动 2.理解什么是线速度、角速度和周期 3.理解线速度、角速度和周期之间的关系 二、能力目标: 能够匀速圆周运动的有关公式分析和解决有关问题。 三、德育目标: 通过描述匀速圆周运动快慢的教学,使学生了解对于同一个问题可以从不同的侧面进行研究。 教学重点: 1.理解线速度、角速度和周期 2.什么是匀速圆周运动 3.线速度、角速度及周期之间的关系 教学难点: 对匀速圆周运动是变速运动的理解 教学方法: 讲授、推理归纳法 教学步骤: 一、导入新课 (1)物体的运动轨迹是圆周,这样的运动是很常见的,同学们能举几个例子吗?(例:转动的电风扇上各点的运动,地球和各个行星绕太阳的运动等) (2)今天我们就来学习最简单的圆周运动——匀速圆周运动 二、新课教学 (一)出示本节课的学习目标 1.理解线速度、角速度的概念

2.理解线速度、角速度和周期之间的关系 3.理解匀速圆周运动是变速运动 (二)学习目标完成过程 1.匀速圆周运动 (1)显示一个质点做圆周运动,在相等的时间里通过相等的弧长。 (2)并出示定义:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相同——这种运动就叫匀速圆周运动。 (3)举例:让学生感知:一个电风扇转动时,其上各点所做的运动,地球和各个行星绕太阳的运动,都认为是匀速圆周运动。 (4)两个物体都做圆周运动,但快慢不同,过渡引入下一问题。 2.描述匀速圆周运动快慢的物理量 (1)线速度 a:分析:物体在做匀速圆周运动时,运动的时间t增大几倍,通过的弧长也增大几倍,所以对于某一匀速圆周运动而言,s与t的比值越大,物体运动得越快。 b:线速度 1)线速度是物体做匀速圆周运动的瞬时速度。 2)线速度是矢量,它既有大小,也有方向。 3)线速度的大小 4)线速度的方向在圆周各点的切线方向上 5)讨论:匀速圆周运动的线速度是不变的吗? 6)得到:匀速圆周运动是一种非匀速运动,因为线速度的方向在时刻改变。 (2)角速度 a:学生阅读课文有关内容 b:出示阅读思考题 1)角速度是表示的物理量 2)角速度等于和的比值 3)角速度的单位是 c:说明:对某一确定的匀速圆周运动而言,角速度是恒定的 d:强调角速度单位的写法rad/s (3)周期、频率和转速

高考物理专题 平抛运动 圆周运动及参考答案

高考专题四:平抛运动 圆周运动 一、选择题。本题共16小题。(每小题6分,共96分。第1—8题在每小题给出的四个选项中,只有一项符合题目要求,第9—16题有的有多项符合题目要求。) 1.如图所示,帆板在海面上以速度v 朝正西方向运动,帆船以速度v 朝正北方向航行,以帆板为参照物( ) A.帆船朝正东方向航行,速度大小为v B.帆船朝正西方向航行,速度大小为v C.帆船朝南偏东45°方向航行,速度大小为2v D.帆船朝北偏东45°方向航行,速度大小为2v 2.取水平地面为重力势能零点。一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等。不计空气阻力,该物块落地时的速度方向与水平方向的夹角为( ) A. 6π B. 4π C. 3 π D. 125π 3.如图,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下。重力加速度大小为g ,当小环滑到大 环的最低点时,大环对轻杆拉力的大小为( ) A.Mg-5mg B.Mg+mg C. Mg+5mg D. Mg+10mg 4.如图,一半径为R ,粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平。一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道。质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小。用W 表示质点从P 点运动到N 点的过程中客服摩擦力所做的功。则( ) A. mgR W 21 = ,质点恰好可以到达Q 点 B. mgR W 21 >,质点不能到达Q 点 C. mgR W 21 =,质点到达Q 后,继续上升一段距离 D. mgR W 2 1 <,质点到达Q 后,继续上升一段距离 5.小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图所示,将两球由静止释放,

高中物理第2章研究圆周运动2.1怎样描述圆周运动教师用书沪科版必修2

2.1 怎样描述圆周运动 学 习 目 标 知 识 脉 络 1.知道什么是匀速圆周运动. 2.理解描述圆周运动的线速度、角速度、周期、转速的概念及单位.(重点) 3.掌握线速度与角速度的关系式.(重点) 4.会比较几个质点做匀速圆周运动的线速度关系,角速度关系.(难点) 线 速 度 与 匀 速 圆 周 运 动 [先填空] 1.线速度 的比值. 时间跟通过这段圆弧所用弧长定义:物体经过的圆弧的(1) . (m/s)米每秒;国际单位:s t =v 公式:(2) . 切线方向方向:沿(3) . 做圆周运动的快慢物理意义:表示物体(4) 2.匀速圆周运动 ,这种运动就叫做匀速 相等的时间里通过的圆弧长度相等物体做圆周运动时,如果在圆周运动. 注意:匀速圆周运动中的“匀速”指的是“匀速率”. [ 再判断] 1.线速度的方向总是指向圆心.(×) 2.匀速圆周运动是线速度不变的运动.(×) 3.做匀速圆周运动的质点在任意相等的时间内,通过相等的位移.(×) [ 后思考] 1.如图2-1-1所示,运动员在圆形场地上“匀速”骑行,思考以下问题:

图2-1-1 (1)运动员速度的大小是否改变? (2)运动员速度的方向是否改变? 【提示】 (1)运动员速度的大小不变. (2)运动员速度的方向不断改变. 2.做匀速圆周运动的物体,相等时间间隔内转过的路程有什么关系?位移有什么关 系? 可知,相等时间内转过的路程相等,位移大小相等,但方向不相 s t =v 由 【提示】同. [ 合作探讨] 如图2-1-2所示,电风扇关闭之后,风扇的叶片就越转越慢,逐渐停下来,请思考: 图2-1-2 探讨1:风扇叶片上某点在一段时间内运动的弧长与转过的角度有什么关系? 【提示】 弧长等于半径与转过角度(用弧度作单位)的乘积. 探讨2:风扇叶片上各点线速度是否相同? 【提示】 不相同. [核心点击] 1.线速度 描述做圆周运动的物体运动快慢的物理量,大小等于做圆周运动的物体通过的弧长s m/s. ,单位s t =v 的比值,即t 与所用时间 线速度为矢量,其方向为沿圆周的切线方向,如图2-1-3所示,故在圆周运动中,线 速度一定是变化的.

(完整版)描述圆周运动的物理量匀速圆周运动

描述圆周运动的物理量匀速圆周运动 学习目标 (1)理解并记住描述圆周运动的物理量。 (2)学会解匀速圆周运动的运动学问题。 知识整合 1.描述圆周运动的物理量 (1)线速度:是描述质点绕圆周的物理量,某点线速度的方向即为该点方向,其大小的定义式为 . (2)角速度:是描述质点绕圆心的物理量,其定义式为ω=,国际单位为. (3)周期和频率:周期和频率都是描述圆周的物理量,用周期和频率计算线速度的公式为,用周期和频率计算角速度的公式为 . 2.描述匀速圆周运动的物理量之间的关系 共轴转动的物体上各点的_________相同,不打滑的皮带传动的两轮边缘上各点_____大小相等. 即:(1)同轴转动的轮子或同一轮子上的各点的_____速度大小相等. (2)皮带传动的两轮,皮带不打滑时,皮带接触处的_____速度大小相等. (3)齿轮的齿数与半径成正比即周长=齿数×齿间距 3.线速度、角速度大小的比较 在分析传动装置的各物理量时.要抓住不等量和相等量的关系.同轴的各点角速度ω和n相等,而线速度v=ωr 与半径r成正比.在不考虑皮带打滑的情况下.传动皮带与皮带连接的两轮边缘的各点线速度大小相等,而角速度ω =v/r与半径r成反比. 【例1】如图所示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两轮用皮带传动,三轮半径关系是rA=rC=2rB.若皮带不打滑,求A、B、C轮边缘的a、b、c三点的角速度之比、线速度之比和向心加速度之比. 【例2】如图所示,直径为d的纸质圆筒,以角速度ω绕轴O高速运动,有一颗子弹沿直径穿 过圆筒,若子弹穿过圆筒时间小于半个周期,在筒上先、后留下a、b两个弹孔,已知ao、bo 间夹角为φ弧度,则子弹速度为 4.圆周运动与其它运动的结合 圆周运动和其他运动相结合,要注意寻找这两种运动的结合点:如位移关系、速度关系、时间关系等.还要注意圆周运动的特点:如具有一定的周期性等.

动能定理和圆周运动平抛运动相结合

动能定理和圆周运动相结合临界 例题1如图所示,小球用不可伸长的长为L的轻绳悬于O点,小球在最低点的速度必需为多大时,才能在竖直平面内做完整个圆周运动(2)若所给的速度逐渐增大时,绳子在最高点时拉力变化(3)最低点和最高点的拉力变化多少 拓展:若绳子改为杆 变式训练1-1如图所示,小球自斜面顶端A由静止滑下,在斜面底端B进入半径为R的圆形轨道,小球刚好能通过圆形轨道的最高点C,已知A、B两点间高度差为3R,试求整个过程中摩擦力对小球所做的功。 例题2如图,光滑的水平面AB与光滑的半圆形轨道相接触,直径BC竖直,圆轨道半径为R一个质量为m的物体放在A 处,AB=2R,物体在水平恒力F的作用下由静止开始运动,当物体运动到B点时撤去水平外力之后,物体恰好从圆轨道的顶点C水平抛出,求水平力 变式训练2-1如果在上题中,物体不是恰好过C点,而是在C点平抛,落地点D点距B点的水平位移为4R,求水平力。 变式训练2-2如图上题,滑块在恒定外力作用下从水平轨道上的A点由静止出发到B点时撤去外力,又沿竖直面内的光滑半圆形轨道运动,且恰好通过轨道最高点C,滑块脱离半圆形轨道后又刚好落到原出发点A,试求滑块在AB段运动过程中的加速度。

A H R O B D E 例题3如图所示,竖直平面内的3/4圆弧形光滑轨道半径为R,A端与圆心O等高,AD为水平面,B点在O的正上方,一个小球在A点正上方由静止释放,自由下落至A点进入圆轨道并恰能到达B点。求: ⑴释放点距A点的竖直高度; ⑵落点C与A点的水平距离。 例题4如图上题图所示,四分之三周长圆管的半径R=,管口B和圆心O在同一水平面上,D是圆管的最高点,其中半圆周BE段存在摩擦,BC和CE段动摩擦因数相同,ED段光滑;直径稍小于圆管内径、质量m=的小球从距B 正上方高H=处的A处自由下落,到达圆管最低点C时的速率为6m/s,并继续运动直到圆管的最高点D飞出,恰能再次进入圆管,假定小球再次进入圆管时不计碰撞能量损失,取重力加速度g=10m/s2,求 (1)小球飞离D点时的速度 (2)小球从B点到D点过程中克服摩擦所做的功 (3)小球再次进入圆管后,能否越过C点请分析说明理由 变式训练4-1如图所示,质量为m的小球用不可伸长的细线悬于O点,细线长为L,在O点正下方P处有一钉子,将小球拉至与悬点等高的位置无初速释放,小球刚好绕P处的钉子作圆周运动。那么钉子到悬点的距离OP等于多少若绳子最大拉力4mg时那么钉子到悬点的距离OP等于多少 变式训练4-2半径R=1m的1/4圆弧轨道下端与一水平轨道连接,水平轨道离地面高度h=1m,如图所示,有一质量m=的小滑块自圆轨道最高点A由静止开始滑下,经过水平轨迹末端B时速度为4m/s,滑块最终落在地面上,试求: (1)不计空气阻力,滑块落在地面上时速度多大 (2)滑块在轨道上滑行时克服摩擦力做功多少 变式训练4-3.(2014福建理综,21,19分)图为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直 A C D B O

平抛运动和圆周运动典型例题

平抛运动、圆周运动 一、 平抛运动 1、定义:平抛运动是指物体只在重力作用下,从水平初速度开始的运动。 2、条件: a 、只受重力; b 、初速度与重力垂直. 3、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。g a = 4、研究平抛运动的方法:通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。水平方向和竖直方向的两个分运动既具有独立性,又具有等时性. 5、平抛运动的规律 ①水平速度:v x =v 0,竖直速度:v y =gt 合速度(实际速度)的大小:2 2y x v v v += 物体的合速度v 与x 轴之间的夹角为: tan v gt v v x y = = α ②水平位移:t v x 0=,竖直位移22 1gt y = 合位移(实际位移)的大小:22y x s += 物体的总位移s 与x 轴之间的夹角为: 2tan v gt x y == θ 可见,平抛运动的速度方向与位移方向不相同。

而且θαtan 2tan =而θα2≠ 轨迹方程:由t v x 0=和2 21gt y =消去t 得到:22 2x v g y =。可见平抛运动的轨迹为抛物线。 6、平抛运动的几个结论 ①落地时间由竖直方向分运动决定: 由221gt h = 得:g h t 2= ②水平飞行射程由高度和水平初速度共同决定: g h v t v x 20 0== ③平抛物体任意时刻瞬时速度v 与平抛初速度v 0夹角θa 的正切值为位移s 与水平位移x 夹角θ正切值的两倍。 ④平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。 证明:2 21tan 20x s s gt v gt =?==α ⑤平抛运动中,任意一段时间内速度的变化量Δv =gΔt,方向恒为竖直向下(与g 同向)。任意相同时间内的Δv 都相同(包括大小、方向),如右图。 二、 V V V ⑥以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速度与斜面的夹角a 相同,与初速度无关。(飞行的时间与速度有关,速度越大时间越长。) 三、 如右图:所以θtan 20 g v t =

重难点04 平抛运动与圆周运动(解析版)

重难点04 平抛运动与圆周运动 【知识梳理】 考点一 平抛运动基本规律的理解 1.飞行时间:由g h t 2= 知,时间取决于下落高度h ,与初速度v 0无关. 2.水平射程:x =v 0t =v 0 g h 2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3.落地速度:gh v v v v x y x 2222+=+= ,以θ表示落地速度与x 轴正方向的夹角,有 2tan v gh v v x y = = θ,所以落地速度也只与初速度v 0和下落高度h 有关. 4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt ;相同,方向恒为竖直向下,如图所示. 5.两个重要推论 (1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.

(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ. 【重点归纳】 1.在研究平抛运动问题时,根据运动效果的等效性,利用运动分解的方法,将其转化为我们所熟悉的两个方向上的直线运动,即水平方向的匀速直线运动和竖直方向的自由落体运动.再运用运动合成的方法求出平抛运动的规律.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,是处理曲线运动问题的一种重要的思想方法. 2.常见平抛运动模型的运动时间的计算方法 (1)在水平地面上空h 处平抛: 由2 21gt h = 知g h t 2=,即t 由高度h 决定. (2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :

相关文档
最新文档