《数值分析》上机实验报告(修订版)精心总结

《数值分析》上机实验报告(修订版)精心总结
《数值分析》上机实验报告(修订版)精心总结

数值分析上机实验报告生活不会辜负努力的人

《数值分析》上机实验报告

1.用Newton 法求方程 X 7-X 4+14=0

在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。 1.1 理论依据:

设函数在有限区间[a ,b]上二阶导数存在,且满足条件

{}α?上的惟一解在区间平方收敛于方程所生的迭代序列

迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)

(')

()(],,[x |))(),((|,|,)(||

)(|.

4;

0)(.3],[)(.20

)()(.110......b a x f x k x f x f x x x Newton b a b f a f m ir b a c x f a

b c f x f b a x f b f x f k k k k k k ==-

==∈≤-≠>+

)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3

2

2

5

333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f

故以1.9为起点

??

??

?

='-

=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。当前后两个的差<=ε时,就认为求出了近似的根。本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码:

#include

#include

main()

{double x2,f,f1;

double x1=1.9; //取初值为1.9

do

{x2=x1;

f=pow(x2,7)-28*pow(x2,4)+14;

f1=7*pow(x2,6)-4*28*pow(x2,3);

x1=x2-f/f1;}

while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);}

1.3 运行结果:

1.4 MATLAB上机程序

function y=Newton(f,df,x0,eps,M)

d=0;

for k=1:M

if feval(df,x0)==0

d=2;break

else

x1=x0-feval(f,x0)/feval(df,x0);

end

e=abs(x1-x0);

x0=x1;

if e<=eps&&abs(feval(f,x1))<=eps

d=1;break

end

end

if d==1

y=x1;

elseif d==0

y='迭代M次失败';

else

y= '奇异'

end

function y=df(x)

y=7*x^6-28*4*x^3;

End

function y=f(x)

y=x^7-28*x^4+14;

End

>> x0=1.9;

>> eps=0.00001;

>> M=100;

>> x=Newton('f','df',x0,eps,M);

>> vpa(x,7)

1.5 问题讨论:

1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。此程序的不足之处是,所要求解的方程必须满足上述定理的四个条件,但是第二和第四个条件在计算机上比较难以实现。

2.Newton迭代法是一个二阶收敛迭代式,他的几何意义Xi+1是Xi的切线与x轴的交点,故也称为切线法。它是平方收敛的,但它是局部收敛的,即要求初始值与方程的根充分接近,所以在计算过程中需要先确定初始值。

3.本题在理论依据部分,讨论了区间(0.1,1.9)两端点是否能作为Newton迭代的初值,结果发现0.1不满足条件,而1.9满足,能作为初值。另外,该程序简单,只有一个循环,且为顺序结构,故采用do-while循环。当然也可以选择for 和while循环。

2.已知函数值如下表:

试用三次样条插值求f(4.563)及f ’(4.563)的近似值。 2.1 理论依据

33

22111

11

111

1

11

()()()()()()()

6666j j j j j j j j

j j j j j j j j x x x x h x x h x x S x M M y M y M h h h h ---------------=++-+-这里11j j j h x x --=- ,所以只要求出j M ,就能得出插值函数S (x )。

求j M 的方法为:001111221

12

12

2

2

1

2N N N N M d M d M d μλμλμλ--???????????????????

?????=?

???????????

???????????????????

?????

这里1000

00

11111

111

116()6()(1,2,,1)

61[()]

1j j j j j

j j j j N N N N N N j j

j j j j j j j y y d y h h

y y y y d j N h h h h d y y y h h h h h h h h μλμ+----------?

'=-???--=-=-?+?

?

?'=--??

?==-=?++?

最终归结为求解一个三对角阵的解。

用追赶法解三对角阵的方法如下:

1

11

122

2

12

221

111

1111

1n n n n n n

n

n n b c a b c l A LU l b c a l a b γβγββγβ-----??

????????????

???????

???===?????????????????

????

??

?

1,,,n L d LUx d L d Ux δδδδδδ??

=???===???=?????

即若记则由得 1121

1

1n

n n d l l d δδ????????????

??????=?????????????

????? , 11

111

1n n n n n x x βγδβγβδ--??????????????????=??????

???????

?????

综上可得求解方程Ax=d 的算法:

111

1111111111,,,,1,2,3,,1,,1,,2,1

i i i i i i i

i i i i

n i i i n i n i b d l b l c d l i n c x

x x i n αβδββδδδδββ+++++++++?

====-???

=-=-??-?===-??

2.2 C 语言程序代码:

#include

#include

void main() {int i,j,m,n,k,p;

double q10,p10,s4,g4,x0,x1,g0=1,g9=0.1;; double s[10][10];

double a[10],b[10],c[10],d[10],e[10],x[10],h[9],u[9],r[9];

double f[10]={0,0.69314718,1.0986123,1.3862944,1.6094378, 1.7917595,1.9459101,2.079445,2.1972246,2.3025851}; printf("请依次输入xi:\n"); for(i=0;i<=9;i++)

scanf("%lf",&e[i]); //求h 矩阵 for(n=0;n<=8;n++) h[n]=e[n+1]-e[n];

d[0]=6*((f[1]-f[0])/h[0]-g0)/h[0];

d[9]=6*(g9-(f[9]-f[8])/h[8])/h[8];

for(j=0;j<=7;j++)

d[j+1]=6*((f[j+2]-f[j+1])/h[j+1]-(f[j+1]-f[j])/h[j])/(h[j]+h[j+1]);

for(m=1;m<=8;m++)

u[m]=h[m-1]/(h[m-1]+h[m]);

for(k=1;k<=8;k++)

r[k]=h[k]/(h[k-1]+h[k]);

for(i=0;i<=9;i++) //求u矩阵

for(p=0;p<=9;p++)

{s[i][p]=0;

if(i==p)s[i][p]=2;}

s[0][1]=1;

s[9][8]=1;

for(i=1;i<=8;i++)

{s[i][i-1]=u[i];

s[i][i+1]=r[i];}

printf("三对角矩阵为:\n");

for(i=0;i<=9;i++)

for(p=0;p<=9;p++) //求r矩阵

{ printf("%5.2lf",s[i][p]);

if(p==9)

{printf("\n");}

}

printf("根据追赶法解三对角矩阵得:\n");

a[0]=s[0][0];

b[0]=d[0];

for(i=1;i<9;i++)

{c[i]=s[i][i-1]/a[i-1]; //求d矩阵

a[i]=s[i][i]-s[i-1][i]*c[i];

b[i]=d[i]-c[i]*b[i-1];

if(i==8)

{p10=b[i];

q10=a[i];}}

x[9]=p10/q10;

printf("M[10]=%lf\n",x[9]);

for(i=9;i>=1;i--)

{x[i-1]=(b[i-1]-s[i-1][i]*x[i])/a[i-1];

printf("M[%d]=%lf\n",i,x[i-1]);}

printf("可得s(x)在区间[4,5]上的表达式;\n");

printf("将x=4.563代入得:\n");

x0=5-4.563;

x1=4.563-4;

s4=x[3]*pow(x0,3)/6+x[4]*pow(x1,3)/6+(f[3]-x[3]/6)*(5-4.563)+(f[4]-x[4]/6)*(4.563 -4);

g4=-x[3]*pow(x0,2)/2+x[4]*pow(x1,2)/2-(f[3]-x[3]/6)+(f[4]-x[4]/6);

printf("计算结果:f(4.563)的函数值是:%lf\nf(4.563)的导数值是:%lf\n",s4,g4);} 2.3 运行结果:

2.4 问题讨论

1. 三次样条插值效果比Lagrange插值好,没有Runge现象,光滑性较好。

2. 本题的对任意划分的三弯矩插值法可以解决非等距节点的一般性问题。

3. 编程过程中由于定义的数组比较多,需要仔细弄清楚各数组所代表的参数,要注意各下标代表的含义,特别是在用追赶法计算的过程中。

3.用Romberg 算法求)00001.0(sin )75(323

14.1=+?ε允许误差dx x x x x . 3.1 理论依据:

Romberg 算法的计算步骤如下:

(1)先求出按梯形公式所得的积分值

(0)1[()()]2

b a

T f a f b -=

+ (2)把区间2等分,求出两个小梯形面积之和,记为(1)1T ,即

(1)1[()()2()]42

b a b a

T f a f b f -+=

++ 这样由外推法可得(0)2T ,(1)2(0)

(1)(0)11(0)

11221

()421411()2

T T T T T --==

--。 (3)把区间再等分(即22等分),得复化梯形公式(2)1T ,由(1)1T 与(2)1T 外推可得(2)(1)(1)112

441T T T

-=-,2(1)(0)(0)2232

441

T T T -=-,如此,若已算出2k 等分的复化梯形公式()1k T ,则由Richardson 外推法,构造新序列 ()(1)(1)

1

441

m k k k m m

m m T T T

--+-=

-, m=1,2,…,l, k=1,2,…,l-m+1, 最后求得(0)1l T +。

(4)(0)(0)1l l T T +≈或(0)(0)1

||l l T T +-<ε就停止计算,否则回到(3),计算(1)

1l T +,一般可用如下算法:

1(0)12()(1)

1111()(1)(1)

1[()()]21{[(21)]}2224,1,2,,,1,2,,1

41l l l l l

i m k k k m m m m

b a

T f a f b b a b a T T f a i T T T m l k l m ---=--+?-=+??

?--?=++-??

?-?===-+-??

其具体流程如下,并全部存入第一列

(0)

1(1)T 2(3)T (0)3(6)T (1)1(2)T 2(5)T (2)1(4)T 通常计算时,用固定l=N 来计算,一般l=4或5即能达到要求。

3.2 C 语言程序代码:

#include #include

double f(double x) //计算f(x)的值 {double z;

z=pow(3,x)*pow(x,1.4)*(5*x+7)*sin(x*x); return(z);} main()

{ double t[20][20],s,e=0.00001,a=1,b=3; int i,j,l,k;

t[0][1]=(b-a)*(f(b)+f(a))/2; //下为romberg 算法

t[1][1]=(b-a)*(f(b)+2*f((b+a)/2)+f(a))/4; t[0][2]=(a*t[1][1]-t[0][1])/(4-1);j=3; for(l=2;fabs(t[0][j-1]-t[0][j-2])>=e;l++) {for(k=1,s=0;k<=pow(2,l-1);k++)

s+=f(a+(2*k-1)*(b-a)/pow(2,l));//判断前后两次所得的T(0)的差是否符合要求,如果符合精度要求则停止循环

t[l][1]=(t[l-1][1]+(b-a)*s/pow(2,l-1))/2; for(i=l-1,j=2;i>=0;i--,j++)

t[i][j]=(pow(4,j-1)*t[i+1][j-1]-t[i][j-1])/(pow(4,j-1)-1);} if(t[0][1]

printf("t=%0.6f\n",t[0][1]); else

printf("用Romberg 算法计算函数所得近似结果为:\nf(x)=%0.6f\n",t[0][j-1]);}

3.3 运行结果:

3.4 MATLAB上机程序

function [T,n]=mromb(f,a,b,eps)

if nargin<4,eps=1e-6;end

h=b-a;

R(1,1)=(h/2)*(feval(f,a)+feval(f,b));

n=1;J=0;err=1;

while (err>eps)

J=J+1;h=h/2;S=0;

for i=1:n

x=a+h*(2*i-1);

S=S+feval(f,x);

end

R(J+1,1)=R(J,1)/2+h*S;

for k=1:J

R(J+1,k+1)=(4^k*R(J+1,k)-R(J,k))/(4^k-1);

end

err=abs(R(J+1,J+1)-R(J+1,J));

n=2*n;

end

R;

T=R(J+1,J+1);

format long

f=@(x)(3.^x)*(x.^1.4)*(5*x+7)*sin(x*x);

[T,n]=mromb(f,1,3,1.e-5)

3.5 问题讨论:

1.Romberge算法的优点是:把积分化为代数运算,而实际上只需求T1(i),以后用递推可得.算法简单且收敛速度快,一般4或5次即能达到要求。

2.Romberge算法的缺点是:对函数的光滑性要求较高,计算新分点的值时,这些数值的个数成倍增加。

3.该程序较为复杂,涉及函数定义,有循环,而且循环中又有判断,编写时需要注意该判断条件是处于循环中,当达到要求时跳出循环,终止运算。

4.函数的定义可放在主函数前也可在主程序后面。本程序采用的后置方式。

4. 用定步长四阶Runge-Kutta 求解

??????????

?===--===0

)0(0)0(0)0(10010001000//1/321

3

2332

1y y y y y dt dy y

dt dy dt dy h =0.0005,打印y i (0.025) , y i (0.045) , y i (0.085) , y i (0.1) ,(i =1,2,3) 4.1 理论依据:

Runge_Kutta 采用高阶单步法,这里不是先按Taylor 公式展开,而是先写成n t 处附近的值的线性组合(有待定常数)再按Taylor 公式展开,然后确定待定常数,这就是Runge-Kutta 法的思想方法。

本题采用四阶古典的Runge-Kutta 公式:

)

,()3/,3/2()3/,3/()

,(8/]33[321421312143211hK hK hK Y h x hF K hK hK Y h x hF K hK Y h x hF K Y x hF K K K K K Y Y n n n n n n n n n n +-++=+++=++==++++=+

4.2 C 语言程序代码:

#include

void fun(double x[4],double y[4],double h) {y[1]=1*h; y[2]=x[3]*h;

y[3]=(1000-1000*x[2]-100*x[2]-100*x[3])*h; //微分方程向量函数} void main()

{ double Y[5][4],K[5][4],m,z[4],e=0.0005; double y[5]={0,0.025,0.045,0.085,0.1}; int i,j,k;

for(i=1;i<=3;i++) Y[1][i]=0; for(i=1;i<=4;i++)

for(j=1;j<=3;j++)

K[i][j]=0;

for(k=1;k<=5;k++)

{for(m=y[k-1];m<=y[k];m=m+e)

{for(i=1;i<=3;i++)

z[i]=Y[k][i];

fun(z,K[1],e);

for(i=1;i<=3;i++)

z[i]=Y[k][i]+e*K[2][i]/2; //依此求K1,K2K3的值

fun(z,K[2],e);

for(i=1;i<=3;i++)

z[i]=Y[k][i]+e*K[2][i]/2;

fun(z,K[3],e);

for(i=1;i<=3;i++)

z[i]=Y[k][i]+e*K[3][i];

fun(z,K[4],e);

for(i=1;i<=3;i++)

Y[k][i]=Y[k][i]+(K[1][i]+2*K[2][i]+2*K[3][i]+K[4][i])/6; // 求Yi[N+1]的值}

if(k!=5)

for(i=1;i<=3;i++)

Y[k+1][i]=Y[k][i];}

printf("计算结果:\n");

for(i=1;i<5;i++)

{for(j=1;j<=3;j++)

{printf("y%d[%4.3f]=%-10.8f,",j,y[i],Y[i][j]);

if(j==3)

printf("\n");}

printf("\n");}

}

4.3 运行结果:

4.4 问题讨论:

1.定步长四阶Runge-kutta方法是一种高阶单步法法稳定,精度较高,误差小且程序相对简单,存储量少。不必求出起始点的函数值,可根据精度的要求修改步长,不会由于起始点的误差造成病态。

2.本程序可以通过修改主程序所调用的函数中的表达式来实现对其它函数的任意初值条件求微分计算。

3.程序中运用了大量的for循环语句,因为该公式中涉及大量的求和,且有不同的函数和对不同的数值求值,编程稍显繁琐。所以编写过程中一定要注意各循环的次数,以免出错。

5.

??

?

?????

?????

???????????????=40.00001 4.446782 2.213474- 0.238417 1.784317 0.037585- 1.010103- 3.123124 2.031743- 4.446782 30.719334 3.123789 1.103456- 2.121314 0.71828- 0.336993 1.112348 3.067813 2.213474- 3.123789 14.7138465 0.103458- 3.111223- 2.101023 1.056781- 0.784165- 1.7423820.238417 1.103456- 0.103458- 9.789365 0.431637 3.741856- 1.836742 1.563849 0.718719 1.784317

2.121314

3.111223- 0.431637 19.897918

4.101011 2.031454 2.189736 0.113584-0.037585- 0.71828- 2.101023 3.741856- 4.101011 27.108437 3.123848 1.012345- 1.112336 1.010103- 0.336993 1.056781- 1.836742 2.031454 3.123848 1

5.567914 3.125432- 1.061074- 3.123124 1.112348 0.784165- 1.563849 2.189736 1.012345- 3.125432- 19.141823 2.115237 2.031743- 3.067813 1.742382 0.718719 0.113584- 1.112336 1.061074- 2.115237 12.38412

A T

b )5.6784392- 4.719345 1.1101230 86.612343- 1.784317 0.84671695 25.173417- 33.992318 2.1874369(= 用列主元消去法求解Ax=b 。

5.1 理论依据:

列主元素消元法是在应用Gauss 消元法的基础上,凭借长期经验积累提出的,是线性方程组一般解法,目的是为避免在消元计算中使误差的扩大,甚至严重损失了有效数字使数据失真,而在每次初等变换前对矩阵作恰当的调整,以提高Gauss 消元法的数字稳定性,进而提高计算所得数据的精确度。即在每主列中取绝对值最大的元素作主元,再做对应的行交换然后消元求解的办法。具体做法如下:

将方阵A 和向量b 写成C=(A ,b )。将C 的第1列中第1行的元素与其下面的此列的元素逐一进行比较,找到最大的元素1j c ,将第j 行的元素与第1行的元素进行交换,然后通过行变换,将第1列中第2到第n 个元素都消成0。将变换后的矩阵(1)C 的第二列中第二行的元素与其下面的此列的元素逐一进行比较,找到最大的元素(1)2k c ,将第k 行的元素与第2行的元素进行交换,然后通过行变换,将第2列中第3到第n 个元素都消成0。以此方法将矩阵的左下部分全都消

成0后再求解。最终形式如下:

(A,b)~

()()

1 111

()

00

n n

n

n

n

nn

g a a

g

a

?? ?

*

? ?

?

??

5.2 C语言程序代码

(1)比较该列的元素的绝对值的大小,将绝对值最大的元素通过行变换使其位于主对角线上;

(2)进行高斯消去法变换,把系数矩阵化成上三角形,然后回代求#include "math.h"

#include "stdio.h"

void Householder(double A[9][9]);

void expunction(double A[9][9],double b[9],double x[9]);

void main()

{double A[9][9]={

{12.38412,2.115237,-1.061074,1.112336,-0.113584,0.718719,1.742382,3.067813,-2. 031743},

{2.115237,19.141823,-3.125432,-1.012345,2.189736,1.563849,-0.784165,1.112348,3 .123124},

{-1.061074,-3.125432,15.567914,3.123848,2.031454,1.836742,-1.056781,0.336993,-1.010103},

{1.112336,-1.012345,3.123848,27.108437,4.101011,-3.741856,2.101023,-0.71828,-0. 037585},

{-0.113584,2.189736,2.031454,4.101011,19.897918,0.431637,-3.111223,2.121314,1. 784317},

{0.718719,1.563849,1.836742,-3.741856,0.431637,9.789365,-0.103458,-1.103456,0. 238417},

{1.742382,-0.784165,-1.056781,2.101023,-3.111223,-0.103458,14.713847,3.123789,-2.213474},

{3.067813,1.112348,0.336993,-0.71828,2.121314,-1.103456,3.123789,30.719334,4.4 46782},

{-2.031743,3.123124,-1.010103,-0.037585,1.784317,0.238417,-2.213474,4.446782,4 0.00001}};

double b[9]=

{2.1874369,33.992318,-25.173417,0.84671695,1.784317,-86.612343,1.1101230,4.71 9345,-5.6784392};

double x[9]={0.0};

int i,j;

Householder(A);

printf("\n The Results of X are:\n");

expunction(A,b,x);

for(i=1;i<10;i++)

printf("X%1d=%f\n",i,x[i-1]);}

void Householder(double A[9][9])

{double q[9],u[9],y[9],s,a,kr;

int i,j,k;

for(i=0;i<7;i++)

{s=0;

for(j=i+1;j<9;j++)

s+=A[j][i]*A[j][i];

s=sqrt(s);

a=s*s+fabs(A[i+1][i])*s;

for(j=0;j<9;j++)

{if(j<=i) u[j]=0;

else if(j==i+1) u[j]=A[j][i]+A[j][i]/fabs(A[j][i])*s;

else if(j>i+1) u[j]=A[j][i];}

for(k=0;k<9;k++)

{y[k]=0;

for(j=0;j<9;j++)

y[k]+=A[k][j]*u[j];

y[k]/=a;}

kr=0;

for(k=0;k<9;k++)

kr+=y[k]*u[k];

kr/=2*a;

for(k=0;k<9;k++)q[k]=y[k]-kr*u[k];

for(k=0;k<9;k++)

{for(j=0;j<9;j++)

A[k][j]-=u[k]*q[j]+u[j]*q[k];}

}

}

void expunction(double A[9][9],double b[9],double x[9]) {int i,j,k;

double B[9][10];

double z[3];

double t1=0,t2=0,t3=0;

for(i=0;i<8;i++)

{if(A[i+1][i]>A[i][i])

{for(j=i,k=0;j

z[k]=A[i][j];A[i][j]=A[i+1][j];A[i+1][j]=z[k];

t1=b[i];b[i]=b[i+1];b[i+1]=t1;}

t2=A[i+1][i];

for(j=i;j

A[i+1][j]=A[i+1][j]-A[i][j]*t2/A[i][i];

b[i+1]=b[i+1]-b[i]*t2/A[i][i];}

x[8]=b[8]/A[8][8];

for(i=7;i>=0;i--)

{for(j=i+1;j<9;j++)

t3=t3+A[i][j]*x[j];

x[i]=(b[i]-t3)/A[i][i];

t3=0;}

}

5.3 运行结果

5.4 MATLAB上机程序

unction [x]=mgauss2(A,b,flag)

if nargin<3,flag=0;end

n=length(b);

for k=1:(n-1)

[ap,p]=max(abs(A(k:n,k)));

p=p+k-1;

if p>k

A([k p],:)=A([p k],:);

b([k p],:)=b([p k],:);

end

m=A(k+1:n,k)/A(k,k);

A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-m*A(k,k+1:n);

b(k+1:n)=b(k+1:n)-m*b(k);

A(k+1:n,k)=zeros(n-k,1);

if flag~=0,Ab=[A,b],end

end

x=zeros(n,1);

x(n)=b(n)/A(n,n);

微机原理实验报告

西安交通大学实验报告 课程_微机与接口技术第页共页 系别__生物医学工程_________实验日期:年月日 专业班级_____组别_____交报告日期:年月日 姓名__ 学号__报告退发 ( 订正、重做 ) 同组人_教师审批签字 实验一汇编语言程序设计 一、实验目的 1、掌握Lab6000p实验教学系统基本操作; 2、掌握8088/8086汇编语言的基本语法结构; 3、熟悉8088/8086汇编语言程序设计基本方法 二、实验设备 装有emu8086软件的PC机 三、实验内容 1、有一个10字节的数组,其值分别是80H,03H,5AH,FFH,97H,64H,BBH,7FH,0FH,D8H。编程并显示结果: 如果数组是无符号数,求出最大值,并显示; 如果数组是有符号数,求出最大值,并显示。 2、将二进制数500H转换成二-十进制(BCD)码,并显示“500H的BCD是:” 3、将二-十进制码(BCD)7693转换成ASCII码,并显示“BCD码7693的ASCII是:” 4、两个长度均为100的内存块,先将内存块1全部写上88H,再将内存块1的内容移至内存块2。在移动的过程中,显示移动次数1,2 ,3…0AH…64H(16进制-ASCII码并显示子

程序) 5、键盘输入一个小写字母(a~z),转换成大写字母 显示:请输入一个小写字母(a~z): 转换后的大写字母是: 6、实现4字节无符号数加法程序,并显示结果,如99223344H + 99223344H = xxxxxxxxH 四、实验代码及结果 1.1、实验代码: DATA SEGMENT SZ DB 80H,03H,5AH,0FFH,97H,64H,0BBH,7FH,0FH,0D8H;存进数组 SHOW DB 'THE MAX IS: ','$' DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START: MOV AX,DATA ;把数据的基地址赋给DS MOV DS,AX MOV DX,OFFSET SHOW ;调用DOS显示字符串 MOV AH,09H INT 21H MOV SI ,OFFSET SZ ;数组的偏移地址赋给SI MOV CX,10 ;存进数组的长度给CX MOV DH,80H ;将数组的第一个数写进DH NEXT: MOV BL,[SI] ;将数组的第一个数写进BL CMP DH,BL ;比较DH和BL中数的到校 JAE NEXT1 ;如果DH中的数大于BL中,将跳转到NEXT1 MOV DH,BL ;如果DH中的数小于BL中,将BL中的数赋给DH NEXT1: INC SI ;偏移地址加1 LOOP NEXT;循环,CX自减一直到0,DH中存数组的最大值 ;接下来的程序是将将最大值DH在屏幕上显示输出 MOV BX,02H NEXT2: MOV CL,4 ROL DH,CL ;将DH循环右移四位

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

微机原理实验报告软件实验1-4

微机原理实验报告 学院:算机科学与软件教育学院 1. 掌握存储器读写方法 2. 了解存储器的块操作方法 二、实验原理 存储器读写和块操作 三、实验设备仪器及材料 计算机,WA VE 6000软件 四、实验过程 S1.asm 代码流程图 data segment Block db 256 dup(55h) data ends code segment assume cs:code, ds:data start proc near mov ax, data mov ds, ax mov bx, offset Block ; 起始地址 mov cx, 256 ; 清256 字节Again: mov [bx], byte ptr 0 inc bx ; 地址+1 Loop Again ; 记数减一jmp $ ;死循环code ends end start

五、实验步骤 (1) 进入Wave6000,输入程序并检查,保存程序。 (2) “编译”程序。 (3) “全速执行”程序。 (4) “暂停”程序运行,在“数据窗口(MEMOREY)”查看0400H起始的单元内容,并记录。 (5) 在指令“jmp $”处设断点。“全速执行”程序。 (6) 在“数据窗口(MEMOREY)”查看0400H起始的单元内容,记录并分析实验结果。 六、实验结果及总结 运行前:运行后: 2、调试:如何将存储器块的内容置成某固定值(例全填充为0FFH)? 总结:通过本实验,我了解到单片机读写存储器的读写方法,同时也了解到单片机编程,调试方法。学会内存的移动方法,也加深对存储器读写的认识。

微机原理实验报告 学院:算机科学与软件教育学院 实验 课程 名 微机原理实验成绩实验 项目名称实验二、二进制到BCD码转换 指导老 师 1. 了解BCD值和ASCII值的区别。 2. 了解如何将BCD值转换成ASCII值。 3. 了解如何查表进行数值转换及快速计算。 二、实验原理 ASCII码表 三、实验设备仪器及材料 计算机,WA VE 6000软件 data segment Result db 3 dup(?) data ends code segment assume cs:code, ds:data start proc near mov ax, data mov ds, ax mov ax, 123 mov cl, 100 div cl mov Result, al ; 除以 100, 得百位数 mov al, ah mov ah, 0 mov cl, 10 div cl mov Result+1, al ; 余数除以 10, 得十位数 mov Result+2, ah ; 余数为个位 数 jmp $ code ends end start 代码流程图

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

数值分析实验报告

数值分析实验报告 姓名:周茹 学号: 912113850115 专业:数学与应用数学 指导老师:李建良

线性方程组的数值实验 一、课题名字:求解双对角线性方程组 二、问题描述 考虑一种特殊的对角线元素不为零的双对角线性方程组(以n=7为例) ?????????? ?????? ? ???? ?d a d a d a d a d a d a d 766 55 44 3 32 211??????????????????????x x x x x x x 7654321=?????????? ? ???????????b b b b b b b 7654321 写出一般的n (奇数)阶方程组程序(不要用消元法,因为不用它可以十分方便的解出这个方程组) 。 三、摘要 本文提出解三对角矩阵的一种十分简便的方法——追赶法,该算法适用于任意三对角方程组的求解。 四、引言 对于一般给定的d Ax =,我们可以用高斯消去法求解。但是高斯消去法过程复杂繁琐。对于特殊的三对角矩阵,如果A 是不可约的弱对角占优矩阵,可以将A 分解为UL ,再运用追赶法求解。

五、计算公式(数学模型) 对于形如????? ?? ????? ??? ?---b a c b a c b a c b n n n n n 111 2 2 2 11... ... ...的三对角矩阵UL A =,容易验证U 、L 具有如下形式: ??????? ????? ??? ?=u a u a u a u n n U ...... 3 3 22 1 , ?? ????? ? ?? ??????=1 (1) 1132 1l l l L 比较UL A =两边元素,可以得到 ? ?? ??-== = l a b u u c l b u i i i i i i 111 i=2, 3, ... ,n 考虑三对角线系数矩阵的线性方程组 f Ax = 这里()T n x x x x ... 2 1 = ,()T n f f f f ... 2 1 = 令y Lx =,则有 f Uy = 于是有 ()?????-== --u y a f y u f y i i i i i 1 1 11 1 * i=2, 3, ... ,n 再根据y Lx =可得到

微机原理实验报告

汇编语言程序设计实验 一、实验内容 1.学习并掌握IDE86集成开发环境的使用,包括编辑、编译、链接、 调试与运行等步骤。 2.参考书例4-8,P165 (第3版161页)以单步形式观察程序的 执行过程。 3.修改该程序,求出10个数中的最大值和最小值。以单步形式观 察,如何求出最大值、最小值。 4.求1到100 的累加和,并用十进制形式将结果显示在屏幕上。 要求实现数据显示,并返回DOS状态。 二、实验目的 1.学习并掌握IDE86集成开发环境的使用 2.熟悉汇编语言的基本算法,并实际操作 3.学会利用IDE86进行debug的步骤 三、实验方法 1.求出10个数中的最大值和最小值 (1)设计思路:利用冒泡法,先对数据段的10个数字的前2个比 较,把二者中大的交换放后面。在对第二个和第三个数比较,把 二者中较大的交换放后面,依此类推直到第十个数字。这样第十 位数就是10个数里面最大的。然后选出剩下9个数字里面最大 的,还是从头开始这么做,直到第九个数字。以此类推直到第一 个数字。

(2)流程图 2.求1到100 的累加和,并用十进制形式将结果显示在屏幕上。 要求实现数据显示,并返回DOS状态

(1)设计思路:结果存放在sum里面,加数是i(初始为1),进行 100次循环,sum=sum+I,每次循环对i加1. (2)流程图: 四、 1.求出10个数中的最大值和最小值

DSEG SEGMENT NUM DB -1,-4,0,1,-2,5,-6,10,4,0 ;待比较数字 DSEG ENDS CODE SEGMENT ASSUME DS:DSEG,CS:CODE START:MOV AX,DSEG MOV DS,AX LEA SI,NUM MOV DX,SI MOV CL,9 ;大循环计数寄存器初始化 NEXT1:MOV BL,CL ;大循环开始,小循环计数器初始化MOV SI,DX NEXT2:MOV AL,[SI+1] CMP [SI],AL ;比较 JGGONE ;如果后面大于前面跳到小循环末尾CHANGE:MOV AH,[SI] ;交换 MOV [SI+1],AH MOV [SI],AL JMP GONE GONE:add SI,1 DEC BL JNZ NEXT2

微机原理及应用实验报告

微机原理及应用实验报告 班级:机械1301班 姓名:黄佳清 学号:0801130117 座位号: 中南大学机电工程学院

实验一单片机仿真开发机操作和MCS-51指令系统应用 一.实验目的 1、熟悉MCS-51单片机仿真开发机和开发调试软件的操作使用和调整; 2、学会编写和输入汇编语言源程序、对输入的源程序进行汇编; 3、掌握程序的调试和运行的各种方法。 三.实验内容及步骤(完成分值:60分) 本实验秩序运行Keil uVersion2程序,设置为keil为纯软件仿真 1.新建工程项目 2.设置工程文件参数 3.编写新程序事例 4.调试程序直至能够运行出结果。 四.实验程序 AJMP MAIN ORG 0030H MAIN: MOV R0,#20H MOV R2,#0FH MOV A,#00H A1: MOV @R0,A INC R0 INC A DJNZ R2,A1 MOV R0,#20H ;暂停,观察并记录! MOV DPTR,#7000H MOV R2,#0FH A2: MOV A,@R0 MOVX @DPTR,A INC R0 INC DPTR DJNZ R2,A2 MOV R0,#030H ;断点,观察并记录! MOV DPTR,#7000H MOV R2,#0FH A3: MOVX A,@DPTR MOVX @R0,A INC R0 INC DPTR DJNZ R2,A3 DO: LJMP DO END ;内部存储器数据块赋值,搬运数据块到外部存储器,再搬运回内部数据存储器。 五、附加题 1.将光标移到想要暂停的地方,MOV R0,#20H所在行,选择“执行到光

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

北京邮电大学微机原理硬件实验报告

北京邮电大学微机原理硬件实验报告

实验报告一:I/0地址译码和简单并行接口 ——实验一&实验二 一、实验目的 掌握I/O地址译码电路的工作原理;掌握简单并行接口的工作原理及使用方法。 二、实验原理及内容 a) I/0地址译码 1、实验电路如图1-1所示,其中74LS74为D触发器,可直接使用实验台上数 字电路实验区的D触发器,74LS138为地址译码器。译码输出端Y0~Y7在实验台上“I/O地址“输出端引出,每个输出端包含8个地址,Y0:280H~ 287H,Y1:288H~28FH,……当CPU执行I/O指令且地址在280H~2BFH范围内,译码器选中,必有一根译码线输出负脉冲。 例如:执行下面两条指令 MOV DX,2A0H OUT DX,AL(或IN AL,DX) Y4输出一个负脉冲,执行下面两条指令 MOV DX,2A8H OUT DX,AL(或IN AL,DX) Y5输出一个负脉冲。 利用这个负脉冲控制L7闪烁发光(亮、灭、亮、灭、……),时间间隔经过软件延时实现。 2、接线: Y4/IO地址接 CLK/D触发器

Y5/IO地址接 CD/D触发器 D/D触发器接 SD/D触发器接 +5V Q/D触发器接L7(LED灯)或逻辑笔 b) 简单并行接口 1、按下面图4-2-1简单并行输出接口电路图连接线路(74LS273插通 用插座,74LS32用实验台上的“或门”)。74LS273为八D触发器, 8个D输入端分别接数据总线D0~D7,8个Q输出端接LED显示电 路L0~L7。 2、编程从键盘输入一个字符或数字,将其ASCⅡ码经过这 个输出接口输出,根据8个发光二极管发光情况验证正确 性。 3、按下面图4-2-2简单并行输入接口电路图连接电路 (74LS244插通用插座,74LS32用实验台上的“或门”)。 74LS244为八缓冲器,8个数据输入端分别接逻辑电平开关 输出K0~K7,8个数据输出端分别接数据总线D0~D7。 4、用逻辑电平开关预置某个字母的ASCⅡ码,编程输入这 个ASCⅡ码,并将其对应字母在屏幕上显示出来。 5、接线:1)输出 按图4-2-1接线(图中虚线为实验所需接线,74LS32为实验 台逻辑或门) 2)输入 按图4-2-2接线(图中虚线为实验所需接线,74LS32为实 验台逻辑或门) 三、硬件连线图 1、I/O地址译码

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

(完整word版)微机原理与接口技术试验学习总结

微机原理与接口技术试验学习总结 本学期微机原理的实验课程即将结束,关于微机原理课程实验的心得体会颇多。 初学《微机原理》时,感觉摸不着头绪。面对着众多的术语、概念及原理性的问题不知道该如何下手。在了解课程的特点后,我发现,应该以微机的整机概念为突破口,在如何建立整体概念上下功夫。“麻雀虽小,五脏俱全”,可以通过学习一个模型机的组成和指令执行的过程,了解和熟悉计算机的结构、特点和工作过程。 《微机原理》课程有许多新名词、新专业术语。透彻理解这些名词、术语的意思,为今后深入学习打下基础。一个新的名词从首次接触到理解和应用,需要一个反复的过程。而在众多概念中,真正关键的并不是很多。比如“中断”概念,既是重点又是难点,如果不懂中断技术,就不能算是搞懂了微机原理。在学习中凡是遇到这种情况,绝对不轻易放过,要力求真正弄懂,搞懂一个重点,将使一大串概念迎刃而解。 学习过程中,我发现许多概念很相近,为了更好地掌握,将一些容易混淆的概念集中在一起进行分析,比较它们之间的异同点。比如:微机原理中,引入了计算机由五大部分组成这一概念;从中央处理器引出微处理器的定义;在引出微型计算机定义时,强调输入/输出接口的重要性;在引出微型计算机系统的定义时,强调计算机软件与计算机硬件的相辅相成的关系。微处理器是微型计算机的重要组成部分,它与微型计算机、微型计算机系统是完全不同的概念。 在微机中,最基础的语言是汇编语言。汇编语言是一个最基础最古老的计算机语言。语言总是越基础越重要,在重大的编程项目中应用最广泛。就我的个人理解,汇编是对寄存的地址以及数据单元进行最直接的修改。而在某些时候,这种方法是最有效,最可靠的。然而,事物总有两面性,有优点自然缺点也不少。其中,最重要的一点就是,汇编语言很复杂,对某个数据进行修改时,本来很简单的一个操作会用比较烦琐的语言来解决,而这些语言本身在执行和操作的过程中,占有大量的时间和成本。在一些讲求效率的场合,并不可取。 汇编语言对学习其他计算机起到一个比较、对照、参考的促进作用。学习事物总是从最简单基础的开始。那么学习高级语言也当然应当从汇编开始。学习汇编语言实际上是培养了学习计算机语言的能力和素养。个人认为,学习汇编语言对学习其他语言很有促进作用。 汇编语言在本学期微机学习中有核心地位。本学期微机原理课程内容繁多,还学习了可编程的计数/定时的8253,可编程的外围接口芯片8255A等。学的都是芯片逻辑器件,而在名字前都标有“可编程”,其核心作用不可低估。 我想微机原理课程试验不仅加深和巩固了我们的课本知识,而且增强了我们自己动脑,自己动手的能力。但是我想他也有它的独特之处,那就是让我们进入一个神奇的世界,那就是编程。对我们来说汇编真的很新奇,很有趣,也使我有更多的兴趣学习微机原理和其

数值分析实验报告

实验一、误差分析 一、实验目的 1.通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; 2.通过上机计算,了解误差、绝对误差、误差界、相对误差界的有关概念; 3.通过上机计算,了解舍入误差所引起的数值不稳定性。 二.实验原理 误差问题是数值分析的基础,又是数值分析中一个困难的课题。在实际计算中,如果选用了不同的算法,由于舍入误差的影响,将会得到截然不同的结果。因此,选取算法时注重分析舍入误差的影响,在实际计算中是十分重要的。同时,由于在数值求解过程中用有限的过程代替无限的过程会产生截断误差,因此算法的好坏会影响到数值结果的精度。 三.实验内容 对20,,2,1,0 =n ,计算定积分 ?+=10 5dx x x y n n . 算法1:利用递推公式 151--=n n y n y , 20,,2,1 =n , 取 ?≈-=+=1 00182322.05ln 6ln 51dx x y . 算法2:利用递推公式 n n y n y 51511-= - 1,,19,20 =n . 注意到 ???=≤+≤=10 10202010201051515611261dx x dx x x dx x , 取 008730.0)12611051(20120≈+≈y .: 四.实验程序及运行结果 程序一: t=log(6)-log(5);

n=1; y(1)=t; for k=2:1:20 y(k)=1/k-5*y(k-1); n=n+1; end y y =0.0884 y =0.0581 y =0.0431 y =0.0346 y =0.0271 y =0.0313 y =-0.0134 y =0.1920 y =-0.8487 y =4.3436 y =-21.6268 y =108.2176 y =-541.0110 y =2.7051e+003 y =-1.3526e+004 y =6.7628e+004 y =-3.3814e+005 y =1.6907e+006 y =-8.4535e+006 y =4.2267e+007 程序2: y=zeros(20,1); n=1; y1=(1/105+1/126)/2;y(20)=y1; for k=20:-1:2 y(k-1)=1/(5*k)-(1/5)*y(k); n=n+1; end 运行结果:y = 0.0884 0.0580 0.0431 0.0343 0.0285 0.0212 0.0188 0.0169

四川大学微机原理实验报告..

微机原理实验报告 学院: 专业班级: 姓名 学号

实验一汇编语言编程基础 1.3汇编语言程序上机操作和调试训练 一.功能说明 运用8086汇编语言,编辑多字节非压缩型BCD数除法的简单程序,文件名取为*.ASM。 运用MASM﹒EXE文件进行汇编,修改程序中的各种语法错误,直至正确,形成*.OBJ文件。 运用LINK.EXE文件进行连接,形成*.EXE文件。 仔细阅读和体会DEBUG调试方法,掌握各种命令的使用方法。 运用DEBUG。EXE文件进行调试,使用单步执行命令—T两次,观察寄存器中内容的变化,使用察看存储器数据段命令—D,观察存储器数据段内数值。 再使用连续执行命令—G,执行程序,检查结果是否正确,若不正确可使用DEBUG的设置断点,单步执行等功能发现错误所在并加以改正。 二.程序流程图 设置被除数、商的地址指针 设置单位除法次数计数器 取被除数一位作十进制调整 作字节除法、存商 N 被除数各位已除完? Y 显示运算结果 结束 三.程序代码 修改后的程序代码如下: DATA SEGMENT A D B 9,6,8,7,5 B DB 5 C DB 5 DUP (0) N EQU 5 DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA,ES:DATA START: MOV AX,DATA MOV DS,AX

MOV ES,AX CLD LEA SI,A LEA DI,C MOV CX,N MOV AH,0 LP1: LODSB AAD DIV B STOSB LOOP LP1 MOV CX,N LEA DI,C LP2: MOV DL,[DI] ADD DL,30H MOV AH,2 INT 21H INC DI LOOP LP2 MOV AH,4CH INT 21H CODE ENDS END START 四.实验感想和收获 通过这次试验,我对微机原理上级试验环境有了初步的认识,可以较为熟练地对汇编语言进行编译,汇编及连接,同时也学会了用DEBUG调试程序,收获很大。 在这次试验中我也遇到了一些困难。在刚开始我发现自己无法打开MASM.EXE,计算机提示是由于版本不兼容。我这才想起来我的操作系统是64位的,和该软件版本不兼容。不过我并没有放弃,经过我的摸索之后,我发现用DOSBOX这个程序可以解决我的电脑运行不了该程序的问题。在解决了第一个难题后,我开始着手改正试验1.3中的语法错误和逻辑错误,但是无论我怎么修改却始终都无法通过编译,并且基本上每句话都有编译错误。根据我多年编程的经验来看,这应该是中文输入法在搞鬼,之后我耐心地把程序重新输了一遍,果然通过了编译,并且之后的连接也进行的很顺利。在用DEBUG调试时发现得出的结果也很正确。 尽管这次的实验内容非常简单,仅仅是教会我们一些基本的操作,但我却明显感觉到了汇编语言和C语言等高级语言所不同的地方。越是底层,基础的东西就越不人性化,用C语言一行代码就能实验的功能在汇编语言中可能要花上数十行。看来汇编语言的学习不是几周就能速成的,必须要有长年累月的积淀才能掌握。

微机原理实验报告

微机原理与接口技术 实验指导书 班级 学号 099074 工业大学计算机学院

实验一存贮器读写实验 一、实验容 对指定地址区间的RAM(4000H~4FFH)先进行写数据55AAH,然后将其容读出再写到5000H~5FFH中。 二、实验步骤 l、将实验系统与PC机连接; 2、在PC机上启功DJ-8086k软件,实验系统进入联机状态; 3、在DJ-8086k软件环境下编辑、调试程序,将程序调试、编译通过; 4、运行程序。 5、稍后按RST键退出,用存贮器读方法检查4000H~43FFH中的容和5000~53FFH中的容应都是55AA。 三、实验程序清单 CODE SEGMENT ;RAM.ASM ASSUME CS:CODE PA EQU 0FF20H ;字位口 PB EQU 0FF21H ;字形口 PC EQU 0FF22H ;键入口 ORG 1850h START: JMP START0 BUF DB ?,?,?,?,?,? data1: db0c0h,0f9h,0a4h,0b0h,99h,92h,82h,0f8h,80h,90h,88h,83h,0 c6h,0a1h db 86h,8eh,0ffh,0ch,89h,0deh,0c7h,8ch,0f3h,0bfh,8FH START0: MOV AX,0H MOV DS,AX MOV BX,4000H MOV AX,55AAH MOV CX,0200H RAMW1: MOV DS:[BX],AX ADD BX,0002H LOOP RAMW1 MOV AX,4000H MOV SI,AX

MOV AX,5000H MOV DI,AX MOV CX,0400H CLD REP MOVSB call buf1 mov cx,0ffh con1: push cx call disp pop cx loop con1 call buf2 con2: call disp jmp con2 DISP: MOV AL,0FFH ;00H MOV DX,PA OUT DX,AL MOV CL,0DFH ;20H ;显示子程序 ,5ms MOV BX,OFFSET BUF DIS1: MOV AL,[BX] MOV AH,00H PUSH BX MOV BX,OFFSET DATA1 ADD BX,AX MOV AL,[BX] POP BX MOV DX,PB OUT DX,AL MOV AL,CL MOV DX,PA OUT DX,AL PUSH CX DIS2: MOV CX,00A0H LOOP $ POP CX CMP CL,0FEH ;01H JZ LX1 INC BX ROR CL,1 ;SHR CL,1 JMP DIS1 LX1: MOV AL,0FFH MOV DX,PB OUT DX,AL RET

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

数值分析2016上机实验报告

序言 数值分析是计算数学的范畴,有时也称它为计算数学、计算方法、数值方法等,其研究对象是各种数学问题的数值方法的设计、分析及其有关的数学理论和具体实现的一门学科,它是一个数学分支。是科学与工程计算(科学计算)的理论支持。许多科学与工程实际问题(核武器的研制、导弹的发射、气象预报)的解决都离不开科学计算。目前,试验、理论、计算已成为人类进行科学活动的三大方法。 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。现在面向数值分析问题的计算机软件有:C,C++,MATLAB,Python,Fortran等。 MATLAB是matrix laboratory的英文缩写,它是由美国Mathwork公司于1967年推出的适合用于不同规格计算机和各种操纵系统的数学软件包,现已发展成为一种功能强大的计算机语言,特别适合用于科学和工程计算。目前,MATLAB应用非常广泛,主要用于算法开发、数据可视化、数值计算和数据分析等,除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。 本实验报告使用了MATLAB软件。对不动点迭代,函数逼近(lagrange插值,三次样条插值,最小二乘拟合),追赶法求解矩阵的解,4RungeKutta方法求解,欧拉法及改进欧拉法等算法做了简单的计算模拟实践。并比较了各种算法的优劣性,得到了对数值分析这们学科良好的理解,对以后的科研数值分析能力有了极大的提高。

目录 序言 (1) 问题一非线性方程数值解法 (3) 1.1 计算题目 (3) 1.2 迭代法分析 (3) 1.3计算结果分析及结论 (4) 问题二追赶法解三对角矩阵 (5) 2.1 问题 (5) 2.2 问题分析(追赶法) (6) 2.3 计算结果 (7) 问题三函数拟合 (7) 3.1 计算题目 (7) 3.2 题目分析 (7) 3.3 结果比较 (12) 问题四欧拉法解微分方程 (14) 4.1 计算题目 (14) 4.2.1 方程的准确解 (14) 4.2.2 Euler方法求解 (14) 4.2.3改进欧拉方法 (16) 问题五四阶龙格-库塔计算常微分方程初值问题 (17) 5.1 计算题目 (17) 5.2 四阶龙格-库塔方法分析 (18) 5.3 程序流程图 (18) 5.4 标准四阶Runge-Kutta法Matlab实现 (19) 5.5 计算结果及比较 (20) 问题六舍入误差观察 (22) 6.1 计算题目 (22) 6.2 计算结果 (22) 6.3 结论 (23) 7 总结 (24) 附录

微机原理实验报告

微 机 原 理 实 验 报 告 班级: 指导老师:学号: 姓名:

实验一两个多位十进制数相加的实验 一、实验目的 学习数据传送和算术运算指令的用法 熟悉在PC机上建立、汇编、链接、调试和运行汇编语言程序的过程。 二、实验内容 将两个多位十进制数相加,要求被加数和加数均以ASCII码形式各自顺序存放在以DATA1、DATA2为首的5个内存单元中(低位在前),结果送回DATA1处。 三、程序框图 图3-1

四、参考程序清单 DATA SEGMENT DATA1 DB 33H,39H,31H,37H,34H;被加数 DATA1END EQU $-1 DATA2 DB 34H,35H,30H,38H,32H;加数 DATA2END EQU $-1 SUM DB 5 DUP(?) DATA ENDS STACK SEGMENT STA DB 20 DUP(?) TOP EQU LENGTH STA STACK ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA,SS:STACK,ES:DATA START: MOV AX,DATA MOV DS,AX MOV AX,STACK MOV SS,AX MOV AX,TOP MOV SP,AX

MOV SI,OFFSET DATA1END MOV DI,OFFSET DATA2END CALL ADDA MOV AX,4C00H INT 21H ADDA PROC NEAR MOV DX,SI MOV BP,DI MOV BX,05H AD1: SUB BYTE PTR [SI],30H SUB BYTE PTR [DI],30H DEC SI DEC DI DEC BX JNZ AD1 MOV SI,DX MOV DI,BP MOV CX,05H CLC AD2: MOV AL,[SI] MOV BL,[DI] ADC AL,BL

微机原理与接口技术实验报告

微机原理与接口技术》 上机报告 学院:机电学院指导教师:胡勇学号:631424210229 姓名:鞠其林

实验一初级程序的编写与调试实验 、实验目的 1、熟练掌握DEBUG的常用命令,学会用DEBUG调试程序. 2、深入了解数据在存储器中的存取方法, 及堆栈中数据的压入与弹出 3、掌握各种寻址方法以及简单指令的执行过程. 二、实验内容 1、设堆栈指针SP=2000H,AX=3000H,BX=5000H请, 编一程序段将AX的内容和BX 的内容进行交换. 请用堆栈作为两寄存器交换内容的中间存储单元, 用DEBUG调试程序进行汇编与调试. 程序: MOV AX,3000 MOV BX,5000 MOV SP,2000 PUSH AX PUSH BX POP AX POP BX HLT

2、设AX=0002H,编一个程序段将AX的内容乘10, 要求用移位的方法完成程序: MOV AX,0002 MOV BX,AX MOV CL,2 SHL AX,CL ADD AX,BX MOV CL,1 SHL AX,CL HLT

三、心得体会 从这个程序的编辑过程中我感受到了汇编语言的强大,很直观的就可以读懂程 序的含义,但代码比较难记,而且语法严谨,我调试的过程中犯了一点错误, 修改的次数较多,希望我以后可以不再犯同样的错误,也是因为我练的比较的 少,还很生疏,我以后一定多加练习,把汇编学好 实验二 加法及判断程序的编写与调试 、实验目的 1、熟练掌握编写汇编语言源程序的基本方法和基本框架 2、学会编写顺序结构 , 分支结构和循环结构的汇编程序

3、掌握程序中数据的产生与输入输出的方法. 二、实验内容 1、用汇编语言编写一个加法程序: 1325+9839 请用ASCII 码的形式将加数与被加数存放在数据区DATA1和DATA2中, 并将相加结果显示输出. 程序: DATA SEGMENT DATA1 DB '5','2','3','1' DATA2 DB '9','3','8','9' DATA ENDS STACK SEGMENT PARA STACK 'STACK' DB 200 DUP(?) STACK ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA,SS:STACK START: MOV AX,DATA MOV DS,AX MOV AX,STACK MOV SS,AX LEA SI,DATA1 LEA DI,DATA2 MOV CX,4 MOV AH,0 NEXT: MOV AL,[SI] ADC AL,[DI] ADC AL,AH MOV AH,0 AAA ADD AL,30H MOV [DI],AL INC DI INC SI LOOP NEXT MOV CX,5 ADD AH,30H MOV [DI],AH NEXT1:MOV DL,[DI] MOV AH,02 INT 21H DEC DI

相关文档
最新文档