热稳定试验仪

热稳定试验仪
热稳定试验仪

附件1:烟密度试验装置

一、采购要求

1.1烟密度试验装置用于电线电缆成品燃烧性能检测,投标设备须满足以下标准对试验设备的要求:

GB∕T 17651.1-2-1998/IEC 61034.1-2:1997《电缆或光缆在特定条件下燃烧的烟密度测定》

GB∕T 19666-2005《阻燃和耐火电线电缆通则》

1.2技术要求

1.2.1投标方须提供一套满足标准要求的滤光片(带有清晰的滤光示值);

1.2.2投标方须提供滤光片的第三方(具有CNAS资质)校准报告;

1.2.3投标仪器的光路系统符合滤光片标定示值偏差;

1.2.4仪器应自带甲苯标定系统并符合标定要求;

1.2.5仪器光源系统应具有调节光斑大小功能(1.5±0.1)m;

1.2.6仪器配置高精度直流稳压电源(12±0.01)V。

1.2.7仪器适用的卤素灯应是12V 100W,光通量2000LM~3000LM,色温2800~3200K;

1.2.8仪器的接收器光电池应为硒光电池或硅光电池,其光谱响应与国际照明委员会CIE的测光仪相匹配,详情见GB∕T 17651.1-1998 5.3;

1.2.9重点:投标方有义务提供关于仪器的其他信息,清晰全面描述试验系统的功能、性能、特点等,便于招标方了解投标仪器;

1.2.10投标文件应有技术偏离表,对以上各条款逐一响应,并明确正偏离或负偏离;

1.2.11投标文件须带有仪器实物不同角度的图片;

1.2.12投标方没有对投标仪器性能、精度、稳定性关键参数和设备特性明确说明,或交货与合同/投标文件不符,招标方有权停止执行合同,并由投标方(中标方)承担全部责任。

1.2.13供货仪器提供使用说明书、质量保证书、出厂合格证、校准证书、电气原理图等文件;

1.2.14中标仪器交货须提供仪器配装的电气元件随机文件,便于设备维护;

1.2.15投标文件须提供近2年来同类设备销售记录证明文件如合同(可隐藏敏感信息);

1.3交货安装和验收方式

1.3.1供货周期为合同生效后15天内,中标方免费送货(收货地址:江苏省宜兴市绿园路500号)。

1.3.2仪器到货后中标方负责免费安装,并用招标方提供的试验样品调试仪器,能够检测出1.1条所列标准要求的试验数据。

1.3.3对照1.1所列标准对仪器的要求验收符合性;

1.3.4对照投标文件和合同及附件验收仪器实物符合性;

1.3.5请第三方机构进行检定,检定结论作为验收依据。

1.4付款和售后服务

1.4.1中标仪器无预付款,验收合格后一次性付清;

1.4.2中标方对使用仪器的(至少三名)试验员现场培训,达到试验员能规范准确操作仪器的程度;

1.4.3仪器质保期12个月,质保期内制造、质量问题免费三包(包退、包换、保修),更换主要部件后质保期重新计算;

1.4.4仪器质保期外终身提供维修、配件等服务,产生费用双方协商确定;

1.4.7仪器出现异常情况,供应商得到通知后24小时内派人到现场解决问题,如有费用协商确定。

YDMS-B双数显马歇尔稳定度测定仪安全操作规程(正式)

编订:__________________ 单位:__________________ 时间:__________________ YDMS-B双数显马歇尔稳定度测定仪安全操作规程 (正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-7337-35 YDMS-B双数显马歇尔稳定度测定仪 安全操作规程(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1.连接 将传感器连接线插入“传感器”座上,打印机连线插入“打印口”座上,将测试台控制线插入“驱动口”座上,主机插入220V交流电源。 2.通电初检 仪器使用50HZ 380V交流电,联接插座应有良好的可靠接地,电源线在标量应≤10安培,检查无误后,方可通电初检。接通电源,检查仪器运转是否正常,并填写仪器使用记录。将电源开关置于“ON”状态,此时,显示屏显示“月,日”下行显示为当时的“时间”。 3.前面板简介 ㈠“设置”键:

①按此键左窗显示为“1”,右窗显示年份,按“查阅”键即可。 ②再按“设置”键,左窗显示为“2”,右窗显示为月份、日期,按“查阅↑”键,可更改月份,按“查阅↓”键,可更改日期。 ③再按“设置”键,左窗显示“3”,右窗显示为时、分,按“查阅↑”键,可更改小时,按“查阅↓”键可更改分钟。 ④最后按“设置”键,左窗显示“4”,右窗显示为下降的秒数,按“查阅”键可更改下降的时间。 ㈡“下降”键、“停止”键 在正常的通电条件下,可任意调整下降、停止。在任何运行中或特殊情况下,都可以使用“停止”键或主机“手动急停键”,使其停止工作。 ㈢“开始试验”键 当预热时间到,可听到机器内发出嘀一声响,请按开始启动试验,左右显示窗起始显示为“零零零”,承受压力和流值时,显示窗会显示同步正确数据。

沥青混合料马歇尔稳定度试验

沥青混合料马歇尔稳定度试验 (T 0709-2000) 一、目的与适用范围 1、本方法适用于马歇尔稳定度试验和浸水马歇尔稳定度试验,以进行沥青混合料的配合比设计或沥青路面施工质量检验。浸水马歇尔稳定度试验(根据需要,也可进行真空饱水马歇尔试验)供检验沥青混合料受水损害时抵抗剥落的能力时使用,通过测试其水稳定性检验配合比设计的可行性。 2、本方法适用于按本规程T 0702成型的标准马歇尔试件圆柱体和大型马歇尔试件圆柱体。 二、仪具与材料 1、沥青混合料马歇尔试验仪:符合国家标准《沥青混合料马歇尔试验仪》(GB/T 11823)技术要求的产品,对用于高速公路和一级公路的沥青混合料宜采用自动马歇尔试验仪,用计算机或X-Y记录仪记录荷载一位移曲线,并具有自动测定荷载与试件垂直变形的传感器、位移计,能自动显示或打印试验结果。对φ63. 5mm的标准马歇尔试件,试验仪最大荷载不小于25kN,读数准确度100N,加载速率应能保持50mm/min±5mm/min。钢球直径16mm,上下压头曲率半径为50.8mm。当采用φ152. 4 mm大型马歇尔试件时,试验仪最大荷载不得小于50kN,读数准确度为lOON。上下压头的曲率内径为152.4mm ±0.2M,上下压头间距19.05mm±0.lmm。

2、恒温水槽:控温准确度为1℃,深度不小于150mm。 3、真空饱水容器:包括真空泵及真空干燥器。 4、烘箱。 5、天平:感量不大于0.lg 。 6、温度计:分度为1℃。 7、卡尺。 8、其它:棉纱,黄油。 三、标准马歇尔试验方法 1、准备工作 (1)按标准击实法成型马歇尔试件,标准马歇尔尺寸应符合直径φ101.6mm±0.2mm、高 63. 5mm±1. 3mm的要求。对大型马歇尔试件,尺寸应符合直径152. 4mm±0. 2mm,高95. 3mm±2. 5mm的要求。一组试件的数量最少不得少于4个,并符合T 0702的规定。 (2)量测试件的直径及高度:用卡尺测量试件中部的直径,用马歇尔试件高度测定器或用卡尺在十字对称的4个方向量测离试件边缘lOmm处的高度,准确至0.lmm,并以其平均值作为试件的高度。如试件高度不符合63. 5mm±1. 3mm或95. 3mm士2. 5mm要求或两侧高度差大于2mm时,此试件应作废。 (3)按本规程规定的方法测定试件的密度、空隙率、沥青体积百分率、沥青饱和度、矿料间隙率等物理指标。 (4)将恒温水槽调节至要求的试验温度,对粘稠石油沥青或烘箱

热稳定性校验主焦

热稳定性校验主焦 Final approval draft on November 22, 2020

井下高压开关、供电电缆动热稳定性校验 一、-350中央变电所开关断路器开断能力及电缆热稳定性校验 S1点三相短路电流计算: 35kV 变压器阻抗:22 2.1.u %7.5 6.30.37()1001008z N T N T U Z S ?===Ω? 35kV 变压器电阻:2 22.1.22. 6.30.0120.007()8 N T N T N T U R P S =?=?=Ω 35kV 变压器电抗:10.37()X ===Ω 电缆电抗:0 2 (x ) 0.415000.08780 0.66()1000 1000i L X ??+?= = =Ω∑ 电缆电阻:02(x )0.11815000.118780 0.27()1000 1000 i L R ??+?== =Ω∑ 总阻抗: 1 1.06()Z ===Ω S1 点三相短路电流:(3)1 3.43()d I KA === S2点三相短路电流计算: S2点所用电缆为MY-3×70+1×25,长400米,变压器容量为500KVA ,查表的:(2)2d I = S2 点三相短路电流:32 d d =2.88I I KA = 1、架空线路、入井电缆的热稳定性校验。已知供电负荷为,电压为6KV ,需用系数,功率因数cos 0.78φ=,架空线路长度,电缆长度780m (1)按经济电流密度选择电缆,计算容量为 3128.020.62 2486.37cos 0.78 kp S KVA φ?= ==。

电缆的长时工作电流Ig 为239.25 Ig = == A 按长时允许电流校验电缆截面查煤矿供电表5-15得MYJV42-3×185-6/6截面长时允许电流为479A/6kV 、大于符合要求。 (2)按电压损失校验,配电线路允许电压损失5%得 60000.1300Uy V ?=?=,线路的实际电压损失 109.1L U COS DS φφ?====,U ?小于300V 电压损 失满足要求 (3)热稳定性条件校验,短路电流的周期分量稳定性为 电缆最小允许热稳定截面积: 其中:i t ----断路器分断时间,一般取; C----电缆热稳定系数,一般取100,环境温度35℃,电缆温升不超过120℃时,铜芯电缆聚乙烯电缆熔化温度为130℃,电缆负荷率为80%。 2min 185S mm ≤故选用 LGJ-185架空线和MYJV42-3×185电缆符合要 求。 2、二回路电缆的热稳定性校验,与一回路电缆相同,不在做叙述。 3、高压开关断路器开断能力计算 (1)额定电压:U e =6kV (2)额定电流:I e >本变电所最大长期工作电流I gmax (3)查电气设备手册及设备说明书确定断路器型号及参数如表

动热稳定原则

1.定义: 热稳定电流是老的称呼,现称:额定短时耐受电流(I K) 在规定的使用和性能条件下,在规定的短时间内,开关设备和控制设备在合闸位置能够承载的电流的有效值。 额定短时耐受电流的标准值应当从GB762中规定的R10系列中选取,并应该等于开关设备和控制设备的短路额定值。 注:R10系列包括数字1,1.25,1.6,2,2.5,3.15,4,5,6.3,8及其与10n的乘积 动稳定电流是老的称呼,现称:额定峰值耐受电流(I P) 在规定的使用和性能条件下,开关设备和控制设备在合闸位置能够承载的额定短时耐受电流第一个大半波的电流峰值。 额定峰值耐受电流应该等于2.5倍额定短时耐受电流。 注:按照系统的特性,可能需要高于2.5倍额定短时耐受电流的数值。 额定短路持续时间(t k)8] 开关设备和控制设备在合闸位置能承载额定短时耐受电流的时间间隔。 额定短路持续时间的标准值为2s。 如果需要,可以选取小于或大于2s的值。推荐值为0.5s,1s,3s和4s。 2.根据额定短时耐受电流来确定导体截面: GB3906[附录D]中公式:S=I/a√(t△θ) 式中:I--额定短时耐受电流;a—材质系数,铜为13,铝为8.5;t--额定短路持续时间;△θ—温升(K),对于裸导体一般取180K,对于4S持续时间取215K。 则: 25KA/4S系统铜母线最小截面积S=(25/13)*√4/215=260 mm2 31.5KA/4S系统铜母线最小截面积S=(31.5/13)*√4/215=330 mm2 40KA/4S系统铜母线最小截面积S=(40/13)*√4/215=420 mm2 63KA/4S系统铜母线最小截面积S=(63/13)*√4/215=660 mm2 80KA/4S系统铜母线最小截面积S=(80/13)*√4/215=840 mm2 接地母线按系统额定短时耐受电流的86.7%考虑: 25KA/4S系统接地铜母线最小截面积S=260*86.7% =225mm2 31.5KA/4S系统接地铜母线最小截面积S=330*86.7% =287mm2 40KA/4S系统接地铜母线最小截面积S=420*86.7% =370mm2 63KA/4S系统接地铜母线最小截面积S=660*86.7% =580mm2 80KA/4S系统接地铜母线最小截面积S=840*86.7% =730mm2 根据以上计算,总结所用TMY的最小规格如下: ∝jf 10jf 议采用以上计算. 3.根据额定峰值耐受电流来确定铜母线最大跨距(两个支撑间的最大距离) 原则:作用在母线上的作用应力kg/cm≤母线允许应力; 公式:△ js =1.76L2i ch 2*10-3/aW≤△ y;

高压电缆热稳定校验计算书

筠连县分水岭煤业有限责任公司 井 下 高 压 电 缆 热 稳 定 性 校 验 计 算 书 巡司二煤矿 编制:机电科 筠连县分水岭煤业有限责任公司

井下高压电缆热稳定校验计算书 一、概述: 根据《煤矿安全规程》第453条及456条之规定,对我矿入井高压电缆进行热稳定校验。 二、确定供电方式 我矿高压供电采用分列运行供电方式,地面变电所、井下变电所均采用单母线分段分列供电方式运行,各种主要负荷分接于不同母线段。 三、井下高压电缆明细: 矿上有两趟主进线,引至巡司变电站不同母线段,一趟931线,另一趟925线。井下中央变电所由地面配电房10KV输入。 入井一回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 入井二回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 四、校验计算 1、井下入井回路高压电缆热稳定性校验 已知条件:该条高压电缆型号为,MYJV22-8.7/10KV 3*50mm2 ,800m,电缆长度为800m=0.8km。 (1)计算电网阻抗 查附表一,短路电流的周期分量稳定性为 电抗:X=0.072*0.8=0.0576Ω; 电阻:R=0.407*0.8=0.3256 Ω; (2)三相短路电流的计算

A Z I 5.174693305 .0310000 3v 3=?== ∞ (3)电缆热稳定校验 由于断路器的燃弧时间及固有动作时间之和约为t=0.05S; 查附表二得热稳定计算系数取K=142; 故电缆最小热值稳定截面为 23mm 51.2705.0142/5.17469t )/(min ===∞)(K I S Smin<50mm 2 故选用 MYJV 22 -8.7/10KV 3*50 电缆热稳定校验合格,符合要求。 附表一:三相电缆在工作温度时的阻抗值(Ω/Km ) 电缆截面S (mm 2 ) 4 6 10 16 2 5 35 50 70 95 120 150 185 240 交联聚乙烯 R 4.988 3.325 2.035 1.272 0.814 0.581 0.407 0.291 0.214 0.169 0.136 0.11 0.085 X 0.093 0.093 0.087 0.082 0.075 0.072 0.072 0.069 0.069 0.069 0.07 0.07 0.07 附表二 不同绝缘导体的热稳定计算系数 绝缘材料 芯线起始温度(° C ) 芯线最高允许温度(°C ) 系数K 聚氯乙烯 70 160 115(114) 普通橡胶 75 200 131 乙丙橡胶 90 250 143(142) 油浸纸绝缘 80 160 107 交联聚乙烯 90 250 142

选择电流互感器的动稳定和短时热电流的方法

选择电流互感器的动稳定和短时热电流的方法 来源:中国论文下载中心 [ 06-02-28 16:33:00 ] 作者:李世平编辑:studa9ngns 摘要:本文分析了电网短路电流的特点,结合10kV的具体情况,介绍了根据电网短路电流选择电流互感器的额定动稳定电流和短时热电流的方法。 关键词:电网短路电流电流互感器 随着我国的电力系统的传输容量越来越大,系统的短路容量快速增加。以10kV系统为例,短路容量从以前的几千安增大到了几十千安。我国以前生产的电流互感器的额定动稳定电流和额定短时热电流(以下简称动稳定电流和短时热电流)是按照当时电力系统短路容量设计的,其值都比较小,目前,这种变化给电力系统的安全运行带来的隐患没有引起有关人员的高度注意,更没有及时对运行中的电流互感器的动、短时热稳定电流进行校核,及时更好不满足要求的电流互感器,各电网经常发生电流互感器的爆炸事故,造成不必要的损失。 这种爆炸事故不但会造成电流互感器本身的损坏,而且还会引起断路器等其它设备的损坏,每次事故的损失都比较严重。因此,大家应十分重视电流互感器的动、短时热稳定电流的选择和校核工作。 电流互感器额定动稳定、短时热电流和试验方法 电流互感器的短时热电流(Ith)是在二次绕组短路的情况下,电流互感器在一秒钟内承受住且无损伤的最大一次电流方均根值。而额定动稳定电流(Idyn)是在二次绕组短路的情况下,电流互感器能承受其电磁力的作用而无电气或机械损伤的最大一次电流峰值。并且,动稳定电流通常为短时热电流的2.5倍。 在电流互感器的型式试验中,需试验电流互感器的动稳定电流和短时热电流是否达到铭牌值,其短时热电流的试验方法:对于短时热电流(Ith)试验,互感器的初始温度应在5~40℃之间,本试验应在二次绕组短路下进行,所加电流I 和持续时间t应满足(I2t) 不小于,且t在0.5~5s之间。 动稳定试验应在二次绕组短路下进行,所加一次电流的峰值,至少有一个峰不小于额定动稳定电流(Idyn)。 动稳定试验可以与上述热试验合并进行,只需试验中电流第一个主峰值不小于额定动稳定电流(Idyn)。 二、电力系统短路电流计算 在电力系统中,一般三相短路电流数值较大,产生的电动力和发热也最严重。在确定电流互感器动稳定和短时热电流时,可以只根据三相短路电流来选择,而不必考虑系统中的中性点是否接地。

稳定性分析测试仪选择小技巧

大数据时代,如果还在手动做某些测量的话,只能说你真的跟不上时代发展了。远的不说,单就配方研究这一项,如果仅用人工,那这时间成本都够做很多测量了。等一个结果的时间可能就已经收到好多个新的测量要求了。所以这个时候就得要一个仪器了,稳定性分析仪就这么面世啦。 目前市面上有很多稳定性分析测试仪,有国产的也有进口的,不管是哪种仪器,想要达到的目的都是要让大家用的方便,不然稳定性分析测试仪出现的意义就没有了。作为专为配方研究及液体样品稳定性控制而研制的仪器,稳定性分析测试仪的哪些特点让它取代了人工?选择过程又有哪些技巧来避免踩雷呢?这边将以Turbiscan稳定性分析仪为例来为大家做个简单介绍。

稳定性分析测试仪在市场上目前主要有两种非结构破坏性测量。先拿Turbiscan稳定性分析仪来说,它本身采用了较为先进的多重光散射原理,重力静置垂直扫描模式,提供了样品稳定性程度的定性定量到样品不稳定原因剖析所涉及的大部分参数。由于多重光散射原理以及同步双检测器的应用,可分析样品的浓度可达到95%,粒子粒径范围也从10nm-1000μm之间,可以在不破坏、无接触样品的情况下,垂直扫描分析出样品的稳定性情况。 选择过程中需要规避的问题主要有这么几个: 1.看仪器的原理。如果采用的是重力沉降法,这个除了费点时间之外,准确度是没有问题的。这就意味着选择的厂家或者实验室不能对时间有太高要求,但可以对准确度做出一定的规定。如果采用的是预测方法,那就要考虑准确度了。因为这类仪器速度快,但结果并不可信,单纯为了做个粗略分析的,可以考虑这款仪器。

2.看仪器的软件。有些软件可以直观的分析大部分公司所需的结果,并能满足行业要求标准,而有些则需要另行计算。故在选择时候可以考虑一下这方面的问题。 除了以上这两个,还要考虑性价比、公司要求、售后服务等系列问题。这些方面做的比较好的,个人觉得还是Turbiscan稳定性分析仪。

绝缘导线的热稳定校验

现对《低压配电设计规范》GB50054-95的第4.2.2条的规定,谈谈我的意见。 第4.2.2条:绝缘导线的热稳定校验应符合下列规定: 一. 当短路持续时间不大于5s时,绝缘导体的热稳定应按下式进行校验: S≥It0.5/K(4.2.2) 式中 S——绝缘导体的线芯截面(mm2); I——短路电流有效值(均方根值A); t——在已达到允许最高持续工作温度的导体内短路电流持续作用的时间(s); K——不同绝缘的计算系数。 二.不同绝缘、不同线芯材料的K值,应符合表4.2.2的规定。 三.短路持续时间小于0.1s时,应计入短路电流非周期分量的影响;大于5s时应计入散热的影响。 在执行该条规定时,需注意下列问题: 1. 公式(4. 2.2)只适合短路持续时间不大于5s。 2. 短路电流I如何确定: a) 相线的热稳定校验: 在220/380配电系统中,一般以三相短路电流为最大。两相短路电流在远离发电机处发生短路时仅为三相短路电流的0.866倍,只有在发电机出口处短路时两相短路电流可能达三相短路电流的1.5倍。因此,当短路点远离发电机时,校验相线的热稳定时I值采用三相短路电流值;在发电机出口处发生短路时I值采用两相短路电流。 b) 中性线(N)的热稳定校验:取相线对中性线的短路电流作为I值。 c) TN-C系统的PEN、TN-S系统的PE、TT系统的PE、IT系统的PE线热稳定校验:TN-C系统的PEN及TN-S系统的PE线的热稳定校验取相线对PEN或PE线的短路电流作为I值。 TT系统,考虑到某一设备发生中性线碰外壳接地,因中性线基本上为地电位,故障电流甚小,回路上的过电流保护以及RCD都无法动作,此故障作为第一次故障得以长期潜伏下来。但因中性线碰设备外壳与PE线导通,此TT系统实际已转变为TN系统。其后设备发生相线碰外壳时,PE线上流过的故障电流将和TN系统同样大,以金属导体为通路的金属性短路电流。因此TT系统的PE线的热稳定校验所采用的I值需考虑上述的要求。 IT系统,如果某一设备发生第一次接地故障后不能及时消除(例如遇到难以找到故障点和消除故障,或绝缘监测器失灵未发出报警信号等情况),其后其他设备发生第二次接地故障,则故障扩大为两相短路,这时PE线上将通过两相短路电流而非微量的接地电容电流。因此IT系统的PE线热稳定校验所采用的I值应为上述两相短路电流值。 国际电工标准非常重视电气事故的防范措施,在不少情况下需考虑发生两个故障引起的危险,上述即是两例。 d) 短路持续时间小于0.1S时短路电流中的非周期电流分量的发热将起到较显著作用。例如采用带限流作用的断路器,其全分断时间小于0.1s。此时需先按断路器无限流作用计算预期的短路电流值,然后根据制造厂所提供的“I2t——预期短路电流”特性曲线查找对应的I2t值。根据K2S2≥I2t来校验热稳定(该I2t中的I值,是包括非周期分量电流分量的均方根值)。 注:相——N短路电流及相——PE短路电流的如何计算,可参照《工业与民用配电设计手册》的相关内容。 3. 短路持续时间t如何确定: a) 采用断路器的瞬时脱扣器作为短路保护时,t为断路器全分断时间(包括灭弧时间)——全分断时间可查断路器的样本或由断路器制造厂提供。

动热稳定母排选择

电气基础知识:热稳定与动稳定 论坛发言时,发现有的人对动热稳定的运用不是很熟。现整理如下,希望得到大家的支持和认可,毕竟花费了我许多时间。不当之处请指正。 1.定义: 热稳定电流是老的称呼,现称:额定短时耐受电流(I K) 在规定的使用和性能条件下,在规定的短时间内,开关设备和控制设备在合闸位置能够承载的电流的有效值。 额定短时耐受电流的标准值应当从GB762中规定的R10系列中选取,并应该等于开关设备和控制设备的短路额定值。 注:R10系列包括数字1,1.25,1.6,2,2.5,3.15,4,5,6.3,8及其与10n的乘积 动稳定电流是老的称呼,现称:额定峰值耐受电流(I P) 在规定的使用和性能条件下,开关设备和控制设备在合闸位置能够承载的额定短时耐受电流第一个大半波的电流峰值。 额定峰值耐受电流应该等于2.5倍额定短时耐受电流。 注:按照系统的特性,可能需要高于2.5倍额定短时耐受电流的数值。 额定短路持续时间(t k) 开关设备和控制设备在合闸位置能承载额定短时耐受电流的时间间隔。 额定短路持续时间的标准值为2s。 如果需要,可以选取小于或大于2s的值。推荐值为0.5s,1s,3s和4s。 2.根据额定短时耐受电流来确定导体截面: GB3906[附录D]中公式:S=I/a√(t△θ) 式中:I--额定短时耐受电流;a—材质系数,铜为13,铝为8.5;t--额定短路持续时间;△θ—温升(K),对于裸导体一般取180K,对于4S持续时间取215K。 则: 25KA/4S系统铜母线最小截面积S=(25/13)*√4/215=260 mm2 31.5KA/4S系统铜母线最小截面积S=(31.5/13)*√4/215=330 mm2

T0709-2011沥青混合料马歇尔稳定度试验

沥青混合料马歇尔稳定度试验检验细则 编制:刘飞 审核:张方 批准:梅静实施日期:2016年06月20日1、目的 为了更好的学习和掌握标准规定与试验方法,熟练操作仪器设备;确保试验的熟练性、准确性。 2、范围 2.1本方法适用于马歇尔稳定度试验和浸水马歇尔稳定度试验,以进行沥青混合料的配合比设计或沥青路面施工质量检验。浸水马歇尔稳定度试验(根据需要,也可进真空饱水马歇尔试验)供检验沥青混合料受水损害时抵抗剥落的能力时使用,通过测试其水稳定性检验配合比设计的可行性。 2.2本方法适用于按本规程T 0702成型的标准马歇尔试件圆柱体和大型马歇尔试件圆柱体。 3、依据标准 JTG E20—2011 公路工程沥青及沥青混合料试验规程 T 0709—2011 沥青混合料马歇尔稳定度试验 4、仪具与材料技术要求 4.1沥青混合料马歇尔试验仪 分为自动式和手动式。自动马歇尔试验仪应具备控制装置、记录荷载一位移曲线、自动测定荷载与试件的垂直变形,能自动显示和存储或打印试验结果等功能。手动式由人工操作,试验数据通过操作者目测后读取数据。 对用于高速公路和一级公路的沥青混合料宜采用自动马歇尔试验仪。 4.1.1当集料公称最大粒径小于或等于26.5mm时,宜采用?101.6mm×63. 5mm 的标准马歇尔试件,试验仪最大荷载不得小于25kN,读数准确至O.lkN,加载速率应能保持 50mm/min ±5mm/min。钢球直径16mm±0.05mm,上下压头曲率半径为50.8mm±0.08mm。 4.1.2当集料公称最大粒径大于26.5mm 时,宜采用?152.4mm×9 5.3mm大型马歇尔试件,试验仪最大荷载不得小50kN,读数准确至 O.lkN。上下压头的曲率内径为?152.4mm ±0.2mm,上下压头间距19.05mm±0.1mm。大型马歇尔试件的压头尺寸如图T 0709-1所示。 4.2恒温水槽:控温准确至1℃,深度不小于150mm。 4.3真空饱水容器:包括真空泵及真空干燥器。 4.4烘箱。 4.5天平:感量不太于O.lg。 4.6温度计:分度值1℃。 4.7卡尺。 4.8其他:棉纱、黄油。 5、标准马歇尔试验方法 5.1准备工作 5.1.1按T 0702标准击实法成型马歇尔试件,标准马歇尔试件尺寸应符合直径 101.6mm ±0.2mm、高63.5mm ±1.3mm的要求。对大型马歇尔试件,尺寸应符合直径 152.4mm±0.2mm、高95.3mm ±2.5mm的要求组试件的数量不得少于4个,并符合 T 0702的规定。 4.1.2量测试件的直径及高度:用卡尺测量试件中部的直径,用马歇尔试件高度测定器或用卡尺在十字对称的4个方向量测离试件边缘10mm处的高度,准确至0.lmm,并以其平均值作为试件的高度。如试件高度不符合63.5mm ±1. 3rmn或9 5.3mm 土2.5mm 要求或两侧髙度差大于2mm,此试件应作废。

马歇尔稳定度作业指导书

ZDS XXX作业指导书 XXXX-ZDS-E4

2013-02-10 发布2013-03-01 XXX 发布实施 沥青混合料马歇尔稳定度试验

为保证进行沥青混合料马歇尔稳定度试验时依据技术标准,使本中心不同检测人员,不同时间所进行的检测过程保持一致,实现检测结果的重复性和正确性,特制定本指导书。 本指导书编制遵照JTJ052-2000《公路工程沥青及沥青混合料试 验规程》等标准的规定及本中心相关程序文件的规定 本指导书由XXX 负责起草。 本指导书主要起草人:校核: 本指导书批准人: 本指导书自2013年2 月首次发布

沥青混合料马歇尔稳定度试验 1. 目的与适用范围 1.1 本方法适用于马歇尔稳定度试验和浸水马歇尔稳定度试验,以进行沥青混合料的配合比设 计或沥青路面施工质量检验。浸水马歇尔稳定度试验(根据需要,也可进行真空饱水马歇尔试验)供检验沥青混合料受水损害时抵抗剥落的能力时使用,通过测试其水稳定性检验配合比设计的可行性。 1.2 本方法适用于按《沥青混合料试件制作方法(击实法)作业指导书》制作成型的标准马歇尔 试件圆柱体。 2.规范性引用文件 . JTJ052-2000 《公路工程沥青及沥青混合料试验规程》 JTJ071-98 《公路工程质量检验评定标准》 GB8107-1987《数值修约规则》 使用本细则的人员应及时探讨采用下列文件最新版本的可能性,修订时应按相关质量文件的维护程序规定进行。 3. 仪器设备要求 3.1沥青混合料马歇尔试验仪:HDMS-3型,压力量程 0~30KN精度102 3.2恒温水槽:CF-1型,控温精度w± 1 Co 3.3烘箱:101-4型,温度能控制在 105C± 5Co 3.4 温度计:分度为 1Co 3.5其他:卡尺、棉纱、黄油等。 4.检测环境条件 4.1进行室内试验时温度 5 C ~35C,相对湿度不大于 90% 4.2 应由较稳定的 50Hz, 220V 交流电源供电。 4.3 在无强烈震动与无强电磁场干扰的环境下工作。 4.4 清洁, 干燥,自然通风良好。 5.接样 5.1 接样人员接样前应先检查委托协议书填写是否完备。 5.2 接样人员应参照《沥青混合料马歇尔稳定度试验作业指导书》的适用范围,判定所接试样是 否为标准马歇尔试件圆柱体。 6. 样品制备 采用击实法在室内进行沥青混合料标准马歇尔试件的制作,具体操作参照《沥青混合料试件制作方法作业指导书》。一组标准试件的数量最少不得少于 4 个。 7. 检测细则 7.1 试验准备:

井下高压电缆热稳定性校验

井下高压电缆热稳定性校验

————————————————————————————————作者:————————————————————————————————日期:

井下高压电缆热稳定性校验 机电运输部 二○一二年七月

一、井下高压电缆明细: 水泵一回路 MYJV 428.7/10-3*150mm 2-520m(6KV) 水泵二回路 MYJV 428.7/10-3*95mm 2-520m(6KV) 井下一回路MYJV 428.7/10-3*150mm 2-520m(6KV) 井下二回路MYJV 428.7/10-3*95mm 2-520m(6KV) 12采区上部一回路MYJV 328.7/10-3*95mm 2-1300m(6KV) 12采区上部二回路MYJV 328.7/10-3*70mm 2-1300m(6KV) 12采区下部一回路MYJV 328.7/10-3*70mm 2-600m(6KV) 12采区下部二回路MYJV 328.7/10-3*70mm 2-600m(6KV) 14采区回路MYJV 328.7/10-3*70mm 2-1400m(6KV) 南翼配电点回路MYJV 328.7/10-3*70mm 2-495m(6KV) 二、校验计算 1、井下水泵一回路高压电缆热稳定性校验 已知条件:该条高压电缆型号为 MYJV 428.7/10-3*150mm 2(6KV ),电缆长度为520m 。 短路电流的周期分量稳定性为 X=0.08*0.52=0.0416Ω; R=0.295*0.52=0.1534 Ω ;Ω=+=+=158.01534.00416.02222 X R Z ,A Z I 23021158 .0363003v 3=?==∞ 用短路电流不衰减假想时间等于断路器的动作时间(0.25s )故电缆最小热值稳定截面为

动稳定和热稳定的计算.

电气的热稳定与动稳定 1.定义: 热稳定电流是老的称呼,现称:额定短时耐受电流(I K) 电流通过导体时,导体要产生热量,并且该热量与电流的平方成正比,当有短路电流通过导体时,将产生巨大的热量,由于短路时间很短,热量来不及向周围介质散发,衡量电路及元件在这很短的时间里,能否承受短路时巨大热量的能力为热稳定(在规定的使用和性能条件下,在规定的短时间内,开关设备和控制设备在合闸位置能够承载的短路电流的有效值)。 额定短时耐受电流的标准值应当从GB762中规定的R10系列中选取,并应该等于开关设备和控制设备的短路额定值。 注:R10系列包括数字1,1.25,1.6,2,2.5,3.15,4,5,6.3,8及其与10n的乘积 动稳定电流是老的称呼,现称:额定峰值耐受电流(I P) 短路电流、短路冲击电流通过导体时,相邻载流导体间将产生巨大的电动力,衡量电路及元件能否承受短路时最大电动力的这种能力,称作动稳定(在规定的使用和性能条件下,开关设备和控制设备在合闸位置能够承载的额定短时耐受电流第一个大半波的电流峰值)。 额定峰值耐受电流应该等于2.5倍额定短时耐受电流。 注:按照系统的特性,可能需要高于2.5倍额定短时耐受电流的数值。 额定短路持续时间(t k) 开关设备和控制设备在合闸位置能承载额定短时耐受电流的时间间隔。 额定短路持续时间的标准值为2s。 如果需要,可以选取小于或大于2s的值。推荐值为0.5s,1s,3s和4s。

2.根据额定短时耐受电流来确定导体截面: GB3906[附录D]中公式:S=I/a√(t/△θ) 式中:I--额定短时耐受电流(A);a—材质系数,铜为13,铝为8.5;t--额定短路持续时间(S);△θ—温升(K),对于裸导体一般取180K,对于4S持续时间取215K。则: 25KA/4S系统铜母线最小截面积S=(25/13)*√4/215=260 mm2 31.5KA/4S系统铜母线最小截面积S=(31.5/13)*√4/215=330 mm2 40KA/4S系统铜母线最小截面积S=(40/13)*√4/215=420 mm2 63KA/4S系统铜母线最小截面积S=(63/13)*√4/215=660 mm2 80KA/4S系统铜母线最小截面积S=(80/13)*√4/215=840 mm2 接地母线按系统额定短时耐受电流的86.7%考虑: 25KA/4S系统接地铜母线最小截面积S=260*86.7% =225mm2 31.5KA/4S系统接地铜母线最小截面积S=330*86.7% =287mm2 40KA/4S系统接地铜母线最小截面积S=420*86.7% =370mm2 63KA/4S系统接地铜母线最小截面积S=660*86.7% =580mm2 80KA/4S系统接地铜母线最小截面积S=840*86.7% =730mm2 根据以上计算,总结所用TMY的最小规格如下: 有人采用:S=I∝√t k jf 10/165;k jf:集肤效应系数-TMY取1.15计算结果偏大,建议采用以上计算。

热稳定性校验(主焦

井下高压开关、供电电缆动热稳定性校验 一、-350中央变电所开关断路器开断能力及电缆热稳定性校验 1 23 G 35kV 2 Uz%=7.5△P N.T =12kW △P N.T =3.11kW S N.T =8MVA 6kV S1点三相短路电流计算: 35kV 变压器阻抗: 2 22.1. u %7.5 6.30.37()1001008z N T N T U Z S ?===Ω? 35kV 变压器电阻:2 22.1.22. 6.30.0120.007()8 N T N T N T U R P S =?=?=Ω 35kV 变压器电抗:10.37()X = ==Ω 电缆电抗:02(x )0.415000.08780 0.66()1000 1000i L X ??+?== =Ω∑ 电缆电阻:02(x )0.11815000.118780 0.27()1000 1000 i L R ??+?== =Ω∑ 总阻抗: 21.370.66) 1.06( Z ==Ω S1点三相短路电流:(3)1 3.43()d I KA === S2点三相短路电流计算: S2点所用电缆为MY-3×70+1×25,长400米,变压器容量为500KV A ,查表的:(2)2d I =2.5KA

S2点三相短路电流:32 d d =2.88I I KA = 1、架空线路、入井电缆的热稳定性校验。已知供电负荷为3128.02KV A ,电压为6KV ,需用系数0.62,功率因数cos 0.78φ=,架空线路长度1.5km ,电缆长度780m (1)按经济电流密度选择电缆,计算容量为 3128.020.62 2486.37cos 0.78 kp S KVA φ?= ==。 电缆的长时工作电流Ig 为239.25 Ig === A 按长时允许电流校验电缆截面查煤矿供电表5-15得MYJV42-3×185-6/6截面长时允许电流为479A/6kV 、大于239.25A 符合要求。 (2)按电压损失校验,配电线路允许电压损失5%得 60000.1300Uy V ?=?=,线路的实际电压损失 109.1L U COS DS φφ?====,U ?小于300V 电压损失满足要求 (3)热稳定性条件校验,短路电流的周期分量稳定性为 电缆最小允许热稳定截面积: 3 2min d =S I mm 其中:i t ----断路器分断时间,一般取0.25s ; C----电缆热稳定系数,一般取100,环境温度35℃,电缆温升不超过120℃时,铜芯电缆聚乙烯电缆熔化温度为130℃,电

最新动热稳定母排选择

1 电气基础知识:热稳定与动稳定 2 论坛发言时,发现有的人对动热稳定的运用不是很熟。现整理如下,希望得3 到大家的支持和认可,毕竟花费了我许多时间。不当之处请指正。 4 1.定义: 5 热稳定电流是老的称呼,现称:额定短时耐受电流(I K) 6 在规定的使用和性能条件下,在规定的短时间内,开关设备和控制7 设备在合闸位置能够承载的电流的有效值。 8 额定短时耐受电流的标准值应当从GB762中规定的R10系列中选取,9 并应该等于开关设备和控制设备的短路额定值。 10 注:R10系列包括数字1,1.25,1.6,2,2.5,3.15,4,5,6.3,11 8及其与10n的乘积 12 动稳定电流是老的称呼,现称:额定峰值耐受电流(I P) 13 在规定的使用和性能条件下,开关设备和控制设备在合闸位置能够14 承载的额定短时耐受电流第一个大半波的电流峰值。 15 额定峰值耐受电流应该等于2.5倍额定短时耐受电流。 16 注:按照系统的特性,可能需要高于2.5倍额定短时耐受电流的数17 值。 18 额定短路持续时间(t k) 19 开关设备和控制设备在合闸位置能承载额定短时耐受电流的时间间20 隔。 21 额定短路持续时间的标准值为2s。 22 如果需要,可以选取小于或大于2s的值。推荐值为0.5s,1s,3s和4 23 s。

24 2.根据额定短时耐受电流来确定导体截面: 25 GB3906[附录D]中公式:S=I/a√(t△θ) 26 式中:I--额定短时耐受电流;a—材质系数,铜为13,铝为8.5;t--额定短27 路持续时间;△θ—温升(K),对于裸导体一般取180K,对于4S持续时间取28 215K。 29 则: 30 25KA/4S系统铜母线最小截面积S=(25/13)*√4/215=260 mm2 31 31.5KA/4S系统铜母线最小截面积S=(31.5/13)*√4/215=330 mm2 32 40KA/4S系统铜母线最小截面积S=(40/13)*√4/215=420 mm2 33 63KA/4S系统铜母线最小截面积S=(63/13)*√4/215=660 mm2 34 80KA/4S系统铜母线最小截面积S=(80/13)*√4/215=840 mm2 35 接地母线按系统额定短时耐受电流的86.7%考虑: 36 25KA/4S系统接地铜母线最小截面积S=260*86.7% =225mm2 37 31.5KA/4S系统接地铜母线最小截面积S=330*86.7% =287mm2 38 40KA/4S系统接地铜母线最小截面积S=420*86.7% =370mm2 39 63KA/4S系统接地铜母线最小截面积S=660*86.7% =580mm2 40 80KA/4S系统接地铜母线最小截面积S=840*86.7% =730mm2 41 根据以上计算,总结所用TMY的最小规格如下: 42

MQS-2路面材料强度试验仪

■MQS-2路面材料强度试验仪主要用途与适用范围 本主机是一种多功能公路路基、路面材料试验仪器。配合使用多种仪器附件,主要用于测定各种土试件的无侧限抗压强度,回弹模量、承载比以及可用于测定沥青混合料的劈裂抗拉强度,马歇尔稳定度和流值等。 ■MQS-2路面材料强度试验仪主要技术参数 最大载荷:100KN 丝杠盘最大升降距离:240mm 丝杠盘升降速度: 电动快速:50mm/分 电动慢速:1mm/分 手动:1/6mm/圈 外型尺寸:650*460*1430mm 净重:约190kg ■MQS-2路面材料强度试验仪结构原理 本机由底座、减速箱、立柱、横梁及罩壳等组成。 电动机及控制电器置于底座内,减速箱置于底座上。 横梁、减速箱及底座经两根立柱相联接,横梁并可上下调节,以适应不同高度的试样,横梁下平面可联接测力环。底座及减速箱外面装有罩壳。 本机加载有两种形式,一种是电动,电动机由同步齿形带传递给减速箱,经减速箱减速后,旋转运动转换成丝杆的垂直运动,从而达到对试样垂直加载的功用。另一种是手动,将调速手柄置于空档,即可用摇手柄进行手动加载。 ■MQS-2路面材料强度试验仪试验操作方法 用试验仪及其它配套夹具可进行多项试验,如水泥石灰稳定土的抗压强度、劈裂强度、加弹模量等试验、沥青混凝土的马歇尔试验、路基土和多种路面材料的承载比(CBR)试验。 ■MQS-2路面材料强度试验仪安装、试车、保养 1. 试验仪应安装在清洁、干燥、温度均匀、周围无震动、无腐蚀性气体影响的房间里。 2. 安装地点应位置适当,便于操作和保养。 3. 安装地基牢固可靠。 4. 电器要可靠接地。 5. 每一年向机内加锂基润滑油。 6. 电动操作时,摇手柄不允许装在机上,以免伤人。

高压电缆热稳定校验计算书

*作品编号:DG13485201600078972981* 创作者:玫霸* 筠连县分水岭煤业有限责任公司 井 下 高 压 电 缆 热 稳 定 性 校 验 计 算 书 巡司二煤矿

编制:机电科 筠连县分水岭煤业有限责任公司 井下高压电缆热稳定校验计算书 一、概述: 根据《煤矿安全规程》第453条及456条之规定,对我矿入井高压电缆进行热稳定校验。 二、确定供电方式 我矿高压供电采用分列运行供电方式,地面变电所、井下变电所均采用单母线分段分列供电方式运行,各种主要负荷分接于不同母线段。 三、井下高压电缆明细: 矿上有两趟主进线,引至巡司变电站不同母线段,一趟931线,另一趟925线。井下中央变电所由地面配电房10KV输入。 入井一回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 入井二回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 四、校验计算 1、井下入井回路高压电缆热稳定性校验 已知条件:该条高压电缆型号为,MYJV22-8.7/10KV 3*50mm2 ,800m,电缆长度为800m=0.8km。 (1)计算电网阻抗 查附表一,短路电流的周期分量稳定性为

电抗:X=0.072*0.8=0.0576Ω; 电阻:R=0.407*0.8=0.3256 Ω; (2)三相短路电流的计算 (3)电缆热稳定校验 由于断路器的燃弧时间及固有动作时间之和约为t=0.05S; 查附表二得热稳定计算系数取K=142; 故电缆最小热值稳定截面为 Smin<50mm2故选用 MYJV22 -8.7/10KV 3*50 电缆热稳定校验合格,符合要求。 附表一:三相电缆在工作温度时的阻抗值(Ω/Km)

75℃热稳定性试验仪

HY2128075℃热稳定性试验装置 GB/T 21280-2007《危险货物热稳定性试验方法》 联合国《关于危险货物运输的建议书·试验和标准手册》 原理特征: 本装置以国家标准联合国《关于危险货物运输的建议书试验和标准手册》为依据,测量物质在高温条件下的稳定性;集精密机械加工、无线控制技术及计算机技术于一体;自动完成恒温,数据采集,数据通信,数据存储,生成Excel 数据报表,自动绘制时间/温度曲线,自动判断物质的热稳定性。 计算机无线监控,彻底实现人机分离,保证人身安全;自动分级 技术指标: 1、控制方式:计算机监控,数据海量存储 2、热空气循环箱:内容积大于20L,不锈钢内胆 3、温度测试范围:室温~180℃ 4、分辨率:0.1℃ 5、测量路数:3路(样品、参比物质、环境) 6、温度分布误差:小于2℃ 7、温度测量元件:德国JUMO公司原装温度传感器 8、加热方式:不锈钢加热器 9、控温方式:PID 闭环控温 10、样品容器: 1.试验容器:Ф50.5±1 mm * 150 mm 平底玻璃管 2.参比容器:Ф50.5±1 mm * 150 mm 平底玻璃管 3.容器塞:Ф49mm * 30 mm 聚四氟乙烯 11、停止方式:满足实验停止条件自动停止,并关闭加热器电源 12、电源:220±10%V AC 50Hz±2Hz 13、功率: 2000W 14、显示:彩色液晶显示 15、环境温度:15℃~ 40℃ 16、环境湿度:30%~ 80%RH 主要特点: ●计算机监控,数据海量存储。 ●自动绘制时间-温度曲线,自动分级,数据准确、显示直观。 ●满足实验停止条件自动停止加热 ●标准样品容器,可更换不锈钢网,使用简便 ●不锈钢内胆试验箱,热空气内部循环,温度分布均匀。 生产单位:吉林市宏源科学仪器有限公司

相关文档
最新文档