岩石结构面力学原型试验相似材料研究

岩石结构面力学原型试验相似材料研究
岩石结构面力学原型试验相似材料研究

万方数据

万方数据

第29卷第1l期杜时贵,等.岩石结构面力学原型试验相似材料研究?2265?

式中:乞为节理抗剪强度;瓯为作用于节理的法向应力:饩为节理基本内摩擦角;职Cn,JCS.分别为取样长度为L的节理粗糙度系数和壁岩强度。JRC.JCS模型认为,结构面的壁岩强度和粗糙度系数是决定抗剪强度的主要因素。

杜时贵等‘131将天然岩石结构面试样的直剪试验结果与JRC.JCS模型计算值进行了对比分析,指出应用结构面粗糙度系数定向统计测量技术的JRC.JCS模型评价的结构面抗剪强度参数与直剪试验结果具有较好的一致性。

2.4相似材料的选择要求

要使模型与原型完全相似,则必须满足以上的相似关系及原则【14】。但是,要满足所有的相似关系是非常困难的,甚至是不可能的。因此,必须首先查明所有因素中哪些是决定性因素才能对模拟试验的材料进行选择。

根据JRC.JCS模型的力学机制,在结构面剪切试验过程中,主要涉及较高法向应力、结构面凸起体强度、表面粗糙度系数等因素对抗剪强度的综合作用。可见,模拟结构面相似材料选择的主要因素是能够复制原岩结构面的表面形状和起伏度、与原岩结构面相近的抗压强度及较高法向应力下相似的剪切变形破坏机制。因此,在相似材料选择和配比实验中,结合相似材料的相似原理,要求相似材料模型的几何特征及物理常数均与原型一致,即应力相似比G、几何相似比C,和弹性模量相似比Q均接近l。

结合上述分析,课题组研制了以高强水泥、硅粉、高效减水剂、标准砂、水等混合而成的模型材料来代替岩石结构面进行力学试验。试验原材料中取消了粗骨料,选用标准砂作为细骨料,一是由于其颗粒小,能够较好地模拟岩石结构面的起伏形态;二是水泥石在粗骨料界面(过渡区)是普通混凝土的最薄弱区域,易开裂。为了得到与岩石结构面相近的模型材料,利用模拟岩石结构面替代原岩结构面进行各种原型试验研究,本文从以下4个方面对模型试件进行对比试验:

(1)结合相似材料的相似原理,通过均匀设计方法进行不同材料的敏感性试验,得到最优的岩石模型材料。

(2)利用逆向工程技术原型”】并采用自行研制的多尺度试样模具得到与原岩结构面的表面形态及起伏度一致的不同尺度模拟结构面。在已选取的原岩结构面进行不同尺度的结构面试样的制作,通过对原岩结构面及试样上下结构面的粗糙度测量,对比原岩结构面与模拟结构面的表面起伏形态。

(3)模拟结构面试件完成5级法向荷载剪切后,对剪切后结构面粗糙度系数进行统计,分析粗糙度系数的衰减率和结构面的破坏形式。

(4)利用JRC.JCS模型估算原岩结构面抗剪强度,与模拟岩石结构面直剪试验的试验结果进行对比评价。

3模型试件的制作及试验

3.1模型试件的制作

试验原材料有:52.5R普通硅酸盐水泥、标准砂、920U微硅粉及FDN-F2高效减水剂。试验设计了基准配合比(见表1),减水剂掺量为O%~2%,砂细度模数为2.0-~3.0,硅粉与胶凝材料比为0--一0.2,进行不同配比的敏感性试验。

表1基准配合比

Table1Standardmixingratios

标准试件的制作是根据《普通混凝土力学性能试验方法标准》(GB50081—2002)的规定,选用边长为150lllm的立方体试模,将配合好的混合材料搅拌后倒入试模,振动密实,标准养护,拆模即可成型,如图l所示。

图1标准试件

Fig.I

Standardsamples

模拟岩石结构面试件制作步骤:(1)选取原岩结构面并进行间距为10cmx10

cm的网格划分;(2)

万方数据

?2266?岩石力学与工程学报2010焦选取隔离膜对原岩结构面进行处理;(3)多尺度试

样模具(大小为10~100cm)放置在结构面上,根据

基准配合比将混合材料缓慢地倒在模具内进行振捣

养护;(4)把制作好的模型结构面作为下盘结构面

利用同样的方法制作与之吻合的上盘结构面(见图2)。

图2模拟岩石结构面试件

Fig.2Simulatedrockstructuralplanespecimens

3.2标准试件力学性能测试

标准试件养护完成以后,从标准养护箱中取出,先称量,随后在多功能压力机上测试试件的抗压强度(见图3)。由于配比较多,表2仅列出了基准配合比试件参数的测试结果。

图3相似材料抗压试验

Fig.3Compressiontestofsimilarmaterials

表2基准配合比试件参数测试结果

Table2Testresultsofmechanicalparametersofsampleswithstandardmixingratios

3.3模拟结构面试件粗糙度系数测定

在模拟岩石结构面试件剪切前,利用轮廓曲线仪【16】(见图4),沿与剪切荷载相同的方向,对各个试件的上、下盘结构面表面轮廓曲线进行测定,

图4轮廓曲线仪‘16】

Fig.4Profilograph[161

在同一方向绘制的轮廓曲线每lOcm不少于l条(见图5),然后通过粗糙度尺量测每一条轮廓曲线的起伏幅度值,并运用JRC修正直边法数学表达式[171计算各轮廓曲线的粗糙度系数。为了对比模拟岩石结构面经过5级荷载剪切后结构面粗糙度系数的衰减率,在直剪试验完成后,采用相同方法对剪切后的结构面进行粗糙度系数统计。表3给出了J01结构面的起伏差R,和粗糙度系数般G。

图5模拟结构面表面形态

Fig.5Surfacemorphologyofsimulatedstructural

plane

3.4模拟结构面试件抗剪强度测试

模拟岩石结构面完成粗糙度系数统计后,进行不同尺度的模拟结构面5级荷载剪切试验(见图6),J01模拟结构面(试件大小为100cm×100cm)直剪试验结果列在表4中。

3.5JRC-JCS模型经验估算

天然结构面的岩石类型是钙质板岩,结构面壁岩干燥状态下的壁岩强度JCSo=78.6MPa,基本内摩擦角纸=28.2。。根据式(1),先确定各个估算参数,再计算每级法向荷载下结构面的抗剪强度。

(1)JCS.的确定

根据试样的JCSo值,利用壁岩强度尺寸效应公

式确定大尺度试样结构面的壁岩强度JCS【18l:.万方数据

表3J0l结构面的起伏差Ry和粗糙度系数JRC.Table3Undulation

Ry

androughnesscoefficientJRCnofstructuralplaneJO1

状态警急£抵等篙篆篙鼍鬻

图6模拟结构面直剪试验

Fig。6Sheartestofsimulatedstructuralplane

蝇=蛹(扩2㈣式中:厶为试件结构面的取样长度,此处取100咖;厶为标准试样结构面的长度,取样长度为10cm。

表4结构面抗剪强度的直剪试验和经验估算结果

Table4Empiricalestimationanddirectsheartestresultsofstructuralplaneshearstrength

抗剪强度/kPa法向应力/kPa——

模拟结构面直剪试验原岩结构面经验估算

(2)JRC的确定

根据表3,原岩结构面职Co=7.43,厶=100cm的粗糙度系数职e=2.09。

(3)纸的确定

根据岩石物理力学性质试验结果可知,干燥试样基本内摩擦角fob=28.2。。

(4)每级法向荷载下抗剪强度确定

将各个估算参数代入式(1),得到各级试验法向应力下的结构面抗剪强度估算值(见表4)。

4试验结果分析

4.1材料配比试验结果分析

通过大量的配比试验,得到了各种原料掺量对混合材料性能的影响,主要分析结果如下:

(1)塌落度相同时,抗压强度随着减水剂掺量(即减水剂用量与胶凝材料用量比)的增加而增大(见图7)。试验中减水剂掺量均小于2.0%,通过掺加减水剂以降低水胶比,来提高抗压强度,在掺量为2.0%范围内减水剂掺量越大,则水胶比越小,强度就越高。

0.00.51.O1.52.0

减水剂掺量肱

图7减水剂掺量与抗压强度的关系曲线Fig.7

RelationClII"Veofsuperplasticizercontentand

compressivestrength

万方数据

万方数据

第29卷第11期杜时贵,等.岩石结构面力学原型试验相似材料研究

图135级荷载剪切试验后模拟结构面表面形态Fig.13Surfacemorphologyofsimulatedstructuralsurfaceafterfive?degreedirectsheartest

/.#cm

图14剪切前后模拟结构面粗糙度系数艘Cn衰减率

Fig.14JRcndecayratesofsimulatedstructureplanebeforeandaftersheartest

j|l】j

Ldern

图15剪切后模拟结构面上下盘I,Rcn相对误差

Fig.15JRcnrelativeerrorsbetweenhangingwalland

footwallofsimulatedstructureplaneaftershear

test

4.4JRC.JCS模型估算结果与试验结果的对比分析

图16为抗剪强度误差随法向应力的变化规律,由图可知:(1)模拟岩石结构面抗剪强度直剪试验结果与JRC.JCS模型的估算结果具有较好的一致性,抗剪强度最大误差为16.68%,相对误差平均为7.62%;(2)抗剪强度误差随法向应力增加而下降,并趋于稳定,主要原因是由于同一结构面在多级荷载试验后结构面微凸体的磨损程度造成的。

法向应力/kPa

图16结构面抗剪强度直剪试验值和经验估算值的相对误差

Fig.16Relative

en郴betweenempiricalestimationresultsanddirectsheartestresultsofstructuralplaneshear

strength

5结论

本文基于岩体结构面抗剪强度机制及相似材料理论,研制了以高强水泥、硅粉、高效减水剂、标准砂、水等混合料形成的新型模拟材料,并利用其制得的试样及模型结构面进行了大量物理力学试验的对比分析,主要结论如下:

(1)新型模拟材料的抗压强度与原岩结构面相近,调整不同混合原料的配合比,可以覆盏中低等强度的岩石材料。

(2)采用新型模拟材料并利用自行设计的多尺度试样模具可制作与原岩结构面的表面形态及起伏度近似一致的模拟结构面。

(3)利用模拟结构面代替原岩结构面进行直剪试验,模拟结构面表面的磨损程度、粗糙度系数衰减规律及破坏形式均与原岩结构面相似,且模拟结构面抗剪强度直剪试验结果与JRC.JCS模型经验估算结果相差不大。

(4)模拟材料具有物理力学性能稳定、制作方便、成本低廉的优点,可代替原岩结构面进行不同尺寸、可重复性的破坏性试验。

参考文献(References):

【l】杜时贵.岩体结构面的工程性质【M】.北京:地震出版社,1999.(DUsbigIIi.Engineeringpropeaiesofrockdiscontinuities[M].aeijing:EarthquakePress,1999.(inChinese))

【2】杜时贵.岩体结构面抗剪强度经验估算【M】.北京:地震出版社,2005.fDUShigIli.Empiricalestimationfortheshearmengthofrockdiscontinuities[M].Be日illg:Eanllq岫kePress,2005.伽Chinese))【3】PATTONFD.Multiplemodesofshe.atfailurein

rock[C]//万方数据

万方数据

岩石结构面力学原型试验相似材料研究

作者:杜时贵, 黄曼, 罗战友, 贾汝达, DU Shigui, HUANG Man, LUO Zhanyou, JIA Ruda 作者单位:杜时贵,DU Shigui(浙江工业职业技术学院,浙江,绍兴,312000;浙江科技学院,岩土工程研究所,浙江,杭州,310023), 黄曼,HUANG Man(浙江工业职业技术学院,浙江,绍兴,312000;浙江

大学,岩土工程研究所,浙江,杭州,310027), 罗战友,LUO Zhanyou(浙江科技学院,岩土工程

研究所,浙江,杭州,310023), 贾汝达,JIA Ruda(浙江工业职业技术学院,浙江,绍兴

,312000)

刊名:

岩石力学与工程学报

英文刊名:CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING

年,卷(期):2010,29(11)

参考文献(18条)

1.李晓红;卢义玉;康勇岩石力学实验模拟技术 2007

2.王汉鹏;李术才;张强勇新型地质力学模型试验相似材料的研制[期刊论文]-岩石力学与工程学报 2006(09)

3.BANDIS S;LUMSDEN A C;BARTON N R Experimental studies of scales effects on the shear behaviour of rock joints 1981(01)

4.任伟中;王庚荪;白世伟共面闭合断续节理岩体的直剪强度研究[期刊论文]-岩石力学与工程学报 2003(10)

5.《中华人民共和国行业标准》编写组DB33/T1028-2006岩体结构面抗剪强度综合评价应用技术规程 2006

6.杜时贵;颜育仁;胡晓飞JRC-JCS模型抗剪强度估算的平均斜率法[期刊论文]-工程地质学报 2005(04)

7.DU S G;HU Y J;HU X F Measurement of joint roughness coefficient by using profilograph and roughness ruler[外文期刊] 2009(05)

8.周建强;李建军;王彬逆向工程技术的研究现状及发展趋势[期刊论文]-现代制造技术与装备 2006(03)

9.安伟刚岩性相似材料研究 2002

10.杜时贵;胡晓飞;郭霄JRC-JCS模型与直剪试验对比研究 2008(增1)

11.BARTON N R Review of a new shear strength criterion for rock joints[外文期刊] 1973(04)

12.BARTON N R;CHOUBEY V The shear strength of rock joints in theory and practice 1977(1/2)

13.左保成;陈从新;刘才华相似材料试验研究[期刊论文]-岩土力学 2004(11)

14.郭志实用岩体力学 1996

15.EINSTEIN H H;VENEZIANO D;BAECHER G B The effect of discontinuity persistence on rock slope stability 1983(05)

16.PATTON F D Multiple modes of shear failure in rock 1966

17.杜时贵岩体结构面抗剪强度经验估算 2005

18.杜时贵岩体结构面的工程性质 1999

本文链接:https://www.360docs.net/doc/f59434285.html,/Periodical_yslxygcxb201011012.aspx

材料力学、结构力学与理论力学的区别与联系

结构力学科技名词定义 中文名称:结构力学英文名称:structural mechanics 定义:研究工程结构在外来因素作用下的强度、刚度和稳定性的学科。应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(二级学科) 《结构力学》是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。 工作任务研究在工程结构(所谓工程结构是指能够承受和传递外载荷的系统,包括杆、板、壳以及它们的组合体,如飞机机身和机翼、桥梁、屋架和承力墙等。)在外载荷作用下的应力、应变和位移等的规律;分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。 观察自然界中的天然结构,如植物的根、茎和叶,动物的骨骼,蛋类的外壳,可以发现它们的强度和刚度不仅与材料有关,而且和它们的造型有密切的关系,很多工程结构就是受到天然结构的启发而创制出来的。结构设计不仅要考虑结构的强度和刚度,还要做到用料省、重量轻.减轻重量对某些工程尤为重要,如减轻飞机的重量就可以使飞机航程远、上升快、速度大、能耗低。 学科体系一般对结构力学可根据其研究性质和对象的不同分为结构静力学、结构动力学、结构稳定理论、结构断裂、疲劳理论和杆系结构理论、薄壁结构理论和整体结构理论等。 结构静力学 结构静力学是结构力学中首先发展起来的分支,它主要研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题。静载荷是指不随时间变化的外加载荷,变化较慢的载荷,也可近似地看作静载荷。结构静力学是结构力学其他分支学科的基础。 结构动力学 结构动力学是研究工程结构在动载荷作用下的响应和性能的分支学科。动载荷是指随时间而改变的载荷。在动载荷作用下,结构内部的应力、应变及位移也必然是时间的函数。由于涉及时间因素,结构动力学的研究内容一般比结构静力学复杂的多。 结构稳定理论 结构稳定理论是研究工程结构稳定性的分支。现代工程中大量使用细长型和薄型结构,如细杆、薄板和薄壳。它们受压时,会在内部应力小于屈服极限的情况下发生失稳(皱损或曲屈),即结构产生过大的变形,从而降低以至完全丧失承载能力。大变形还会影响结构设计的其他要求,例如影响飞行器的空气动力学性能。结构稳定理论中最重要的内容是确定结构的失稳临界载荷。 结构断裂和疲劳理论 结构断裂和疲劳理论是研究因工程结构内部不可避免地存在裂纹,裂纹会在外载荷作用下扩展而引起断裂破坏,也会在幅值较小的交变载荷作用下扩展而引起疲劳破坏的学科。现在我们对断裂和疲劳的研究历史还不长,还不完善,但断裂和疲劳理论目前得发展很快。

808 材料力学与结构力学 考试范围

808 材料力学与结构力学1. 《材料力学》宋子康、蔡文安编,同济大学出版社,2001年6月(第二版)2.《结构力学教程》(Ⅰ、Ⅱ部分),龙驭球、包世华主编,高等教育出版社,2000~2001年3.《结构力学》(上、下册),朱慈勉主编,高等教育出版社,2004年 一、考试范围 I、材料力学必选题(约占50%) 1. 基本概念:变形固体的物性假设,约束、内力、应力,杆件变形的四个基本形式等。 2. 轴向拉、压问题:内力和应力(横截面及斜截面上)的计算,轴向拉伸与压缩时的变形计算,材料的力学性质,塑性材料与脆性材料力学性能的比较,简单超静定桁架,圆筒形薄壁容器等。 3. 应力状态分析:平面问题任意点的应力状态描述,平面问题任意点任一方向应力的求解(包括数解法、图解法),一点的应力状态识别,空间应力分析及一点的大应力,广义虎克定律等。 4. 扭转问题:自由扭转的变形特征,自由扭转杆件的内力计算,扭转变形计算,矩形截面杆的自由扭转,薄壁杆件的自由扭转,简单超静定受扭杆件分析等。 5. 梁的内力、应力、变形:内力(剪力、弯矩)的计算及其内力图的绘制,叠加法作弯矩图的合理运用,梁的正应力和剪应力的计算及其强度条件,梁内一点的应力状态识别,主应力轨迹,平面弯曲的充要条件,梁的变形(挠度、转角)计算,叠加法求梁的变形,梁的刚度校核,简单超静定梁分析等。 6. 强度理论与组合变形:四个常用的强度理论,斜弯曲,拉伸(压缩)与弯曲的组合,扭转与拉压以及扭转与弯曲的组合,拉压及扭转与弯曲的组合,偏心拉、压问题,强度校核等。

II、结构力学必选题(约占40%) 1. 平面体系的几何组成分析及其应用 2. 静定结构受力分析与特性 3. 影响线及其应用 4. 位移计算 5. 超静定结构受力分析与特性(力法、位移法、概念分析等) 6. 结构动力分析(运动方程、频率、振型、阻尼、自由振动、强迫振动、振型分解法等)III、可选题(约占10%,一道材料力学可选题和一道结构力学可选题中必选做一题) 1. 材料力学可选题:能量法:变形能的计算,卡氏第一、第二定理,运用卡氏第二定理解超静定问题等;压杆稳定:细长压杆临界力的计算,欧拉公式的适用范围,压杆稳定的实用计算,简单结构体系的稳定性分析等。 2. 结构力学可选题:变形体的虚功原理;力矩分配法;结构矩阵分析(单元刚度阵、总刚度阵的集成、支座条件的引入和非结点荷载的处理等)。 二、题型 1. 以计算分析题型为主,含基本概念分析、综合概念分析和结构定性分析。 2. 含材料力学-结构力学综合题。

岩石力学性质试验

岩石力学性质试验 一、岩石单轴抗压强度试验 1.1概述 当无侧限岩石试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 在测定单轴抗压强度的同时,也可同时进行变形试验。 不同含水状态的试样均可按本规定进行测定,试样的含水状态用以下方法处理: (1)烘干状态的试样,在105~1100C下烘24h。 (2)饱和状态的试样,使试样逐步浸水,首先淹没试样高度的1/4,然后每隔2h分别升高水面至试样的1/3和1/2处,6h后全部浸没试样,试样在水下自由吸水48h;采用煮沸法饱和试样时,煮沸箱内水面应经常保持高于试样面,煮沸时间不少于6h。 1.2试样备制 (1)试样可用钻孔岩芯或坑、槽探中采取的岩块,试件备制中不允许有人为裂隙出现。按规程要求标准试件为圆柱体,直径为5cm,允许变化范围为4.8~5.2cm。高度为10cm,允许变化范围为9.5~10.5cm。对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径比必须保持=2:1~2.5:1。 (2)试样数量,视所要求的受力方向或含水状态而定,一般情况下必须制备3个。 (3)试样制备的精度,在试样整个高度上,直径误差不得超过0.3mm。两端面的不平行度最大不超过0.05mm。端面应垂直于试样轴线,最大偏差不超过0.25度。 1.3试样描述 试验前的描述,应包括如下内容: (1)岩石名称、颜色、结构、矿物成分、颗粒大小,胶结物性质等特征。 (2)节理裂隙的发育程度及其分布,并记录受载方向与层理、片理及节理裂隙之间的关系。 (3)测量试样尺寸,并记录试样加工过程中的缺陷。 1.4主要仪器设备 钻石机、锯石机、磨石机或其他制样设备。 游标卡尺、天平(称量大于500g,感量0.01g),烘箱和干燥箱,水槽、煮沸设备。 压力试验机。压力机应满足下列要求: (1)有足够的吨位,即能在总吨位的10%~90%之间进行试验,并能连续加载且无冲击。 (2)承压板面平整光滑且有足够的刚度,其中之一须具有球形座。承压板直径不小于试样直径,且也不宜大于试样直径的两倍。如大于两倍以上时需在试样上下端加辅助承压板,辅助承压板的刚度和平整光滑度应满足压力机承压板的要求。 (3)压力机的校正与检验应符合国家计量标准的规定。

上海大学929材料力学与结构力学(专)2018年考研专业课大纲

2019年上海大学考研专业课初试大纲 考试科目:929材料力学与结构力学(专) 一、复习要求: 要求考生熟练掌握材料力学和结构力学的基本概念、基本理论和基本方法,能运用基本理论及方法求解杆件变形和内力、压杆稳定性、动载荷以及相应结构体系的变形及内力分析等问题,并能灵活应用于具体的实际结构(构件),解决相应的结构问题。 二、主要复习内容: (一)杆件拉伸与压缩 轴向拉压的概念、基本假设、横截面上的内力计算和轴力图,直杆拉(压)时横(斜)截面上的应力,材料拉(压)时的力学性质,拉(压)杆的强度条件及应用,杆件拉(压)时的轴向变形,胡克定律。 (二)连接件的实用计算 连接件剪切面和挤压面的确定及剪切和挤压的实用计算。 (三)轴的扭转 扭转的概念,外力偶矩的计算及扭矩图,薄壁圆筒的扭转剪应力,剪应力互等定理和剪切胡克定律,圆轴扭转时横(斜)截面上的剪应力,强度和和刚度条件,扭转破坏试验,扭转静不定问题,其它截面形式轴的扭转计算,扭转静不定问题。 (四)梁的弯曲应力及变形 梁平面弯曲概念及梁的计算简图,梁弯曲时内力的微分关系,刚架及平面曲杆的内力计算,剪力图,弯矩图的绘制,梁纯弯曲和横力弯曲时的正应力、剪应力和强度条件。弯曲中心的概念及确定,梁弯曲挠度的二次积分法及叠加法,刚度条件,静不定梁的求解。 (五)应力状态及强度理论 应力状态及主应力的概念,二向应力状态分析的解析法和应力圆的应用,三向应力状态分析,复杂应力状态下的应变及广义胡克定律,复杂应力状态下的变形能,强度理论的概念,四个经典强度理论及其相当应力,强度理论的应用及其适用范围。 (六)组合变形 组合变形的概念,斜弯曲的计算,轴向拉(压)与弯曲组合变形,偏心拉压,弯曲与扭转组合变形。 (七)能量法 杆件基本变形的变形能,莫尔积分法,余能定理,卡氏第一、二定理,虚功原理等的应用与计算,能量法求解静不定问题,利用对称性简化静不定问题的方法。 (八)压杆的稳定性 压杆稳定性的概念,两端铰支压杆的临界载荷,其它支承条件下压杆的临界力,临界应力总图,压杆的稳定校核。 (九)材料力学性能测试技术 拉伸、压缩试验,扭转试验,弯曲正应力试验,弯扭组合电测试验的设计、测试技术及数据分析。 (十)平面体系的机动分析 平面体系的计算自由度,几何不变体系的简单组成规则,瞬变体系,机动分析,几何构造与静定性的关系。 (十一)静定刚架与平面桁架 单、多跨静定梁,静定平面刚架,根据外荷载直接绘制内力图;结点法、截面法独立求解平面桁架,结点及截面法联合解平面桁架。 (十二)影响线及其应用 精都考研网(专业课精编资料、一对一辅导、视频网课)https://www.360docs.net/doc/f59434285.html,

岩石力学试验报告

岩石力学实验指导书及实验报告 班级 姓名 山东科技大学土建学院实验中心编

目录 一、岩石比重的测定 二、岩石含水率的测定 三、岩石单轴抗压强度的测定 四、岩石单轴抗拉强度的测定 五、岩石凝聚力及内摩擦角的测定(抗剪强度 试验) 六、岩石变形参数的测定 七、煤的坚固性系数的测定

实验一、岩石比重的测定 岩石比重是指单位体积的岩石(不包括孔隙)在105~110o C 下烘至恒重的重量与同体积4o C 纯水重量的比值。 一、仪器设备 岩石粉碎机、瓷体或玛瑙体、孔径0.2或0.3毫米分样筛、天平(量0.001克)、烘箱、干燥器、沙浴、比重瓶。 二、试验步骤 1、岩样制备:取有代表性的岩样300克左右,用机械粉碎,并全部通过孔径0.2(或0.3)毫米分样筛后待用。 2、将蒸馏水煮沸并冷却至室温取瓶颈与瓶塞相符的100毫升比重瓶,用蒸馏水洗净,注入三分之一的蒸馏水,擦干瓶的外表面。 3、取15g 岩样(称准到0.001克)得g 借助漏斗小心倒入盛有三分之一蒸馏水的比重瓶中,注意勿使岩样抛撒或粘在瓶颈上。 4、将盛有蒸馏水和岩样的比重瓶放在沙浴上煮沸后再继续煮1~1.5小时。 5、将煮沸后的比重瓶自然冷却至室温,然后注入蒸馏水,使液面与瓶塞刚好接触,注意不得留有气泡,擦干瓶的外表面,在天平上称重得g 1。 6、将岩样倒出,比重瓶洗净,最后用蒸馏水刷一遍,向比重瓶内注满蒸馏水,同样使液面与瓶塞刚好接触,不得留有气泡,擦干瓶的外表面,在天平上称重得g 2。 三、结果:按下式计算: s d g g g g d 1 2-+= 式中:d ——岩石比重; g ——岩样重、克; g 1——比重瓶、岩样和蒸馏水合重、克; g 2——比重瓶和满瓶蒸馏水合重、克; d s ——室温下蒸馏水的比重、d s ≈1

现场岩石力学试验报告模板

工程勘察: 证书编号 45040Ⅲ -211-U 桂林漓江**水库枢纽工程 现场岩石试验报告 广西*******勘察设计研究院

核定:审查:校核:编写:试验:

1工作概况 (1) 2 现场混凝土与岩体抗剪(断)试验 (1) 2.1 抗剪(断)试验试样布置及地质条件 (1) 2.2 抗剪(断)试验试样制备情况 (2) 2.3 抗剪(断)试验方法 (2) 2.4 抗剪(断)试验成果整理方法 (3) 2.5 抗剪(断)试验破坏机理分析 (3) 2.6 抗剪断试验成果分析 (4) 3 现场岩体变形试验 (5) 3.1 岩体变形试验试样布置及地质条件 (7) 3.2 岩体变形试点制作 (7) 3.3 岩体变形试验方法 (7) 3.4 岩体变形试验成果整理 (7) 3.5 岩体变形试验成果分析 (8) 4 建议 (9)

1 工作概况 桂林漓江**水库枢纽工程位于广西桂林市为漓江一级支流,距离桂林**km有等外公路从**至**村。该水库枢纽主要任务是调蓄讯期洪水水量,枯水期向漓江补水,并利用补水水能发电。拟建枢纽最大坝高约**m,正常高水位**m,总库容约为**万m3,通过引水隧洞到下游厂房发电,电站装机容量为**MW。 坝址现场岩体力学试验于****日至*****日坝轴线左岸及坝轴线下游200m右岸进行现场混凝土与岩体抗剪(断)试验及现场岩体变形试验,共完成工作量见表1。 表1 现场岩石试验工作量表 试验数据采集和处理采用8098多功能岩土检测系统,该微机系统于1991年4月通过广西科学技术委员会的技术鉴定,开工前经广西计量测试研究所率定。各项技术指标均符合DLJ204-81,SLJ2-81《水利水电工程岩石试验规程》(试行),DL5006-92《水利水电工程岩石试验规程(补充部分)》。 2 现场混凝土与岩体抗剪(断)强度试验 2.1抗剪(断)试验试样布置及地质条件 a) 现场混凝土与岩体抗剪(断)试验在坝址区内进行,分别选强、弱风化泥质粉砂岩各12个点(即3组),详见表2。岩层产状一般为**?/NW∠**?,周围岩石为砂岩、泥岩互层。

复合材料力学

复合材料力学 论文题目:用氧化铝填充导热和电绝缘环氧 复合材料的无缺陷石墨烯纳米片 院系班级:工程力学1302 姓名:黄义良 学号: 201314060215

用氧化铝填充导热和电绝缘环氧复合材料的无缺陷石墨烯纳米片 孙仁辉1 ,姚华1 ,张浩斌1 ,李越1 ,米耀荣2 ,于中振3 (1.北京化工大学材料科学与工程学院,有机无机复合材料国家重点实验室北京 100029;2.高级材料技术中心(CAMT ),航空航天,机械和机电工程学院J07,悉尼大学;3.北京化工大学软件物理科学与工程北京先进创新中心,北京100029) 摘要:虽然石墨烯由于其高纵横比和优异的导热性可以显着地改善聚合物的导热性,但是其导致电绝缘的严重降低,并且因此限制了其聚合物复合材料在电子和系统的热管理中的广泛应用。为了解决这个问题,电绝缘Al 2O 3用于装饰高质量(无缺陷)石墨烯纳米片(GNP )。借助超临界二氧化碳(scCO 2),通过Al(NO 3)3 前体的快速成核和水解,然后在600℃下煅烧,在惰性GNP 表面上形成许多Al 2O 3纳米颗粒。或者,通过用缓冲溶液控制Al 2(SO 4)3 前体的成核和水解,Al 2(SO 4)3 缓慢成核并在GNP 上水解以形成氢氧化铝,然后将其转化为Al 2O 3纳米层,而不通过煅烧进行相分离。与在scCO2的帮助下的Al 2O 3@GNP 混合物相比,在缓冲溶液的帮助下制备的混合物高度有效地赋予具有优良导热性的环氧树脂,同时保持其电绝缘。具有12%质量百分比的Al 2O 3@GNP 混合物的环氧复合材料表现出1.49W /(m ·K )的高热导率,其比纯环氧树脂高677%,表明其作为导热和电绝缘填料用于基于聚合物的功能复合材料。 关键词:聚合物复合基材料(PMCs ) 功能复合材料 电气特性 热性能 Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites Renhui Sun 1,Hua Yao 1, Hao-Bin Zhang 1,Yue Li 1,Yiu-Wing Mai 2,Zhong-Zhen Yu 3 (1.State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2.Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW 2006, Australia; 3.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China) Abstract:Although graphene can significantly improve the thermal conductivity of polymers due to its high aspect ratio and excellent thermal conductance, it causes serious reduction in electrical insulation and thus limits the wide applications of its polymer composites in the thermal management of electronics and systems. To solve this problem, electrically insulating Al 2O 3is used to decorate high quality (defect-free) graphene nanoplatelets (GNPs). Aided by supercritical carbon dioxide (scCO 2), numerous Al 2O 3 nanoparticles are formed

材料力学 结构力学 弹性力学 异同点

材料力学(mechanics of materials)是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。 包括两大部分:一部分是材料的力学性能的研究,而且也是固体力学其他分支的计算中必不可缺少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆、受弯曲的梁和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为三类: 线弹性问题。在杆变形很小,而且材料服从胡克定律的前提下,对杆列出的所有方程都是线性方程,相应的问题就称为线性问题。对这类问题可使用叠加原理,即为求杆件在多种外力共同作用下的变形(或内力),可先分别求出各外力单独作用下杆件的变形(或内力),然后将这些变形(或内力)叠加,从而得到最终结果。 几何非线性问题。若杆件变形较大,就不能在原有几何形状的基础上分析力的平衡,而应在变形后的几何形状的基础上进行分析。这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。 物理非线性问题。在这类问题中,材料内的变形和内力之间(如应变和应力之间)不满足线性关系,即材料不服从胡克定律。在几何非线性问题和物理非线性问题中,叠加原理失效。解决这类问题可利用卡氏第一定理、克罗蒂-恩盖塞定理或采用单位载荷法等。 结构力学它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。结构力学研究的内容包括结构的组成规则,结构在各种效应作用下的响应,这些效应包括外力、温度效应、施工误差、支座变形等。主要是内力——轴力、剪力、弯矩、扭矩的计算,位移——线位移、角位移计算,以及结构在动力荷载作用下的动力响应——自振周期、振型的计算。 一般对结构力学可根据其研究性质和对象的不同分为结构静力学、结构动力学、结构稳定理论、结构断裂、疲劳理论和杆系结构理论、薄壁结构理论和整体结构理论等。 结构静力学是结构力学中首先发展起来的分支,它主要研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题。静载荷是指不随时间变化的外加载荷,变化较慢的载荷,也可近似地看作静载荷。结构静力学是结构力学其他分支学科的基础。 结构动力学是研究工程结构在动载荷作用下的响应和性能的分支学科。动载荷是指随时间而改变的载荷。在动载荷作用下,结构内部的应力、应变及位移也必然是时间的函数。由于涉及时间因素,结构动力学的研究内容一般比结构静力学复杂的多。 结构稳定理论是研究工程结构稳定性的分支。现代工程中大量使用细长型和薄型结构,如细杆、薄板和薄壳。它们受压时,会在内部应力小于屈服极限的情况下发生失稳(皱损或曲屈),即结构产生过大的变形,从而降低以至完全丧失承载能力。大变形还会影响结构设计的其他要求,例如影响飞行器的空气动力学性能。结构稳定理论中最重要的内容是确定结构的失稳临界载荷。 弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究

岩石力学实验

专业:年级姓名 指导老师 《岩石力学》实验报告书 西南科技大学环境与资源学院中心实验室

试验1、岩石单向抗压强度的测定 一、仪器设备 材料试验机、游标卡尺。 二、标准试件规格:采用直接为50mm 的圆柱体,高径比为2 :1;也可采用50×50×100mm 的长方体。 三、测定步骤: 1、 测试件尺寸(试件直径应在其高度中部两个互相垂直的方向量测,取算术平均值) 填入记录表内。 2、 选择压力机度盘:一般应满足0.2P <P max <0.8P 式中:P max ——预计最大破坏载荷,KN P ——压力机度盘最大值,KN 3、 开动压力机,使其处于可用状态,将试件置于压力机承压板中心,调整球形坐,使 试件上下受力均匀,0.5~1.0MPa 的速度加载直至破坏。 四、测定结果的计算: 试件的抗压强度: F P R 式中:R ——试件抗压强度,MPa P ——试件破坏载荷,N F ——试件面积,mm 2

试验2、岩石抗拉强度的测定(劈裂法) 一、仪器设备: 材料试验机、劈裂法实验夹具、游标卡尺。 二、试件规格 标准试件采用圆盘形,直径50mm 、厚25mm ;也可采用50×50×50mm 得方形试件。 三、测定步骤: 1、2同抗压强度相同。 3、通过试件直径的两端,沿轴线方向画两条互相平行的线作为加载基线,把试件放入夹具内,夹具上下刀刃对准加载基线,放入试验机的上下承压板之间,使试件的中心线和试验机的中心线在一条直线上。 4、开动试验机,以每秒0.03~0.05MPa 的速度加载直至破坏。 四、测定结果计算: DL P R L 14.32 式中:R L ——岩石单向抗拉强度,MPa P ——试件破坏载荷,N D ——试件直径,mm L ——试件厚度,mm 抗拉强度测定记录表

复合材料结构与力学设计复结习题(本科生)

《复合材料结构设计》习题 §1 绪论 1.1 什么是复合材料? 1.2 复合材料如何分类? 1.3 复合材料中主要的增强材料有哪些? 1.4 复合材料中主要的基体材料有哪些? 1.5 纤维复合材料力学性能的特点哪些? 1.6 复合材料结构设计有何特点? 1.7 根据复合材料力学性能的特点在复合材料结构设计时应特别注意到哪些问题? §2 纤维、树脂的基本力学性能 2.1 玻璃纤维的主要种类及其它们的主要成分的特点是什么? 2.2 玻璃纤维的主要制品有哪些?玻璃纤维纱和织物规格的表示单位是什么?2.3 有一玻璃纤维纱的规格为2400tex,求该纱的横截面积(取玻璃纤维的密度 为2.54g/cm3)? 2.4 有一玻璃纤维短切毡其规格为450 g/m2,求该毡的厚度(取玻璃纤维的密 度为2.54g/cm3)? 2.5 无碱玻璃纤维(E-glass)的拉伸弹性模量、拉伸强度及断裂伸长率的大致 值是多少? 2.6 碳纤维T-300的拉伸弹性模量、拉伸强度及断裂伸长率的大致值是多少?密 度为多少? 2.7 芳纶纤维(kevlar纤维)的拉伸弹性模量、拉伸强度及断裂伸长率的大致值 是多少?密度为多少? 2.8 常用热固性树脂有哪几种?它们的拉伸弹性模量、拉伸强度的大致值是多 少?密度为多少?热变形温度值大致值多少? 2.9 简述单向纤维复合材料抗拉弹性模量、抗拉强度的估算方法。 2.10 试比较玻璃纤维、碳纤维单向复合材料顺纤维方向拉压弹性模量和强度值,指出其特点。 2.11 简述温度、湿度、大气、腐蚀质对复合材料性能的影响。 2.12 如何确定复合材料的线膨胀系数? 2.13已知玻璃纤维密度为ρf=2.54g/cm3,树脂密度为ρR=1.20g/cm3,采用规格 为450 g/m2的玻璃纤维短切毡制作内衬时,其树脂含量为70%,这样制作一层其GFRP的厚度为多少? 2.14 采用2400Tex的玻璃纤维(ρf=2.54g/cm3)制造管道,其树脂含量为35% (ρR=1.20g/cm3),缠绕密度为3股/10 mm,试求缠绕层单层厚度? 2.15 试估算上题中单层板顺纤维方向和垂直纤维方向的抗拉弹性模量和抗拉强度。 2.16已知碳纤维密度为ρf=1.80g/cm3,树脂密度为ρR=1.25g/cm3,采用规格为300 g/m2的碳纤维布制作复合材料时,其树脂含量为32%,这样制作一层其CFRP的厚度为多少?其纤维体积含量为多少? 2.17 某拉挤构件的腹板,厚度为5mm,采用±45°的玻璃纤维多轴向织物(面密

岩石力学实验指导书

岩石力学实验指导书

岩石力学实验指导书 修订版 王宝学杨同张磊编

北京科技大学 土木与环境工程学院 2008 年3 月 3

试验是岩石力学课程教学的重要环节,目的在于辅助课堂教学,直观培养学生的知识结构和动手能力。本指导书是根据我校“2005年教学大纲”,并结合我校的实验条件而编写,主要内容有:1、岩石天然含水率、吸水率及饱和吸水率试验;2、岩石比重试验; 3、岩石密度试验; 4、岩石耐崩解试验 5、岩石膨胀试验; 6、岩石冻融试验; 7、岩石单轴抗压强度试验, 8、岩石压缩变形试验, 9、岩石抗拉强度试验(巴西法),10、岩石抗剪强度试验(变角剪法),11、岩石三轴压缩及变形试验,12、岩石弱面抗剪强度试验,13、岩石点载荷指数测定试验,14、岩石纵波速度测定试验,15、岩石力学伺服控制刚性试验;16、岩石声发射试验。 本指导书的内容主要参照《水利水电工程岩石试验规程》(SL264-2001);《水利电力工程岩石试验规程》DLJ204-81,SLJ2-81;同时参考了国际岩石力学会《岩石力学试验建议方法》,中华人民共和国国家标准《岩石试验方法标准》以及《露天采矿手册》等,由于我们水平有限,文中如有不当之处,欢迎读者批评指正。 编者:王宝学、杨同、张磊 2007年12月

岩石物理性质试验 (1) 一、岩石天然含水率、吸水率及饱和吸水率试验 (1) 二、岩石比重(颗粒密度)试验 (5) 三、岩石密度试验 (10) 四、岩石耐崩解试验 (17) 五、岩石膨胀试验 (20) 六、岩石冻融试验 (28) 岩石力学性质试验 (33) 七、岩石单轴抗压强度试验 (33) 八、岩石压缩变形试验 (39) 九、岩石抗拉强度试验(巴西法) (46) 十、岩石抗剪强度试验(变角剪切) (51) 十一、岩石三轴压缩及变形试验 (56) 十二、岩石弱面剪切强度试验 (68) 十三、点载荷指数的测定 (75) 十四、岩石纵波速度测定 (78) 十五、岩石力学伺服控制刚性试验 (80) 十六、岩石声发射试验 (86)

材料力学和结构力学复习经验

发表于2008-4-8 08:32 |只看该作者 【同济土木考研系列四】------【材料力学和结构力 学复习经验】 个人声明: 1、本文仅仅是作者个人学习经验小结,仅供参考,欢迎09年报考同济大学土木工程学院的以! 2、尊重他人劳动,未经本人和https://www.360docs.net/doc/f59434285.html,允许,请勿转载!! 应广大09年报考同济大学土木学院的考生要求,我写了一些《材料力学与结构力学》复习经验,不当之处还请大家谅解,但愿不要因为我的观点而误导了大家。祝大家09考研金榜题名!! 一、综述 同济《材料力学与结构力学》考试内容由两本书组成,包括材料力学和结构力学,卷面总分是15占30%,试题中可能出现材料力学与结构力学综合题目,根据08年考试题目,结构力学部分应该要难一点,因为结构力学是整个试卷的压轴题目。整个试卷一共就10道计算题,没有选择题和填考大题,有些内容注定不是考试重点,具体我会在下面有介绍。 大家在复试《材料力学与结构力学》之前一定要明确亮点,1、同济的专业课不是那么好考的,我华南理工,东南大学等(我同学有考这些学校的,我就顺便看了看),普遍要比同济专业课简单。之间选择其一考。2、同济专业课固然比较难,但事情都是相对的,对于大家来说都是比较难,这得到的情况,今年同济的专业课均分也就是在100分左右,应该不会超过105分。但是仍然有同学你就放弃同济,那样就太可惜了。只要大家付出了,一定可以获得满意的结构。如果随随便便就能称号也真是枉然了,要想上好的的学校就必须付出更多的辛酸和汗水。 二、材料力学复习 我分章节说说复习要点吧(按照宋子康主编的材料力学课本顺序) 第一章绪论及基本概念 看看了解一下概念就可以,不会出题目的。 第二章轴向拉伸与压缩

材料力学和结构力学课件

材料力学 1.材料力学研究内容 ⑴研究物体在外力作用下的应力、变形和能量,统称为应力分析;研究对象仅限于杆、轴、梁等物体,其几何特征是纵向尺寸远大于横向尺寸,这类物体统称为杆或杆件。 ⑵研究材料在外力和温度作用下所表现出的力学性能和失效行为;研究对象仅限于材料的宏观力学行为,不涉及材料的微观机理。 研究目的设计出杆件或零部件的合理形状和尺寸,以保证它们具有足够的强度、刚度和稳定性。 2.杆件的受力与变形形式 ⑴拉伸或压缩 ⑵剪切 ⑶扭转 ⑷弯曲 ⑸组合受力和变形 拉杆、压杆或柱、轴、梁受力特点 3.材料的基本假定 ⑴各向同性假定 ⑵均匀连续性假定 ⑶平截面假定 4.受力分析方法 ⑴截面法:应用假想截面将弹性体截开,分成两部分,考虑其中任意一部分平衡,从而确定截面上的内力的方法。 弹性体受力、变形的第二特征是变形协调。P9[例题1-1] 平衡方程+变形协调方程 0x F =∑ 0y F =∑ 0c M =∑ P31[例题2-6] 5.应力应变相互关系 E σε=、G τγ=

6.轴力与轴力图 正负号规定:拉正,压负。 ⑴确定约束力。 ⑵根据杆件上作用的荷载及约束力确定控制面,也就是轴力图的分段点。 ⑶应用截面法,对截开的部分杆件建立平衡方程,确定控制面上的轴力数值。 ⑷建立N x F -坐标系,将所求得的轴力值标在坐标系中,画出轴力图。 P21[例题2-1] 7.变形计算 变形N F l l EA ?=± 应变N F l l EA E σ ε?=== 横向变形y x ευε=- υ泊松比 P25[例题2-2] 8.拉伸与压缩杆件的强度设计 ⑴强度校核 []max σσ≤ ⑵尺寸设计 [][][] max N N F F A A σσσσ≤? ≤?≥ ⑶确定杆件或结构所能承受的许用荷载 [][][][]max N N P F F A F A σσσσ≤? ≤?≤? P28[例题2-4/5] 9.拉伸与压缩杆件斜截面上的应力 2cos = cos N P x F F A A θθθ θσσθ==

岩石力学实验指导书

岩石力学实验指导书 修订版 王宝学杨同张磊编 北京科技大学 土木与环境工程学院 2008 年3 月

前言 试验是岩石力学课程教学的重要环节,目的在于辅助课堂教学,直观培养学生的知识结构和动手能力。本指导书是根据我校“2005年教学大纲”,并结合我校的实验条件而编写,主要内容有:1、岩石天然含水率、吸水率及饱和吸水率试验;2、岩石比重试验;3、岩石密度试验;4、岩石耐崩解试验5、岩石膨胀试验;6、岩石冻融试验;7、岩石单轴抗压强度试验,8、岩石压缩变形试验,9、岩石抗拉强度试验(巴西法),10、岩石抗剪强度试验(变角剪法),11、岩石三轴压缩及变形试验,12、岩石弱面抗剪强度试验,13、岩石点载荷指数测定试验,14、岩石纵波速度测定试验,15、岩石力学伺服控制刚性试验;16、岩石声发射试验。 本指导书的内容主要参照《水利水电工程岩石试验规程》(SL264-2001);《水利电力工程岩石试验规程》DLJ204-81,SLJ2-81;同时参考了国际岩石力学会《岩石力学试验建议方法》,中华人民共和国国家标准《岩石试验方法标准》以及《露天采矿手册》等,由于我们水平有限,文中如有不当之处,欢迎读者批评指正。 编者:王宝学、杨同、张磊 2007年12月

目录 岩石物理性质试验 (1) 一、岩石天然含水率、吸水率及饱和吸水率试验 (1) 二、岩石比重(颗粒密度)试验 (3) 三、岩石密度试验 (6) 四、岩石耐崩解试验 (10) 五、岩石膨胀试验 (12) 六、岩石冻融试验 (15) 岩石力学性质试验 (18) 七、岩石单轴抗压强度试验 (18) 八、岩石压缩变形试验 (20) 九、岩石抗拉强度试验(巴西法) (24) 十、岩石抗剪强度试验(变角剪切) (27) 十一、岩石三轴压缩及变形试验 (29) 十二、岩石弱面剪切强度试验 (37) 十三、点载荷指数的测定 (40) 十四、岩石纵波速度测定 (42) 十五、岩石力学伺服控制刚性试验 (43) 十六、岩石声发射试验 (46)

岩石力学实验方案

实验方案 实验一单轴压缩试验 一、实验得目得 以白垩系软岩为研究对象,设置不同得冻结温度,分别对岩样进行一次冻融循环,并测定其冻融前后得单轴抗压强度与杨氏弹性模量,且绘出应力—应变曲线。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受得载荷称为岩石得单轴抗压强度,即式样破坏时得最大载荷与垂直与加载方向得截面积之比. 本次试验主要测定饱与状态下试样得单轴抗压强度。 二、试样制备 (1)样品可用钻孔岩芯或在坑槽中采取得岩块,在取样与试样制备过程中,不允许发生人为裂隙。 (2)试样规格:经过钻取岩芯、岩样尺寸切割、岩样打磨几道工序制备成直径5cm、高10cm得圆柱体。 (3)试样制备得精度应満足如下要求: a沿试样高度,直径得误差不超过0.03cm; b试样两端面不平行度误差,最大不超过0.005cm; c端面应垂直于轴线,最大偏差不超过0、25°; d方柱体试样得相邻两面应互相垂直,最大偏差不超过0、25°。 三、主要仪器设备 1、制样设备:钻石机、切石机及磨石机. 2、测量平台、角尺、游标卡尺、放大镜、低温箱等。

3、压力试验机。 四、实验步骤 1、取加工好得岩石试样15块,放入抽真空设备中进行饱水处理,浸泡24h; 2、a.(1)从饱水后得试样中取3块,进行冻结前常温(+20℃)条件下岩石得单轴压缩试验,并记录应力—应变曲线等信息;(2)从剩下得饱水岩样中取出6块放入低温箱中,在恒温—10℃条件下冻结48h;(3)取出冻结后得3块岩样,进行冻结-10℃条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息;(4)取出冻结后另外3块岩样,在室内常温环境下自然解冻后,进行岩石冻结解冻后恢复到常温条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息; b、以剩余得6块试样为对象,把冻结温度设置为—30℃,重复a中步骤(2)~(4); 3、通过试验数据分析在两种冻结温度下,岩样冻结前、冻结中与冻结解冻后三种状态下三种岩石单轴压缩下强度、应力-应变曲线及弹性模量等参数得变化情况. 五.成果整理与计算 1、按下式计算岩石得单轴抗压强度: -———-岩石单轴抗压强度,MPa; ———-最大破坏荷载,N; -—-—垂直于加载方向得试样横截面积,mm2。 2、固体材料得弹性模量就是指弹性范围内应力与应变得比值,反映材料得坚固性.计算割线弹性模量E50,即应力应变曲线零荷载点与单

材料力学、结构力学与理论力学的区别与联系

中文名称:结构力学英文名称:structural mechanics 定义:研究工程结构在外来因素作用下的强度、刚度和稳定性的学科。应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(二级学科) 《结构力学》是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。 工作任务研究在工程结构(所谓工程结构是指能够承受和传递外载荷的系统,包括杆、板、壳以及它们的组合体,如飞机机身和机翼、桥梁、屋架和承力墙等。)在外载荷作用下的应力、应变和位移等的规律;分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。 观察自然界中的天然结构,如植物的根、茎和叶,动物的骨骼,蛋类的外壳,可以发现它们的强度和刚度不仅与材料有关,而且和它们的造型有密切的关系,很多工程结构就是受到天然结构的启发而创制出来的。结构设计不仅要考虑结构的强度和刚度,还要做到用料省、重量轻.减轻重量对某些工程尤为重要,如减轻飞机的重量就可以使飞机航程远、上升快、速度大、能耗低。 学科体系一般对结构力学可根据其研究性质和对象的不同分为结构静力学、结构动力学、结构稳定理论、结构断裂、疲劳理论和杆系结构理论、薄壁结构理论和整体结构理论等。 结构静力学 结构静力学是结构力学中首先发展起来的分支,它主要研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题。静载荷是指不随时间变化的外加载荷,变化较慢的载荷,也可近似地看作静载荷。结构静力学是结构力学其他分支学科的基础。 结构动力学 结构动力学是研究工程结构在动载荷作用下的响应和性能的分支学科。动载荷是指随时间而改变的载荷。在动载荷作用下,结构内部的应力、应变及位移也必然是时间的函数。由于涉及时间因素,结构动力学的研究内容一般比结构静力学复杂的多。 结构稳定理论 结构稳定理论是研究工程结构稳定性的分支。现代工程中大量使用细长型和薄型结构,如细杆、薄板和薄壳。它们受压时,会在内部应力小于屈服极限的情况下发生失稳(皱损或曲屈),即结构产生过大的变形,从而降低以至完全丧失承载能力。大变形还会影响结构设计的其他要求,例如影响飞行器的空气动力学性能。结构稳定理论中最重要的内容是确定结构的失稳临界载荷。 结构断裂和疲劳理论 结构断裂和疲劳理论是研究因工程结构内部不可避免地存在裂纹,裂纹会在外载荷作用下扩展而引起断裂破坏,也会在幅值较小的交变载荷作用下扩展而引起疲劳破坏的学科。现在我们对断裂和疲劳的研究历史还不长,还不完善,但断裂和疲劳理论目前得发展很快。 在固体力学领域中,材料力学为结构力学的发展提供了必要的基本知识,弹性力学和塑性力

岩石力学与工程实验指导书(修订)

岩石力学实验指导书 湖南科技大学 能源与安全工程学院

岩石物理性质试验 (1) 一、岩石密度试验 (6) 岩石力学性质试验 (18) 一、岩石单轴抗压强度试验 (18) 二、岩石抗拉强度试验(劈裂法) (24) 三、岩石抗剪强度试验(变角剪切) (27) 四、岩石力学伺服控制试验 (43)

岩石物理性质试验 一、岩石密度试验 1 概述 岩石密度,即单位体积的岩石质量,是试样质量与试样体积之比。根据试样的含水量情况,岩石密度可分为烘干密度、饱和密度和天然密度。一般未说明含水情况时,即指烘干密度。 根据岩石类型和试样形态,分别采用下述方法测定其密度: (1)凡能制备成规则试样的岩石,宜采用量积法。 (2)除遇水崩解、溶解和干缩湿胀性岩石外,可采用水中称重法。 (3)不能用量积法或水中称重法进行测定的岩石,可采用腊封法。用水中称重法测定岩石密度时,一般用测定岩石吸水率和饱和吸水率的同一试样同时进行测定。 2 试样制备 2.1 量积法 (1)试样的形态,可以用圆柱体、立方体或方柱体,根据密度试验后的其他实验要求选择。 (2)制备的试样,应具有一定的精度,其精度要求应满足其他试验项目的规定。 (3)每组试验须制备3 个试样,它们须具有充分的代表性。 2.2 腊封法 (1)试样取边长为4?6cm的近似立方体的岩块。 (2 )如需测定天然密度时,拆除密封后立即称试样重。 (3)每组试验须制备3 个试样,它们须具有充分的代表性。 3 试样描述 (1 )岩石名称、颜色、结构、矿物成分、颗粒大小、胶结物质等特征。 (2)节理裂隙的发育程度及其分布。 (3 )试样形态及缺角,掉棱角等现象。 4 主要仪器设备 4.1 量积法 (1 )钻石机、切石机、磨石机或其他制样设备。

复合材料力学沈观林编着清华大学出版社

《复合材料力学》沈观林编著清华大学出版社 第一章复合材料概论 1.1复合材料及其种类 1、复合材料是由两种或多种不同性质的材料用物理和化学方法在宏观尺度上组成的具有新性能的材料。 2、复合材料从应用的性质分为功能复合材料和结构复合材料两大类。功能复合材料主要具有特殊的功能。 3、结构复合材料由基体材料和增强材料两种组分组成。其中增强材料在复合材料中起主要作用,提供刚度和强度,基本控制其性能。基体材料起配合作用,支持和固定纤维材料,传递纤维间的载荷,保护纤维。根据复合材料中增强材料的几何形状,复合材料可分为三大类:颗粒 复合材料、纤维增强复合材料(fiber-reinforced composite)、层禾口 复合材料。 (1)颗粒:非金属颗粒在非金属基体中的复合材料如混凝土;金属颗粒在非金属基体如固体火箭推进剂;非金属在金属集体中如金属陶 '瓷O (2)层合(至少两层材料复合而成):双金属片;涂覆金属;夹层玻璃。 (3)纤维增强:按纤维种类分为玻璃纤维(玻璃钢)、硼纤维、碳纤维、碳化硅纤维、氧化铝纤维和芳纶纤维等。 按基体材料分为各种树脂基体、金属基体、陶瓷基体、和碳基体。按纤维形状、尺寸可分为连续纤维、短纤维、纤维布增强复合材料。 还有两种或更多纤维增强一种基体的复合材料。如玻璃纤维和碳纤维增强树脂称为混杂纤维复合材料。 5、常用纤维(性能表见P7表1-1) 玻璃纤维(高强度、高延伸率、低弹性模量、耐高温) 硼纤维(早期用于飞行器,价高)碳纤维(主要以聚丙烯腈PAN纤维或沥青为原料,经加热氧化,碳化、石墨化处理而成;可分为高强度、高模量、极高模量,后两种成为石墨纤维(经石墨化2500~3000°C);密度比玻璃纤维小、弹性模

相关文档
最新文档