轻型汽车电子稳定性控制系统性能要求及试验方法

轻型汽车电子稳定性控制系统性能要求及试验方法
轻型汽车电子稳定性控制系统性能要求及试验方法

《轻型汽车电子稳定性控制系统性能要求及试验方法》标准宣贯会在东海县召开

2015年6月3日至4日,由中国标准化协会汽车分会在东海县举办了GB/T30677-2014《轻型汽车电子稳定性控制系统性能要求及试验方法》的宣贯会,有一百多位来自科研院所、汽车公司、技术服务机构的代表参加了该会议。

汽车电子稳定控制系统是车辆新型的主动安全系统,是汽车防抱死制动系统(ABS)和牵引力控制系统(TCS)功能的进一步扩展,并在此基础上,增加了车辆转向行驶时横摆率传感器、侧向加速度传感器和方向盘转角传感器,通过ECU 控制前后、左右车轮的驱动力和制动力,确保车辆行驶的侧向稳定性。广义上的电子稳定控制系统简称为ESC,博世公司称其为ESP。

早在2014年12月31日,国标委就发布了GB/T30677-2014《轻型汽车电子稳定性控制系统性能要求及试验方法》,并要求该标准于2015年7月1日开始实施。

该标准宣贯会上,宣贯专家明确提到了在试验中运用驾驶机器人的重要性和驾驶机器人的选型应该注意的问题,讲解了本标准中提到的,使用到冬季试验场路面进行评价ESC性能的目的和意义。

在中国,一说到驾驶机器人driving robot,汽车测试工程师们会一致想到英国ABD驾驶机器人。其实,在欧洲,技术先进、性能优良的驾驶机器人还有德国VEHICO的驾驶机器人。德国VEHICO驾驶机器人已经有十几年的历史,在欧洲的市场认可度还是很好的,只是在域外市场的推广方面做得差一些,在国内知名度不够。这也是德国的一些技术型公司的特点。

通常说驾驶机器人,它包括转向机器人steering robot、制动机器人和油门机器人三部分。

北京友联致远公司销售的德国VEHICO的转向机器人,它是盘下安装方式,

就是在原车方向盘下安装转向机器人。这样的优点是不改变驾驶员的操作,并且不影响气囊的使用。

其实,随着该标准的实施,还有欧洲其它汽车法规ESC\ADAS\AEB的导入,驾驶机器人加上路径跟踪等软件,在试验中将变得不可或缺,它也将在ESC\ADAS\AEB以及传统的操纵稳定性的测试中得到应用推广。

再说冬季试验场Winter proving ground,目前国内已经有友联致远公司的海拉尔冬季试验场、博世呼伦贝尔牙克石冬季试验场、中汽研的牙克石在建冬季试验场以及黑河红河谷等冬季试验场。博世的呼伦贝尔牙克石冬季试验场是以满足本公司ABS、ESP系统标定为主要目的的,适用车型为乘用车和N1类的轻型载货汽车为主,通俗地说只适用于小车。黑河红河谷冬季试验场是对社会开放的,主要为小车主机厂提供服务。友联致远公司的海拉尔冬季试验场是后期之秀,得天独厚的低温冰雪条件为汽车冬季试验提供着优质冷资源,是汽车耐候性、寒区耐久性、发动机标定和汽车底盘标定的理想场所,不但适合于小车,也能满足大车的需求。

友联致远海拉尔冬季试验场用途广泛,包括压实雪VDA、冰直道、冰雪圆、ABS道、操稳道、变频搓板路和寒区耐久专用道等,可进行:

◆汽车冰雪路面漂移等花样表演、比赛何试乘试驾等营销推广宣传。

◆变频搓板路可进行低温条件下的异响评估;

◆雪地胎/四季胎轮胎性能(抓地力)测试与评价;

◆汽车转向性能的评价;

◆汽车基础制动测试;

◆汽车ABS\ESC\EBD\ASR\TOD等底盘控制系统标定与评价;

◆雪侵入试验;

◆汽车通过性评价;

◆ESP\ABS的专项耐久性路试

◆寒区适应性耐久性路试;

◆主观评价冬季驾驶技能培训等

随着国内冬季试验场的广泛运用,必定会为主机厂提供更好的ESC的标定、测试、评价道路条件,从而提高汽车稳定性能,提高汽车的主动安全性。

(完)

控制系统性能指标

本章主要内容: 1控制系统的频带宽度 2系统带宽的选择 3确定闭环频率特性的图解方法 4闭环系统频域指标和时域指标的转换 五、闭环系统的频域性能指标

1 控制系统的频带宽度 1 频带宽度 当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,对应的频率称为带宽频率,记为ωb。即当ω> ωb 2。Ig ΦO)∣<20?∣ΦQ,0)∣-3 而频率范围 根据带宽定义,对高于带宽频率的正弦输入信号,系统输岀将呈现较大的衰减,因此选取适当的带宽,可以抑制高频噪声的影响。但带宽过窄又会影响系统正弦输入信号的能力,降低瞬态响应的速度。因此在设计系统时,对于频率宽度的确定必须兼顾到系统的响应速度和抗高频干扰的要求。 2、丨型和II型系统的带宽 Φ(-0 = -―- 凶为开环系s?j?ι翌,,E 所以20 Igl Φ(J?) = 2Glg 1 / JiT応孑=20Ig-L 二阶系虬的例环传禺为, (】)(,¥,〕= — ~ Λ'+2CΓ?1S +Λ?; 1 圜为I (I I(√,3) =L ∕∣ T此∕?>3+4ζ,T?∕∕? = ?∣2 叫=叫[(1 -2√2) + √(l-2ζ*3)2+l P 2、系统带宽的选择 由于系统会受多种非线性因素的影响,系统的输入和输岀端不可避免的存在确定性扰动和随机噪声,因此控制系统的带宽的选择需综合考虑各种输入信号的频率范围及其对系统性能的影响,即应使系统对输入信号具有良好的跟踪能力和对扰动信号具有较强的抑制能力。 总而言之,系统的分析应区分输入信号的性质、位置,根据其频谱或谱密度以及相应的传递函数选择合适带宽,而系统设计主要是围绕带宽来进行的。 3、确定闭环频率特性的图解方法 b)称为系统带宽

ESC(ESC、VSC)电子稳定控制系统

ESP(ESC、VSC)电子稳定控制系统 技术介绍: ESP在极限工况下工作示意图 ESP的英文全称是ElectronicStabilityProgram,中文意思是“电子稳定控制系统”。也可称作ESC或VSC。ESP主要是在紧急情况下对车辆的行驶状态进行主动干预,它整合了ABS和TCS的功能,并且增加横摆扭矩控制――防侧滑功能,可以防止车辆在高速行驶转弯或制动过程中失控。 如图1左侧所视,车辆前轮侧滑,车辆出现转向不足。此时,VSC系统通过制动器对内后轮施加一定的制动力,由此产生一个逆时针的力矩,改进车辆转向能力。 如图1右侧所视,车辆后轮侧滑,出现车辆甩尾和过度现象。此时,VSC系统通过制动器对外前轮施加一定的制动力,由此产生一个顺时针的力矩,保证车辆的稳定性。 ESP系统主要在大侧向加速度、大侧偏角的极限工况下工作。它利用控制左右两侧车轮制动力或驱动力之差产生的横摆力矩来防止出现难以控制的侧滑现象,保证车辆的路径跟踪能力,提高了车辆在高速行使时的安全性。 研究估计ESP降低了30%-50%的轿车单车致命事故和50%-70%的SUV单车致命事故。 技术应用情况:

2008年全球的VSC装配率达到33%当今在欧洲和美国,每两辆新乘用车和轻型商用车就有一辆装配了ESP。美国和欧洲的立法者最近都做出决定,要求强制装配ESP。2011年9月起,美国所有4.5吨以下车辆都必须装配ESP。2014年11月起,欧洲所有乘用车和轻、中、重型车辆都要求装配ESP。 在2008年,我国只有约11%的新车装配了ESP。随着今年国内车市新车型的不断推出,目前我国20万元以上新车配备ESP的比率大幅提高,像别克新君越、新天籁、雅阁八代等都装配了ESP。相信随着我国车市的进一步发展,电子稳定控制系统一定会如同当今的ABS一样,成为我国汽车的一个标准安全配置。

汽车电子稳定系统(ESP)

汽车电子稳定系统(ESP)( 汽车电子稳定系统或动态偏航稳定控制系统(Electronic Stability Program,ESP)是防抱死制动系统ABS、驱动防滑控制系统ASR、电子制动力分配系统EBD、牵引力控制系统TCS 和主动车身横摆控制系统AYC(Active Yaw Control)等基本功能的组合,是一种汽车新型主动安全系统。该系统是德国博世公司(B0SCH)和梅塞德斯-奔驰(MERCEDES-BENZ)公司联合开发的汽车底盘电子控制系统。 在汽车行驶过程中,因外界干扰,比如行人、车辆或环境等突然变化,驾驶员采取一些紧急避让措施,使汽车进入不稳定行驶状态,即出现偏离预定行驶路线或翻转趋势等危险状态。装置ESP的汽车能在极短的几毫秒时间内,识别并判定出这种汽车不稳定的行驶趋势,通过智能化的电子控制方案,让汽车的驱动传动系统和制动系统产生准确响应,及时恰当地消除汽车这些不稳定的行驶趋势,使汽车保持行驶路线和预防翻滚,避免交通事故的发生。 ESP系统是汽车主动安全措施的巨大突破,它通过控制事故发生的可能性来实现安全行车,使汽车在极其恶劣的行车环境中确保行驶的稳定性和安全性。 1.汽车电子稳定系统的组成 ESP在ABS和ASR各种传感器的基础上,增加了汽车转向行驶时横摆率传感器、车身翻转角速度传感器、侧加速度传感器、制动总泵中的液压力传感器和转向盘转角传感器等。其中最重要的是车身翻转角速度传感器,这种车用传感器是航天飞机和空间飞行器上使用的旋转角速度传感器的类似产品。车身翻转角速度传感器就像一个罗盘,适时地监控汽车行驶的准确姿态,监控汽车每个可能的翻转运动角速度。其他传感器则分别监控汽车的行驶速度和各车轮的速度差,监控转向盘的转动角度和汽车的水平侧向加速度,当制动发生时则监控制动力的大小和各车轮制动力的分配情况。 ESP系统包括车距控制、防驾驶员困倦、限速识别、并线警告、停车入位、夜视仪,周围环境识别、综合稳定控制和制动助力(BAS)9项控制功能。通过综合应用9种智能主动安全技术,ESP可将驾驶员对车辆失去控制的危险性降低80%左右。 ESP智能化随车微机控制系统,通过各种传感器,随时监测车辆的行驶状态和驾驶员的驾驶意图,及时向执行机构发出各种指令,以确保汽车在制动、加速、转向等状况下的行驶稳定性。

汽车电子稳定系统

汽车电子稳定系统(ESP) 汽车电子稳定系统或动态偏航稳定控制系统(Electronic Stability Program,ESP)是防抱死制动系统ABS、驱动防滑控制系统ASR、电子制动力分配系统EBD、牵引力控制系统TCS和主动车身横摆控制系统AYC(Active Yaw Control)等基本功能的组合,是一种汽车新型主动安全系统。该系统是德国博世公司(B0SCH)和梅塞德斯-奔驰(MERCEDES-BENZ)公司联合开发的汽车底盘电子控制系统。 在汽车行驶过程中,因外界干扰,比如行人、车辆或环境等突然变化,驾驶员采取一些紧急避让措施,使汽车进入不稳定行驶状态,即出现偏离预定行驶路线或翻转趋势等危险状态。装置ESP的汽车能在极短的几毫秒时间内,识别并判定出这种汽车不稳定的行驶趋势,通过智能化的电子控制方案,让汽车的驱动传动系统和制动系统产生准确响应,及时恰当地消除汽车这些不稳定的行驶趋势,使汽车保持行驶路线和预防翻滚,避免交通事故的发生。 ESP系统是汽车主动安全措施的巨大突破,它通过控制事故发生的可能性来实现安全行车,使汽车在极其恶劣的行车环境中确保行驶的稳定性和安全性。 1.汽车电子稳定系统的组成 ESP在ABS和ASR各种传感器的基础上,增加了汽车转向行驶时横摆率传感器、车身翻转角速度传感器、侧加速度传感器、制动总泵中的液压力传感器和转向盘转角传感器等。其中最重要的是车身翻转角速度传感器,这种车用传感器是航天飞机和空间飞行器上使用的旋转角速度传感器的类似产品。车身翻转角速度传感器就像一个罗盘,适时地监控汽车行驶的准确姿态,监控汽车每个可能的翻转运动角速度。其他传感器则分别监控汽车的行驶速度和各车轮的速度差,监控转向盘的转动角度和汽车的水平侧向加速度,当制动发生时则监控制动力的大小和各车轮制动力的分配情况。 ESP系统包括车距控制、防驾驶员困倦、限速识别、并线警告、停车入位、夜视仪,周围环境识别、综合稳定控制和制动助力(BAS)9项控制功能。通过综合应用9种智能主动安全技术,ESP可将驾驶员对车辆失去控制的危险性降低80%左右。 ESP智能化随车微机控制系统,通过各种传感器,随时监测车辆的行驶状态和驾驶员的驾驶意图,及时向执行机构发出各种指令,以确保汽车在制动、加速、转向等状况下的行驶稳定性。 图1是汽车电子稳定系统ESP的各种传感器及电子稳定系统ECU在轿车上的安装,其ECU 中配置了两台56kB内存的微机。ESP系统利用这两台微机和各种传感器信号不间断地监控车内电子模块、系统的工作状态和汽车的行驶姿势,比如,速度传感器每相隔20ms就会自检一次。ESP系统还通过车内电子模块之间的信号交流通信网络,充分利用防抱死制动系统ABS、制动助力系统BAS和驱动防滑控制系统ASR等的先进功能。紧急情况下,如紧张的驾驶员对制动力施加不够,制动助力系统BAS将自动增大制动力。在ESP系统出现故障不能正常工作时,ABS和ASR系统能照样工作,以保证汽车正常行驶和制动。

牵引力控制稳定性控制系统指示灯故障

5.1.3.13 牵引力控制/稳定性控制系统指示灯故障诊断说明 ? 在使用此诊断程序之前,执行。 ? 查阅,以获得诊断方法的概述。 ? 提供每种诊断类别的概述。 故障诊断信息 电路对搭铁短 路 开路/电阻过 大 对电压短 路 信号性 能 稳定性控制开关信 号 B2745 02 1 1 — 稳定性控制开关搭 铁 — 1 —— 1. 稳定性控制开关不工作 将点火开关置于ON 位置后,组合仪表点亮牵引力控制/稳定性控制启用指示灯、冬季指示灯和稳定性控制停用指示灯5秒钟。当系统处于牵引力控制或稳定性控制模式时,电子制动控制模块(EBCM) 将通过串行数据请求组合仪表点亮(闪烁)牵引力控制/稳定性控制启用指示灯。电子制动控制模块检测到故障时,将向组合仪表发送一条串行数据信息以指令牵引力控制/稳定性控制启用指示灯点亮。 车身控制模块(BCM) 监测稳定性控制开关。一旦按下稳定性控制开关,车身控制模块会请求电子制动控制模块停用牵引力控制系统。当按下稳定性控制开关5秒钟后,车身控制模块会请求电子制动控制模块停用稳定性控制系统。电子制动控制模块通过串行数据请求组合仪表熄灭冬季指示灯和稳定性控制停用指示灯,以将停用状态通知驾驶员。 参考信息

示意图参考 连接器端视图参考 说明与操作 电气信息参考 ? ? ? ? 故障诊断仪参考 参见,以获取故障诊断仪信息 电路/系统检验 1.将点火开关置于 ON 位置,用故障诊断仪指令组合仪表全部指示灯测试点亮和熄灭。确认牵引力控制/稳定性控制启用指示灯、牵引力控制停用指示灯和稳定性控制停用指示灯的点亮和熄灭。 ?如果有任何一个指示灯未点亮和熄灭,则更换P16组合仪表。 2.按下并松开牵引力控制开关的同时,观察故障诊断仪“BCM Traction Control Switch(车身控制模块牵引力控制开关)”参数。确认读数在“Active(启动)”和“Inactive(未启动)”间变化。 ?如果参数不在规定值之间变化,则参见“电路/系统测试”。

控制系统的稳定性分析

精品 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10 2.绘制EWB图和Simulink仿真图。

精品 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。 系统响应曲线 实验曲线Matlab (或EWB)仿真 R3=100K = C=1UF 临界 稳定 (理论值 R3= 200K) C=1UF

精品 临界 稳定 (实测值 R3= 220K) C=1UF R3 =100K C= 0.1UF

精品 临界 稳定 (理论 值R3= 1100 K) C=0.1UF 临界稳定 (实测值 R3= 1110K ) C= 0.1UF

精品 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较(1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

汽车电子稳定程序系统

浅谈汽车电子稳定程序 前言 随着汽车行驶速度的提高,道路行车密度的增大,汽车行驶安全性已经受到了高度关注。汽车的行驶安全性能要求不断提高,汽车安全系统已经成为汽车研究发展的重要部分。 汽车安全性包括主动安全性和被动安全性两大类。汽车主动 安全是指事故发生前的安全,即实现事故预防和事故回避,防止 事故发生。主动安全性是指通过事先预防,避免或减少事故发生 的能力。被动安全性是指汽车在发生意外事故时对乘员进行有效 保护的能力。汽车的主动安全性因其防患于未然,所以越来越受 到汽车厂商和消费者的重视,越来越多的先进技术也被应用到汽 车主动安全装置上。主动安全性的好坏决定了汽车产生事故发生概率的多少,而被动安全性的好坏主要决定了事故后车内成员的受伤严重程度。 目前广泛运用的汽车主动安全性系统主要有防抱死制动系统(ABS)、驱动防滑系统〔ASR〕、牵引力控制系统 (TCS)、汽车电子稳定程序系统(ESP),汽车电子制动力分配系统(EBD), 紧急刹车辅助系统 (EBA)、汽车自适应巡航速度控制系统(ACC)等,保证汽车在危险状况下行驶的安全性。上述这些系统具有智能化的控制作用,根据车辆的行驶状况,自动地完成对汽车制动性能、转向辅助等的控制,无需人的主动性操作,可见汽车安全系统已经向智能型方向发展。

摘要 本文探讨了ESP系统的原理、发展和现状。简要讨论汽车 ESP 系统的结构及关键技术。介绍新奥迪 A4轿车 ESP系统的组成、电控系统、液压单元及工作过程。 关键词:电子稳定程序,主动安全性,操纵稳定性,模糊控制传感器液压控制单元电子控制单元 ESP系统实际是一种牵引力控制系统,与其他牵引力控制系统比较,ESP不但控制驱动轮,而且可控制从动轮。如后轮驱动汽车常出现的转向过多情况,此时后轮失控而甩尾,ESP便会刹慢外侧的前轮来稳定车子;在转向过少时,为了校正循迹方向,ESP则会刹慢内后轮,从而校正行驶方向。 ESP系统是汽车上一个重要的系统,通常是支持ABS及ASR 的功能。它通过对从各传感器传来的车辆行驶状态信息进行分析,然后向ABS、ASR发出纠偏指令,来帮助车辆维持动态平衡。ESP可以使车辆在各种状况下保持最佳的稳定性,在转向过度或转向不足的情形下效果更加明显。ESP一般需要安装转向传感器、车轮传感器、侧滑传感器、横向加速度传感器等。 ESP系统包含ABS(防抱死刹车系统)及ASR(驱动防滑转系统),是这两种系统功能上的延伸。因此,ESP称得上是当前汽车

控制系统的稳定性

3.8 控制系统的稳定性 3.8 控制系统的稳定性 稳定性是控制系统最重要的特性之一。它表示了控制系统承受各种扰动,保持其预定工作状态的能力。不稳定的系统是无用的系统,只有稳定的系统才有可能获得实际应用。我们前几节讨论的控制系统动态特性,稳态特性分析计算方法,都是以系统稳定为前提的。 3.8.1 稳定性的定义 图3.26(a)是一个单摆的例子。在静止状态下,小球处于A位置。若用外力使小球偏离A而到达A’,就产生了位置偏差。考察外力去除后小球的运动,我们会发现,小球从初始偏差位置A',经过若干次摆动后,最终回到A点,恢复到静止状态。图3.26(b)是处于山顶的一个足球。足球在静止状态下处于B位置。如果我们用外力使足球偏离B位置,根据常识我们都知道,足球不可能再自动回到B位置。对于单摆,我们说A位置是小球的稳定位置,而对于足球来说,B则是不稳定的位置。 图 3.26 稳定位置和不稳定位置 (a)稳定位置;(b)不稳定位置 处于某平衡工作点的控制系统在扰动作用下会偏离其平衡状态,产生初始偏差。稳定性是指扰动消失后,控制系统由初始偏差回复到原平衡状态的性能。若能恢复到原平衡状态,我们说系统是稳定的。若偏离平衡状态的偏差越来越大,系统就是不稳定的。 在控制理论中,普遍采用了李雅普诺夫(Liapunov)提出的稳定性定义,内容如下: 设描述系统的状态方程为 (3.131)

式中x(t)为n维状态向量,f(x(t),t)是n维向量,它是各状态变量和时间t的函数。如果系统的某一状态,对所有时间t,都满足 (3.132) 则称为系统的平衡状态。是n维向量。当扰动使系统的平衡状态受到破坏时,系统就会偏离平衡状态,在时,产生初始状态=x。在时,如果对于任一实数,都存在另一实数,使得下列不等式成立 (3.133) (3.134) 则称系统的平衡状态为稳定的。 式中称为欧几里德范数,定义为: (3.135) 矢量的范数是n维空间长度概念的一般表示方法。 这个定义说明,在系统状态偏离平衡状态,产生初始状态以后,即以后,系统的状态将会随时间变化。对于给定的无论多么小的的球域S(),总存在另一个的球域,只要初始状态不超出球域,则系统的状态 的运动轨迹在后始终在球域S()内,系统称为稳定系统。 当t无限增长,如果满足: (3.136) 即系统状态最终回到了原来的平衡状态,我们称这样的系统是渐近稳定的。对于任意给定的正数,如果不存在另一个正数,即在球域内的初始状态,在后,的轨迹最终超越了球域S(),我们称这种系统是不稳定的。 图3.27是二阶系统关于李雅普诺夫稳定性定义的几何说明。

控制系统性能指标

控制系统性能指标

第五章线性系统的频域分析法 一、频率特性四、稳定裕度 二、开环系统的典型环节分解 五、闭环系统的频域性能指标 和开环频率特性曲线的绘制 三、频率域稳定判据 本章主要内容: 1 控制系统的频带宽度 2 系统带宽的选择 3 确定闭环频率特性的图解方法 4 闭环系统频域指标和时域指标的转换 五、闭环系统的频域性能指标

1 控制系统的频带宽度 1 频带宽度 当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,对应的频率称为带宽频率,记为ωb。即当ω>ωb 而频率范围(0,ωb)称为系统带宽。 根据带宽定义,对高于带宽频率的正弦输入信号,系统输出将呈现较大的衰减,因此选取适当的带宽,可以抑制高频噪声的影响。但带宽过窄又会影响系统正弦输入信号的能力,降低瞬态响应的速度。因此在设计系统时,对于频率宽度的确定必须兼顾到系统的响应速度和抗高频干扰的要求。 2、I型和II型系统的带宽 2、系统带宽的选择 由于系统会受多种非线性因素的影响,系统的输入和输出端不可避免的存在确定性扰动和随机噪声,因此控制系统的带宽的选择需综合考虑各种输入信号的频率范围及其对系统性能的影响,即应使系统对输入信号具有良好的跟踪能力和对扰动信号具有较强的抑制能力。 总而言之,系统的分析应区分输入信号的性质、位置,根据其频谱或谱密度以及相应的传递函数选择合适带宽,而系统设计主要是围绕带宽来进行的。 3、确定闭环频率特性的图解方法

1、尼科尔斯图线 设开环和闭环频率特性为 4、闭环系统频域指标和时域指标的转换 工程中常用根据相角裕度γ和截止频率ω估算时域指标的两种方法。 相角裕度γ表明系统的稳定程度,而系统的稳定程度直接影响时域指标σ%、ts。 1、系统闭环和开环频域指标的关系 系统开环指标截止频率ωc与闭环带宽ωb有着密切的关系。对于两个稳定程度相仿的系统,ωc 大的系统,ωb也大;ωc小的系统,ωb也小。 因此ωc和系统响应速度存在正比关系,ωc可用来衡量系统的响应速度。又由于闭环振荡性指标谐振Mr和开环指标相角裕度γ都能表征系统的稳定程度。 系统开环相频特性可表示为

控制系统性能指标

第五章线性系统的频域分析法 一、频率特性四、稳定裕度 二、开环系统的典型环节分解 五、闭环系统的频域性能指标 和开环频率特性曲线的绘制 三、频率域稳定判据 本章主要内容: 1 控制系统的频带宽度 2 系统带宽的选择 3 确定闭环频率特性的图解方法 4 闭环系统频域指标和时域指标的转换 五、闭环系统的频域性能指标

1 控制系统的频带宽度 1 频带宽度 当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,对应的频率称为带宽频率,记为ωb。即当ω>ωb 而频率范围(0,ωb)称为系统带宽。 根据带宽定义,对高于带宽频率的正弦输入信号,系统输出将呈现较大的衰减,因此选取适当的带宽,可以抑制高频噪声的影响。但带宽过窄又会影响系统正弦输入信号的能力,降低瞬态响应的速度。因此在设计系统时,对于频率宽度的确定必须兼顾到系统的响应速度和抗高频干扰的要求。 2、I型和II型系统的带宽 2、系统带宽的选择 由于系统会受多种非线性因素的影响,系统的输入和输出端不可避免的存在确定性扰动和随机噪声,因此控制系统的带宽的选择需综合考虑各种输入信号的频率范围及其对系统性能的影响,即应使系统对输入信号具有良好的跟踪能力和对扰动信号具有较强的抑制能力。 总而言之,系统的分析应区分输入信号的性质、位置,根据其频谱或谱密度以及相应的传递函数选择合适带宽,而系统设计主要是围绕带宽来进行的。 3、确定闭环频率特性的图解方法

1、尼科尔斯图线 设开环和闭环频率特性为 4、闭环系统频域指标和时域指标的转换 工程中常用根据相角裕度γ和截止频率ω估算时域指标的两种方法。 相角裕度γ表明系统的稳定程度,而系统的稳定程度直接影响时域指标σ%、ts。 1、系统闭环和开环频域指标的关系 系统开环指标截止频率ωc与闭环带宽ωb有着密切的关系。对于两个稳定程度相仿的系统,ωc大的系统,ωb也大;ωc小的系统,ωb也小。 因此ωc和系统响应速度存在正比关系,ωc可用来衡量系统的响应速度。又由于闭环振荡性指标谐振Mr和开环指标相角裕度γ都能表征系统的稳定程度。 系统开环相频特性可表示为

汽车电子稳定系统或动态偏航稳定控制系统

汽车电子稳定系统或动态偏航稳定控制系统(Electronic Stability Program,ESP)是 防抱死制动系统ABS、驱动防滑控制系统ASR、电子制动力分配系统EBD、牵引力控制系统TCS和主动车身横摆控制系统AYC(Active Yaw Control)等基本功能的组合,是一种汽车新型主动安全系统。该系统是德国博世公司(B0SCH)和梅塞德斯-奔驰(MERCEDES-BENZ)公司联合开发的汽车底盘电子控制系统。 在汽车行驶过程中,因外界干扰,比如行人、车辆或环境等突然变化,驾驶员采取一些紧急避让措施,使汽车进入不稳定行驶状态,即出现偏离预定行驶路线或翻转趋势等危险状态。装置ESP的汽车能在极短的几毫秒时间内,识别并判定出这种汽车不稳定的行驶趋势,通过智能化的电子控制方案,让汽车的驱动传动系统和制动系统产生准确响应,及时恰当地消除汽车这些不稳定的行驶趋势,使汽车保持行驶路线和预防翻滚,避免交通事故的发生。 ESP系统是汽车主动安全措施的巨大突破,它通过控制事故发生的可能性来实现安全行车,使汽车在极其恶劣的行车环境中确保行驶的稳定性和安全性。 1.汽车电子稳定系统的组成 ESP在ABS和ASR各种传感器的基础上,增加了汽车转向行驶时横摆率传感器、车身翻转角速度传感器、侧加速度传感器、制动总泵中的液压力传感器和转向盘转角传感器等。其中最重要的是车身翻转角速度传感器,这种车用传感器是航天飞机和空间飞行器上使用的旋转角速度传感器的类似产品。车身翻转角速度传感器就像一个罗盘,适时地监控汽车行驶的准确姿态,监控汽车每个可能的翻转运动角速度。其他传感器则分别监控汽车的行驶速度和各车轮的速度差,监控转向盘的转动角度和汽车的水平侧向加速度,当制动发生时则监控制动力的大小和各车轮制动力的分配情况。 ESP系统包括车距控制、防驾驶员困倦、限速识别、并线警告、停车入位、夜视仪,周围环境识别、综合稳定控制和制动助力(BAS)9项控制功能。通过综合应用9种智能主动安全技术,ESP可将驾驶员对车辆失去控制的危险性降低80%左右。 ESP智能化随车微机控制系统,通过各种传感器,随时监测车辆的行驶状态和驾驶员的驾驶意图,及时向执行机构发出各种指令,以确保汽车在制动、加速、转向等状况下的行驶 稳定性。 图1是汽车电子稳定系统ESP的各种传感器及电子稳定系统ECU在轿车上的安装,其ECU中配置了两台56kB内存的微机。ESP系统利用这两台微机和各种传感器信号不间断地监控车内电子模块、系统的工作状态和汽车的行驶姿势,比如,速度传感器每相隔20ms就会自检一次。ESP系统还通过车内电子模块之间的信号交流通信网络,充分利用防抱死制动系统ABS、制动助力系统BAS和驱动防滑控制系统ASR等的先进功能。紧急情况下,如紧张的驾驶员对制动力施加不够,制动助力系统BAS将自动增大制动力。在ESP系统出现故障不能正常工作时,ABS和ASR系统能照样工作,以保证汽车正常行驶和制动。

电子稳定控制系统(ESP)项目年终总结报告

电子稳定控制系统(ESP)项目年终总结报告 一、电子稳定控制系统(ESP)宏观环境分析 二、2018年度经营情况总结 三、存在的问题及改进措施 四、2019主要经营目标 五、重点工作安排 六、总结及展望

尊敬的xxx有限公司领导: 近年来,公司牢固树立“创新、协调、绿色、开放、共享”的发展理念,以提高发展质量和效益为中心,加快形成引领经济发展新常态的体制机制和发展方式,统筹推进企业可持续发展,全面推进开放内涵式发展,加快现代化、国际化进程,建设行业领先标杆。 初步统计,2018年xxx有限公司实现营业收入11350.11万元,同比增长29.65%。其中,主营业业务电子稳定控制系统(ESP)生产及销售收入为9611.11万元,占营业总收入的84.68%。 一、电子稳定控制系统(ESP)宏观环境分析 (一)中国制造2025 高质量发展是经济重大关系协调、循环顺畅的发展。过去的几十年,我国经济存在着周期性波动;今后一个时期,最重要的是要避免经济发展大起大落和防范系统性金融风险。因此,高质量发展必须保持国民经济重大比例关系协调和空间布局比较合理,生产、流通、分配、消费各环节循环顺畅。党的十九大报告明确指出:“我国经济已由高速增长阶段转向高质量发展阶段。”这是党中央对当前经济发展大势的科学判断,也是直面新时代主要矛盾,主动适应经济发展新常

态的必须选择和紧迫任务。进入新常态,我市面临着发展速度下降、供需矛盾突出、增长动力不足等问题。从表面看是受金融危机影响导致内外整体需求不足,但从更深层次原因考究,则是经济发展已由“量的积累”转向“质的提升”,质量矛盾开始上升到主导位置。当前,我市亟需通过高质量发展来保持经济持续健康和长期稳定发展。 (二)工业绿色发展规划 当前,我国经济已由高速增长转向高质量发展阶段,迫切要求建设现代化经济体系,提高供给体系质量。《中国制造2025》明确提出绿色发展,要求坚持把可持续发展作为建设制造强国的重要着力点,提高资源回收利用效率,构建绿色制造体系,实施绿色制造工程,全面推行绿色制造,推进资源高效循环利用,力争到2020年工业固体废物综合利用率达到73%。推进绿色发展,真抓实干才能见效。进一步提高绿色指标在“十三五”规划全部指标中的权重,把保障人民健康和改善环境质量作为更具约束性的硬指标,是推动绿色发展的政策制度保证。无论是实行最严格的环境保护制度和水资源管理制度,实行省以下环保机构监测监察执法垂直管理制度,还是深入实施大气、水、土壤污染防治行动计划,实施山水林田湖生态保护和修复工程,都是为了尽快遏止生态环境恶化的势头,筑牢绿色发展的底线。

汽车电子控制系统由那些部分组成

汽车电子控制系统主要由传感器,控制单元和执行器三部分组成。根据控制功能不同,汽车电子控制系统可为动力性,经济与排放性,安全性,舒适性,操纵性,通过性和信息控制系统七种类型。根据汽车总体结构,汽车电子控制系统可分为发动机电子控制系统,底盘电子控制系统,车身电子控制系统和综合控制系统四大类。(1)汽车发动机电子控制系统。它主要包括;电子控制发动机燃油喷射系统( EFI ), 空燃比反馈控制系统 ( AFC), 怠速控制 系统( ISC), 断油控制系统,燃油蒸汽回收控制系统,排气再循环控制系统,加速踏板控制系统(EAP ,微机控制点火系统(MCI), 发动机爆震控制系统(EDC,进气控制系统,增压控制系统和汽车巡航控制系统(CCS) 第二代车载故障诊断系统(0BD-11)等。 ( 2)汽车底盘电子控制系统。它主要包括; 电子控制自动变速系统(ECT,防抱死控制系统(ABS,电子控制制动力分配系统(EBD,电子控制制动辅助系统(EBA,动态稳定控制系统(DSC,驱动防滑控制系统(ASR,电子控制动力转向系统(EPS ,电子控制悬架系统(ECS ,轮胎气压控制系

统(TPQ, 等。 ( 3)汽车车身电子控制系统。它主要包括; 辅助防护安全气nan系统(SRS ,安全带张紧控制系统(STTS,车辆保安系统(VESS, 中央门锁控制系统(CLCS,前照灯控制与清洗系统(HAW,刮水器与清洗器控制系统 (WWCS座椅调节系统(SAMS。( 4)汽车综合控制系统。它主要包括;维修周期显示系统(LSID),液面与磨损监控系统 ( FWM)S 车载计算机( OBC)车载电话 ( CPH),交通控制与通信系统(TCIS),信息显示系统(IDS),控制器区域网络系统(CAN,自动空调系统(ACS,雷达车距控制系统,倒车防撞报警系统(PWS,等。

车身稳定控制系统相关知识

汽车稳定控制系统相关知识 电子稳定控制系统概念 汽车电子稳定控制系统是车辆新型的主动安全系统,是汽车防抱死制动系统(ABS)和牵引力控制系统(TCS)功能的进一步扩展,并在此基础上,增加了车辆转向行驶时横摆率传感器、测向加速度传感器和方向盘转角传感器,通过ECU 控制前后、左右车轮的驱动力和制动力,确保车辆行驶的侧向稳定性。 该系统由传感器、电子控制单元(ECU)和执行器三大部分组成,通过电子控制单元监控汽车运行状态,对车辆的发动机及制动系统进行干预控制。典型的汽车电子稳定控制系统在传感器上主要包括4个轮速传感器、方向盘转角传感器、侧向加速度传感器、横摆角速度传感器、制动主缸压力传感器等,执行部分则包括传统制动系统(真空助力器、管路和制动器)、液压调节器等,电子控制单元与发动机管理系统联动,可对发动机动力输出进行干预和调整。 这套系统主要对车辆纵向和横向稳定性进行控制,保证车辆按照驾驶员的意识行驶。电子稳定控制系统的基础是ABS制动防抱死功能,该系统在汽车制动情况下轮胎即将抱死时,一秒内连续制动上百次,有点类似于机械式“点刹”。如此一来,在车辆全力制动时,轮胎依然可以保证滚动,滚动摩擦的效果比抱死后的滑动摩擦效果好,且可以控制车辆行驶方向。

另一方面该系统会与发动机ECU协同工作,当驱动轮打滑时通过对比各个车轮的转速,电子系统判断出驱动轮是否打滑,立刻自动减少节气门进气量,降低发动机转速从而减少动力输出,对打滑的驱动轮进行制动。这样便可以减少打滑并保持轮胎与地面抓地力之间最合适的动力输出,此时无论怎么给油,驱动轮都不会发生打滑现象。 该系统在保证车辆横向稳定性方面体现在当系统通过转角传感器、横向加速度传感器及轮速传感器的信号发现车辆发生了转向不足或过度时,系统会控制单个或是多个车轮进行制动,来调整汽车变换车道或在过弯时的车身姿态,使汽车在变换车道或是过弯时能够更加的平稳而安全。 目前,世界范围内主要供应电子稳定控制系统的供应商有六家,分别是博世、天合、电装、爱信精机、大陆、京西重工(收购了德尔福底盘系统公司),众厂家的系统也基本都是从这几家采购而来,再冠以不同的名字。不过,即使是同一系统在不同车型上的功能也会有不同,这里我们只说最基本的功能。

汽车电子稳定性控制系统现状及标准分析

10.16638/https://www.360docs.net/doc/f611432054.html,ki.1671-7988.2018.12.040 汽车电子稳定性控制系统现状及标准分析 赵永刚1,吕彪2 (1.重庆车辆检测研究院有限公司,重庆401122;2.上海万象汽车制造有限公司,上海201611) 摘要:汽车电子稳定性控制(Electronic Stability Control,简称ESC)系统通过调节车辆行驶和制动过程中牵引力和制动力分配,能有效提高车辆行驶及制动过程中的安全性能。文章介绍了ESC系统的组成、工作原理、国内外研究现状以及国内外标准法规现状,并对国内外标准法规进行了分析比较。 关键词:ESC系统;现状;标准 中图分类号:U461.99 文献标识码:B 文章编号:1671-7988(2018)12-113-03 Standardized On-Road Test of City bus Zhao Yonggang1, Lu Biao2 (1.Chongqing Vehicle Test &Research Institute Co., Ltd, Chongqing 401122; 2.Shanghai vientiane automobile manufacturing Co., Ltd, Shanghai 201611) Abstract: Electronic stability control system by adjusting the vehicle traction and braking force of during driving and braking, can effectively improve the safety performance in the process of vehicle driving and braking. This paper intro -duces composition of ESC system, working principle, research status domestic and foreign , situation of domestic and foreign standards research, and analyzes and compares domestic and foreign standards of status quo. Keywords: Electronic Stability Control system; Standard; The status quo CLC NO.: U461.99 Document Code: B Article ID: 1671-7988(2018)12-113-03 前言 车辆操纵稳定性是汽车安全领域的长期研究课题,随着汽车底盘系统的逐渐电子化和智能化,针对车辆操纵稳定性的汽车电子稳定性控制(Electronic Stability Control,简称ESC)系统已经成为该领域的热点研究课题之一。国内对ESC系统的研究起步较晚,特别是重型车的ESC系统的研究尚处于理论分析阶段,目前还没有相对成熟的重型车ESC 系统测试方法标准发布。开展汽车电子稳定性控制系统现状及标准体现的分析,有助于推进我国现有车辆ESC系统的装车调试,对提升汽车安全技术水平意义重大。1 ESC系统介绍 美国国家公路交通安全管理局于2007年对ESC系统进行了标准化的定义,规定ESC必须具备以下特征:1)通过对单个车轮进行制动力调来产生一个横摆力矩,从而增强汽车的方向稳定性;2)由计算机控制,通过闭环控制算法来限制汽车的转向;3)具备测量汽车横摆角速度以及估算汽车质心侧偏角的方法;4)具备监测驾驶员转向输入的方法;5)具有控制算法来确定是否有改变发动机输出扭矩的需要,并且有相应的方法来实现输出转矩的调节,帮助驾驶员保持对汽车的控制。为了实现ESC系统的上述功能,ESC系统应用了先进的传感器、电子控制单元、执行器等有关技术。图1展示了ESC系统的组成。 在具体的工作过程中,ESC系统经过传感器信息处理和 作者简介:赵永刚(1984-),男,硕士,就职于重庆车辆检测研究 院有限公司,从事汽车测试技术与研究。 113

汽车电子控制技术 教学课件 作者 于京诺 第3章 汽车行驶稳定性控制系统

汽车电子控制技术汽车类专业应用型本科示范教材 机械工业出版社出版主编于京诺

第3章 汽车行驶稳定性控制系统 ?学习目标 ?·了解ABS、ASR的基础理论。 ?·了解ABS、ASR的组成和分类。 ?·掌握ABS的结构和工作原理。 ?·掌握ASR的结构和工作原理。 ?·了解ESP的功能。 ?·掌握ESP的结构和工作原理。

3.1 防抱死制动系统(ABS 3.1.1 概述 1.ABS 的基础理论 第3章 汽车行驶稳定性控制系统 (1)汽车制动时的附着条件 地面制动力只能小于或等于附着力: (3-1) 附着力正比于地面对车轮的法向反作用力F Z以及车轮与地面之间的附着系数,即 (3-2) 在地面对车轮的法向反作用力F Z一定的情况下,附着力的大小取决于附着系数。附着系数的大小与路面和轮胎的性质有关,还与车轮的滑移率有关。 ?F F X ≤??Z F F =

(3)附着系数与滑移率的关系 车轮与地面之间的附着系数会随着车轮滑移率的变化而变化,干燥硬实路面附着系数与滑移率的关系如图3-1所示。 开始时随着滑移率的增大, 纵向附着系数迅速增大,当滑 移率达到约20%时,纵向附着 系数达到最大值。当滑移率达 到100%,即车轮完全被抱死滑 移时,其附着系数称为滑动附 着系数。当滑移率为0时,横 向附着系数最大,随着滑移率 的增大,横向附着系数逐渐减 小,当滑移率达到100%时,横 向附着系数接近于零。 图3-1 干燥硬实路面附着系数与滑移率的关系

(4)汽车采用ABS的必要性 由附着系数与滑移率之间的关系可知,汽车制动时如果车轮完全抱死,就纵向附着系数而言,其滑动附着系数低于峰值附着系数,这将使车轮完全抱死时的制动距离比具有峰值附着系数时的制动距离变长;就横向附着系数而言,由于在车轮抱死时的横向附着系数接近于零,汽车几乎失去了横向附着能力,因此使汽车的方向稳定性变差,一旦汽车遇到横向干扰力的作用,就可能产生侧滑、甩尾甚至回转等情况。另外,一旦转向车轮抱死,汽车不会按照转向轮偏转的方向行驶,而是沿汽车行驶惯性力的方向向前滑动,从而使汽车失去转向控制能力。 综上所述,汽车制动时车轮抱死会使制动距离变长,方向稳定性变差,失去转向控制能力,因此制动时应避免车轮抱死。汽车上采用ABS的目的就是避免制动时车轮抱死,将滑移率控制在10%~30%,在此范围内既有最大的纵向附着系数,使制动距离最短,又有较大的横向附着系数,以获得较好的横向稳定性和转向控制能力。

控制系统的稳定性分析

自动控制理论实验报告 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10

自动控制理论实验报告 2.绘制EWB 图和Simulink 仿真图。 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。

自动控制理论实验报告

自动控制理论实验报告

自动控制理论实验报告 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较 (1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

汽车电子稳定系统(ESP)的原理分析

汽车电子稳定系统(ESP)的原理分析 汽车电子稳定系统或动态偏航稳定控制系统(Electronic Stability Program,ESP)是防抱死制动系统ABS、驱动防滑控制系统ASR、电子制动力分配系统EBD、牵引力控制系统TCS 和主动车身横摆控制系统AYC(Active Yaw Control)等基本功能的组合,是一种汽车新型主动安全系统。该系统是德国博世公司(B0SCH)和梅塞德斯-奔驰(MERCEDES-BENZ)公司联合开发的汽车底盘电子控制系统。 在汽车行驶过程中,因外界干扰,比如行人、车辆或环境等突然变化, 驾驶员采取一些紧急避让措施,使汽车进入不稳定行驶状态,即出现偏离预定 行驶路线或翻转趋势等危险状态。装置ESP 的汽车能在极短的几毫秒时间内,识别并判定出这种汽车不稳定的行驶趋势,通过智能化的电子控制方案,让汽 车的驱动传动系统和制动系统产生准确响应,及时恰当地消除汽车这些不稳定 的行驶趋势,使汽车保持行驶路线和预防翻滚,避免交通事故的发生。 ESP 系统是汽车主动安全措施的巨大突破,它通过控制事故发生的可能性来实现安全行车,使汽车在极其恶劣的行车环境中确保行驶的稳定性和安全性。 1.汽车电子稳定系统的组成 ESP 在ABS 和ASR 各种传感器的基础上,增加了汽车转向行驶时横摆率传感器、车身翻转角速度传感器、侧加速度传感器、制动总泵中的液压力传 感器和转向盘转角传感器等。其中最重要的是车身翻转角速度传感器,这种车 用传感器是航天飞机和空间飞行器上使用的旋转角速度传感器的类似产品。车 身翻转角速度传感器就像一个罗盘,适时地监控汽车行驶的准确姿态,监控汽 车每个可能的翻转运动角速度。其他传感器则分别监控汽车的行驶速度和各车

相关文档
最新文档