差分放大器的设计

差分放大器的设计
差分放大器的设计

沈航北方科技学院

课程设计说明书课程名称模拟电子技术课程设计

教学部工学一部

专业测控技术与仪器

班级B841401

学号B84140117

学生姓名刘佳

指导教师徐锦丽

2010年6月

沈航北方科技学院

课程设计任务书

教学部工学一部专业测控技术与仪器

课程设计题目差分放大器的设计

班级B841401 学号B84140117 姓名刘佳

课程设计时间: 2010 年 6 月21日至2010 年7 月11日

课程设计的内容及要求:

(一)主要内容

设计一个具有恒流源的单端输入-单端输出差分放大器。要求如下

1. 负载电阻R L=20kΩ,输入差模输入电压u id=20mV;

2. 差模电压放大倍数A ud>50,输入电阻R id>10kΩ,共模抑制比

K CMR>60 dB。

(二)基本要求

1. 根据技术指标制定实验方案;在选择器件时,应考虑成本。

2. 根据技术指标通过分析计算确定电路形式和元器件参数;进行实验数据处理和分析。

3. 画出电路原理图(元器件标准化,电路图规范化);验证所设计的电路。

4. 用仿真软件仿真。

5. 按照要求撰写课程设计报告

(三)主要参考书

1. 童诗白,华成英主编.模拟电子技术基础.[M]北京:高等教育出版社,2006年

2. 戴伏生主编.基础电子电路设计与实践.[M]北京:国防工业出版社,2002年

3. 谭博学主编.集成电路原理与应用.[M]北京:电子工业出版社,2003年

4. 陈光明等主编.电子技术课程设计与综合实训.[M]北京:北京航空航天大学出版社,2007年

5. 谢自美主编.电子线路设计·实验·测试.[M]武汉:华中科技大学出版社,2006年

6. 华满清主编.电子技术实验与课程设计.[M]北京:机械工业出版社,2005年(四)评语

(五)成绩

指导教师年月日

负责教师年月日

摘要:本电路为差分放大电路,主要功能是将输入端输入的差模信号放大后在输出端输出。本电路主要由两个2n1711(分别为T1、T2)三极管构成对称链接的放大电路,其中两R c1、R c2为等值电阻,R l为负载电阻,起到一定保护电路的作用。V1为12v之流恒压电源,V2为20mv信号电压源。

关键词:差分放大器、差分放大器原理

目录

1、概述................................................................. - 1 -

2、方案设计............................................................. - 1 -

3、电路设计............................................................. - 1 -

3.1 电路静态分析.................................................... - 1 -

3.3 电路动态分析.................................................... - 1 -

3.2单端输入单端输出差模放大电路。................................... - 2 -

4、性能的测试........................................................... - 4 -

5、结论................................................................. - 6 -

6、性价比............................................................... - 6 -

7、课设体会及合理化建议................................................. - 6 - 附录I 总电路图........................................................ - 7 - 附录II 元器件清单..................................................... - 8 -

1、概述

本电路根据设计要求,完成将20mv 信号电压源输入信号经过由双三极管组成的差模放大电路放大,由一端输出放大后的信号的功能。

参照双端输入单端输出的差模电压增益与单端输入单端输出的差模电压增益相同的原理,将其中以输出端一起中一输入端接地处理构成电路。电路由双恒流源供电,两恒流源分别为+12v 与-12v ,其中-12v 一端采用双三极管连接成组值极大的电阻与电流源串联,从而构成组值极大的负极以抑制共模输入,使电路接近理想状态,此处也可采取接入极大阻值电阻方法达成,但考虑实际制造中刻蚀制作电阻成本,采用双三极管构造。另外需要说明的是电阻R2的做用是用于实践电路的非理想状态调平,在模拟电路中无实际作用。

2、方案设计

方案:

方案原理框图如图1所示。

图1 差模放大电路的原理框图

待放大的电压信号输入到由双12v 恒流源驱动的差分放大电路,在单端输出负载输出。

3、电路设计

3.1 电路静态分析

当电路处于静态时:u i =0,若电路完全对称,i c =0,V CE =V cc -I C R c +0.7v ,u o =0

3.3 电路动态分析

动态电路如图2,在电路完全对称的条件下:Ui

Uo A -

=Ud

,0?UC A

图2单输入单输出擦粉放大电路的动态电路

3.2单端输入单端输出差模放大电路。

为了达到共模抑制比较理想的效果本文首先采用在公共点e 接入以较大组织电阻R E 如 图3所示,但在实际计算中根据公式共模电压增益UC A 为:

UC 2r R A c -

= ⑴

图3设想接入大阻值电阻电路图

A uc 大于零,达不到接近理想的效果。故采用e 点接入反相恒流源代替较大阻值电阻,如图4所示电路图。

e

u o

u i

图4接入恒流源电路图

根据计算图3中A uc 无限接近0,符合要求,但考虑到实际操作中电路不可能自然达到理想的对称,所以本文将在公共点e 处接入一滑动变阻器R 2从而能够手动电路的对称如附录一所示电路图。

根据附录一电路图所示电路进行不同状态分析,确定各元件实际参数。 当电路静态时:I R=1.081mA ,I 0=1.075mA ,I R = I 01mA ,I C1= I C2= I 0/2=0.5mA 根据题设R id >10k Ω,动态输入电阻r be 、差么输入电阻R id 如下:

{}Ω=?++Ω=k 4.3mA

2/I 26mV

)

1(300mA 0be βr

R id =2(R B1+ r be )>10k Ω,则R B1>1.6k Ω

所以在两输入端分别串联一个1.7k Ω的定值电阻R B1和R B2。R id =10.2k Ω

在电路动态时共模电压增益UD A 为:

be

B1UD r R R A c +-=

β ⑵

本文将A UD 取为51,采用的三极管2N1711的β值为16.78,由此得出:R c 1.55k Ω

恒流电源部分:E

EE 0R

V 7.0R R V I I +--=

=取R 3= R 4=500Ω,则R 10.8k Ω,根据实际数据

纠正误差后 R=10k Ω。

e

图5电源电路原理图

驱动电源设计如图5,其中电流i 0为共模输入电流。

差分放大电路的输入与输出端,其中i s 为信号输入电流,i c1为两共模输入电流之一。 差模电压增益: 512id

C2

C1UD ≈=

+=

be

c r R V V V A β

共模电压增益:

20

UC ≈-

=r R A c (r 0>>R c )

放大电路大主要参数有共模抑制比与静态工作点共模抑制比根据公式⑶接近于无穷大。所以共模抑制比CMR K 为:

UC

UD CMR lg

20A A K = ⑶

调整RP 1,使其满足V C1Q = V C2Q 并测量T 1、T 2基极和发射极对地 电压(V B1Q 、V E1Q 、V B2Q 、V E2Q ) V E1Q =V C1Q -V E1Q , V E2Q =V C2Q -V E2Q

计算T 1、T 2静态工作点: 集电极电压:

V C1Q = V C2Q = V CC –I C R C

= 4.3V

基极电压:

V B1Q = V B2Q =(Ic/ β)R B1=0V ,则 V E1Q = V E2Q ≈ –0.767V

4、性能的测试

本文性能测试采用Multisim 10进行仿真测试。 输出输入电压模拟测量值如图6、图7所示。

图6输出电压测量值

图7输入电压测量值

mv

20mv

图8输入端电压波形

输入端所输入的电压波形如图8,为正弦波形。

v

1v

t

图9输出端电压波形

输出端所输出的电压波形如图9,为正弦波形。

5、结论

在电路设计方面与元件利用方面本电路选择的较为廉价的三极管做恒流源,电路形式竟可能达到简单可靠的设计要求,电路图达到了标准化、规范化的要求。

在设计技术指标方面,通过模拟仿真本电路完全达到了任务书所要求的指标,并且在共模抑制比方面远远超出了题设所要求的60db达到了接近无穷。

6、性价比

本电路从本质上讲是利用双倍的原件达到共模抑制效果,性能和价格是不成正比的,但在实际应用中,缺少理想环境,无论是温度、灰尘、气压还是电路损耗都灰或多或少的生成共模信号,对电路产生干扰,可以看出共模信号的产生是不可避免的,因而大部分抑制共模信号的需求只能由本电路满足,实为无奈。当然随着技术的进步,更先进的差量放大技术会崛起,带来结构更简单,可靠性更高,耗材更少的查放元件。

7、课设体会及合理化建议

本次课设是我第一次系统的学习和使用仿真软件Multisim 10,本次课设相当于一个窗口让我一次认识到第设计电路可以是这么简单,方便,Multisim 10着的是一个非常有用的软件,有了它可以实现太多因现实条件限制而不能做的实验或者难以精确的得出结论的实验,只要有一台电脑Multisim 10可以让我们不受物理条件的限制模拟任何想得到想不到的情况,发自内心的说,这个软件不光是学习电子技术的必备工具而且是所有电子专业学生的大玩具!

参考文献

[1].童诗白,华成英主编.模拟电子技术基础.[M]北京:高等教育出版社,2006年

[2].戴伏生主编.基础电子电路设计与实践.[M]北京:国防工业出版社,2002年

[3].谭博学主编.集成电路原理与应用.[M]北京:电子工业出版社,2003年

[4].陈光明等主编.电子技术课程设计与综合实训.[M]北京:北京航空航天大学出版社,2007年

[5].谢自美主编.电子线路设计·实验·测试.[M]武汉:华中科技大学出版社,2006年

[6].华满清主编.电子技术实验与课程设计.[M]北京:机械工业出版社,2005年

附录I 总电路图

附录II 元器件清单

采用折叠式结构的两级全差分运算放大器的设计

目录 1. 设计指标 (1) 2. 运算放大器主体结构的选择 (1) 3. 共模反馈电路(CMFB)的选择 (1) 4. 运算放大器设计策略 (2) 5. 手工设计过程 (2) 5.1 运算放大器参数的确定 (2) 5.1.1 补偿电容Cc和调零电阻的确定 (2) 5.1.2 确定输入级尾电流I0的大小和M0的宽长比 (3) 5.1.3 确定M1和M2的宽长比 (3) 5.1.4确定M5、M6的宽长比 (3) 5.1.5 确定M7、M8、M9和M10宽长比 (3) 5.1.6 确定M3和M4宽长比 (3) 5.1.7 确定M11、M12、M13和M14的宽长比 (4) 5.1.8 确定偏置电压 (4) 5.2 CMFB参数的确定 (4) 6. HSPICE仿真 (5) 6.1 直流参数仿真 (5) 6.1.1共模输入电压范围(ICMR) (5) 6.1.2 输出电压范围测试 (6) 6.2 交流参数仿真 (6) 6.2.1 开环增益、增益带宽积、相位裕度、增益裕度的仿真 (6) 6.2.2 共模抑制比(CMRR)的仿真 (7) 6.2.3电源抑制比(PSRR)的仿真 (8) 6.2.4输出阻抗仿真 (9) 6.3瞬态参数仿真 (10) 6.3.1 转换速率(SR) (10) 6.3.2 输入正弦信号的仿真 (11) 7. 设计总结 (11) 附录(整体电路的网表文件) (12)

采用折叠式结构的两级全差分运算放大器的设计 1. 设计指标 5000/ 2.5 2.551010/21~22v DD SS L out dias A V V V V V V GB MHz C pF SR V s V V ICMR V P mW μ>==?== >=±=?≤的范围 2. 运算放大器主体结构的选择 图1 折叠式共源共栅两级运算放大器 运算放大器有很多种结构,按照不同的标准有不同的分类。从电路结构来看, 有套筒 式共源共栅、折叠式共源共栅、增益提高式和一般的两级运算放大器等。本设计采用的是如图1所示的折叠式共源共栅两级运算放大器,采用折叠式结构可以获得很高的共模输入电压范围,与套筒式的结构相比,可以获得更大的输出电压摆幅。 由于折叠式共源共栅放大器输出电压增益没有套筒式结构电压增益那么高,因此为了得到更高的增益,本设计采用了两级运放结构,第一级由M0-M10构成折叠式共源共栅结构,第二级由M11-M14构成共源级结构,既可以提高电压的增益,又可以获得比第一级更高的输出电压摆幅。 为了保证运放在闭环状态下能稳定的工作,本设计通过米勒补偿电容Cc 和调零电阻Rz 对运放进行补偿,提高相位裕量! 另外,本文设计的是全差分运算放大器,与单端输出的运算放大器相比较,可以获得更高的共模抑制比,避免镜像极点及输出电压摆幅。 3. 共模反馈电路(CMFB )的选择 由于采用的是高增益的全差分结构,输出共模电平对器件的特性和失配相当敏感,而且不能通过差动反馈来达到稳定,因此,必须增加共模反馈电路(CMFB )来检测两个输出端

全差分运算放大器设计

全差分运算放大器设计 岳生生(200403020126) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11 1357 113 51 3 57 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=-+ 第二级增益 9 2 2 9112 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- + 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r = = ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

电液伺服放大器的设计与分析

电液伺服放大器的设计与分析 文章主要阐述了电液伺服放大器的设计原理。在设计原理的基础上,采用深度电流负反馈技术,对其进行了详细的计算,并做了性能测试。结果表明,电液伺服伺服放大器输出负载电流稳定、线性度好、响应快,满足设计要求。 标签:电液伺服放大器;设计原理;深度电流负反馈 1 放大器总体设计与设计要求 电液伺服控制技术主要是将电信号按比例转换为液压功率输出的电液转换技术[1]。电液伺服控制系统由于其输出功率大、控制精度高等优点,应用于很多领域。随着技术的发展,电液伺服控制技术主要向着专用、高集成、组合化的方向发展。 作为电液控制系统的重要组成部分,伺服放大器要有良好的动态和静态性能,并且具有线性度好、精度高等特点,而且要能输出足够大的功率[2]。文章设计的伺服放大器要满足输入的电压在-10V~+10V时,输出的电流为-40mA~+40mA,而且伺服放大器的线性度误差要小于3%。 2 电路设计及相关计算 作为电液伺服放大器,其电路设计要采用深度电流负反馈技术。深度电流负反馈是指用一个电阻与线圈串联,并将其上的电压通过反馈电阻反馈至放大器的输入端,构成闭环回路。当负载电阻变化时,流过的电流保持不变[3]。这样,当电液伺服阀在长时间工作后引起阀线圈电阻变化时,通过伺服阀线圈的电流保持不变。 伺服放大器主要电路包括:调零电路、信号放大、电压跟随、功率输出。电路原理图如图1所示。由于放大器的输出电流小,不能满足要求,所以采用推挽电路进行功率放大。 放大器U1对信号进行放大: 通过式(4)可以看出,当电路中的参数确时,负载上的电流和输入信号成线性关系,与负载电阻无关。 3 实验结果与结果分析 将伺服放大器输入-10V~+10V的电压,对实验数据进行处理,得到输入电压与负载电流曲线图,如图2所示。 分析图2的曲线,可以得到,曲线线性度好,输出电流与输入电压成线性关

差分编码器设计和高频小信号放大器的设计

专业课程设计任务书 第一周课题(四选一) 1.1M调幅接收机设计 要求:中心频率f0=1MHz,低频信号频率f m=10kHz。 2.锁相频率合成器设计 要求:锁相环使用C4046芯片,频率范围为10k~100k,步进10k。 3.LC低通滤波器设计 要求:设计一五阶Butterworth低通滤波器,截止频率为1.6MHz,输入、输出阻抗为50Ω 4.差分编码器(码发生器和编码器)设计 要求:码发生器输出一n=4的m序列伪码,码元传输速率10kB 第二周课题(三选一) 5.FSK调制解调系统设计 要求:码元传输速率1kB,载波频率分别为300kHz和600kHz 6.高频小信号放大器设计 要求:中心频率f0=1MHz,通频带30kHz<2Δf0.7<50kHz,电压增益不低于15dB 7.高频LC振荡电路设计制作 要求:(1)设计一个LC正弦波振荡电路 (2)电路采用单电源12V (3)可采用考毕兹,克拉波或西勒振荡器电路稳定输出频率 (4)振荡频率在1-2MHz连续可调 (5)在频率范围内输出峰峰值大于4V且无明显失真

课题一 课程设计报告内容索引 内容页码 1、课程设计题目 (5) 2、主要技术指标(电路功能及其精度等) (5) 3、方案论证及选择 (5) 4、系统组成框图 (8) 5、单元电路设计及说明 (9) 6、总体电路图 (10) 7、元器件列表 (10) 8、总结 (10) 9、参考文献 (11)

一、课程设计题目 差分编码器设计 要求:码发生器输出N=4的序列伪码,码元传输速率10KB 二、主要技术指标 1、码发生器输出n=4的序列伪码 2、码元传输速率为10KB 三、方案论证及选择 方案一 1基本原理: DQPSK(Differential QuadriPhase-Shift Keying,差分四相正交相移健控)是在QPSK(四相正交绝对调相)的基础上作的改进,它克服了QPSK信号载波的相位模糊问题,用相邻码元之间载波相位的相对变化来表示两位二进制数字信息。常用的DQPSK系统的方框图如图1所示,信息源来的信码先通过串/并变换电路分成两路并行二进制信号,再送入差分编码器实现两路二进制(即四进制)的差分编码。由于格雷码有其自身的优点,即判决接收到一个信号码元时,如发生错误,最容易判为它相邻的信号码元,即最多错一比特,所以送入QPSK四相绝对调制器要用格雷码。由于差分编码器是对自然二进制作差分编码,所以要在差分编码器和QPSK调制器之间做一个二-格变换电路,把双比特自然二进制码变换为双比特格雷码,再输入QPSK调制器。

全差分运算放大器设计

全差分运算放大器设计 岳生生(0126) 一、设计指标 以上华CMOS 工艺设计一个全差分运算放大器,设计指标如下: 直流增益:>80dB 单位增益带宽:>50MHz 负载电容:=5pF 相位裕量:>60度 增益裕量:>12dB 差分压摆率:>200V/us 共模电压:(VDD=5V) 差分输入摆幅:>±4V 运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的 ,DSAT N V 之和小于,输出端的所有PMOS 管的 ,DSAT P V 之和也必须小于。对于单 级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 性能指标分析 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 1 1 1 3 5 7 1 1 3 5 1 3 5 7 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=- +P 第二级增益9 2 2 9 11 2 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=-+P 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r == ≥++ 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR : 1)、输入级: max 1max |2| Cc out DS C C d SR dt I v I C C = = = 单位增益带宽1m u C g C ω= ,可以得到 1m C u g C ω =

单管放大器的设计与仿真及误差分析

课程设计报告 题目:单管放大器的设计与仿真 学生姓名: 学生学号: 系别: 专业:电子信息工程 届别: 指导教师: 电气信息工程学院制 2013年3月

淮南师范学院电气信息工程学院2014届电子信息工程专业课程设计报告 目录 引言……………………………………………………………1任务与要求…………………………………………………2系统方案制定………………………………………………3系统方案设计与实现………………………………………4系统仿真和调试……………………………………………5数据分析……………………………………………………6总结…………………………………………………………7参考文献……………………………………………………8附录………………………………………………………… 第1 页

单管放大器的设计与仿真 学生: 指导教师: 电气信息工程学院电子信息工程专业 引言:放大现象存在于各种场合中,例如,利用放大镜放大微小的物体,这是光学中的放大;利用杠杆原理用小力移动重物,这是力学中的放大;利用变压器将低电压变换为高电压,这是电学中的放大。而作为电子电路中的放大晶体管放大器是放大电路的基础【1】,也是模拟电子技术、电工电子技术等课程的经典实验项目,实验内容涉及方面广泛。本文已常见的作为集成运放电路的中间级的共射放大电路为讨论对象,一方面,对具体包括模拟电路的一般设计步骤、单管共射放大电路设计方案的拟定、静态工作点的设置与电路元件参数的选取、放大电路性能指标的测量、稳定静态工作点的措施等做阐述。本文采用的是分压式电流负反馈偏置电路设计成的共发射极放大器,对分压式电流负反馈偏置电路能稳定静态工作点的原理作了说明,并将对晶体管放大器静态工作点的设置与调整方法、放大电路的性能指标与测试方法、放大器的调试技术做阐述。介绍模拟电子电路的一般设计方法和思路,以及Multsim 和Matlab软件的一些基本操作和仿真功能。

电流镜负载的差分放大器设计概要

电流镜负载的差分放大器设计 摘要 在对单极放大器与差动放大器的电路中,电流源起一个大电阻的作用,但不消耗过多的电压余度。而且,工作在饱和区的MOS器件可以当作一个电流源。 在模拟电路中,电流源的设计是基于对基准电流的“复制”,前提是已经存在一个精确的电流源可以利用。但是,这一方法可能引起一个无休止的循环。一个相对比较复杂的电路被用来产生一个稳定的基准电流,这个基准电流再被复制,从而得到系统中很多电流源。而电流镜的作用就是精确地复制电流而不受工艺和温度的影响。在典型的电流镜中差动对的尾电流源通过一个NMOS镜像来偏置,负载电流源通过一个PMOS镜像来偏置。电流镜中的所有晶体管通常都采用相同的栅长,以减小由于边缘扩散所产生的误差。而且,短沟器件的阈值电压对沟道长度有一定的依赖性。因此,电流值之比只能通过调节晶体管的宽度来实现。而本题就是利用这一原理来实现的。

一、设计目标(题目) (3) 二、相关背景知识 (4) 1、单个MOSTFET的主要参数包括: (4) 三、设计过程 (5) 1、电路结构 (5) 2、主要电路参数的手工推导 (6) 3、参数验证(手工推导) (7) 四、电路仿真 (7) 1、NMOS特性仿真及参数推导 (7) 2、PMOS特性仿真及参数推导 (10) 3、最小共模输入电压仿真 (12) 4、电流镜负载的差分放大器特性仿真及参数推导 (14) 五、性能指标对比 (18) 六、心得 (18)

一、设计目标(题目) 电流镜负载的差分放大器 设计一款差分放大器,要求满足性能指标: ● 负载电容pF C L 1= ● V VDD 5= ● 对管的m 取4的倍数 ● 低频开环增益>100 ● GBW(增益带宽积)>30MHz ● 输入共模范围>3V ● 功耗、面积尽量小 参考电路图如下图所示 设计步骤: 1、仿真单个MOS 的特性,得到某W/L 下的MOS 管的小信号输出电阻和跨导。 2、根据上述仿真得到的器件特性,推导上述电路中的器件参数。 3、手工推导上述尺寸下的差分级放大器的直流工作点、小信号增益、带宽、输入共模范围。

差分放大器设计

第4节 差分放大器设计 [学习要求] 掌握差分放大器的主要特性参数及其测试方法;学会设计具有恒流源的差分放大器及电路的调试技术。 [重点与难点] 重点:差分放大器的传输特性及差模特性。 难点:恒流源的镜像电流;输入输出信号的连接方式对性能的影响。 [理论内容] 一、具有恒流源的差分放大器 具有恒流源的差分放大器,应用十分广泛。特别是在模拟集成电路中,常作为输入级或中间放大级,电路如图1所示。其中,T 1、T 2称为差分对管,常采用双三极管如5G921或BG319等,它与电阻R Bl 、R B2、R Cl 、R C2及电位器RP 共同组成差分放大器的基本电路。T 3、T 4与电阻R E3、R E4、R 共同组成恒流源电路,为差分对管的射极提供恒定电流。均压电阻R 0I 1、R 2给差分放大器提供对称差模输入信号。晶体管T 1与T 2、T 3与T 4的特性应相同,电路参数应完全对称,改变RP 可调整电路的对称性。由于电路的这种对称性结构特点及恒流源的作用,无论是温度的变化,还是电源的波动(称之为共模信号),对T 1、T 2两管的影响都是一样的。因此,差分放大器能有效地抑制零点漂移。 图1具有恒流源的差分放大器 1、输入输出信号的连接方式

如图1所示,差分放大器的输入信号与输出信号可以有4种不同的连接方 .id V . od V 式: ·双端输入—双端输出连接方式为①—A'—A ,②—B'—B ;③—C ,④—D 。 ·双端输入—单端输出连接方式为①—A'—A ,②—B'—B ;③、④分别接一电阻 RL 到地。 ·单端输入—双端输出连接方式为①—A ,②—B —地:③—C ,④—D 。 ·单端输入—单端输出连接方式为①—A ,②—B —地:③、④分别接一电阻R L 到地。 连接方式不同,电路的特性参数有所不同。 2、静态工作点的计算 静态时,差分放大器的输入端不加信号。对于恒流源电路的电流值 .id V 0 4444422I I I I I I I Q C Q C Q C Q C Q B R ≈≈+=+=β (1) 故称为0I R I 的镜像电流,其表达式为 407.0E EE R R R V V I I +??== (2) 上式表明,恒定电流主要由电源电压0I EE V ?及电阻R 、4E R 决定 对于差分对管T1、T2组成的对称电路,则有 2021I I I Q C Q C == (3) 21 01121C CC C Q C CC Q C Q C R I V R I V V V ?=?== (4) {}(){}mA I mV mA I mV r mA mA E be ?++?=?++?=226130026)1(3000ββ (5) 可见差分放大器的静态工作点,主要由恒流 源电流的大小决定 0I 二、主要特性参数及其测试方法 1、传输特性 传输特性是指差分放大器在差模信号输

全差分套筒式运算放大器设计

全差分套筒式运算放大器设计 1、设计内容 本设计基于经典的全差分套筒式结构设计了一个高增益运算放大器,采用镜像电流源作为偏置。为了获得更大的输出摆幅及差模增益,电路采用了共模反馈及二级放大电路。 本设计所用到的器件均采用SMIC 0.18μm的工艺库。 2、设计要求及工艺参数 本设计要实现的各项指标和相关的工艺参数如表1和表2所示:

3、放大器设计 3.1 全差分套筒式放大器拓扑结构与实际电路 图1 全差分套筒式放大器拓扑结构 图2 最终电路图

3.2 设计过程 在图1中,Mb1和M9组成的恒流源为差放提供恒流源偏置,且M1,M2完全一样,即两管子所有参数均相同。Mb2、M7和M8构成了镜像电流源,M5、M6和M7、M8构成了共源共栅电流源,M1、M2、M3、M4构成了共源共栅结构,可以显著提高输出阻抗,提高放大倍数(把M3的输出阻抗提高至原来的(gm3 + gmb3)ro2倍。但同时降低了输出电压摆幅。为了提高摆幅,控制增益,在套筒式差分放大器输出端增加二级放大。 本设计中功率上限为10mW,可以给一级放大电路分配3mA的电流。设计要求摆幅为3V,所以图1中M1、M3、M5、M9的过驱动电压之和不大于1.8-3/2=0.3V。我们可以平均分配每个管子的过驱动电压。根据漏电计算流公式(1)(考虑沟道长度调制效应),可以计算出每个管子的宽长比。 I D=1 2μn C ox W L (V GS?V TH)2(1+λV DS)(1) 其中,C ox等于ε/t ox,μn和t ox可以从工艺库中查找。 4、仿真结果 经过调试优化之后的仿真结果如以下各图所示: 图3 增益及相位裕度 从图中可以看出,本设计的低频增益达到了74.25dB,达到了预期要求。3dB 带宽为35kHz左右,比较小,可见设计还有改进的余地。 当CL为2pF时,相位裕度: PM=180°+∠βH(ω)=180°?125.5°=54.5° 电源电压为1.8V时,输出摆幅如下图所示,达到了3V。

差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20;输入差 模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

实验三 晶体管放大器分析与设计剖析

实验三晶体管放大器分析与设计 实验目的: 1.熟悉仿真软件Mulitisim 的使用,掌握基于Mulitisim 的瞬态仿真方法。 2.熟悉POCKETLAB硬件实验平台,掌握基于功能的使用方法。 3.通过软件仿真和硬件实验验证,掌握晶体三极管放大器的分析和设计方法。 4.通过软件仿真和硬件实验验证,掌握场效应管放大器的分析设计方法。 实验预习: 在图3-1所示电路中,双极性晶体管2N3094的=120,V(BEon)=0.7v。根据实验二的直流工作点,计算该单级放大器的电压增益Av.填入表3-1. 图3-1 解:其交流通路等效电路如图3-11所示. 由实验三可知其直流工作点为: Rbe=26/3.662k=7.1k

Ri=(7.1+121*0.2) =31.3k Ai=120*4.7/1004.7=0.5614 Av=0.5614*1000/31.3=17.935 图3-11 实验内容 一.晶体三极管放大器仿真实验 1.根据图3-1所示电路,在Multisim中搭建晶体三极管2N3094单级放大电路。加入峰峰值=50mv, 频率等于10khz的正弦波。 结果查看:采用示波器XCS1,查看输入输出两路波形。并用测量工具,测试输入输出波形的峰峰值,计算得到电压增益Av,填入表格3-1. 实验测得的输入输出波形图如表3-2所示。 表3-1 :晶体三极管放大器增益 计算值仿真值实测值 放大器增益Av 17.935 17.726 19.12 2.変输入信号峰峰值,取Vinpp=100mv,Vinpp=200mv, Vinpp=300mv,重新进行瞬态仿真和频谱分 析,截取各输入条件下的输入输出波形图和频谱分析图,填入表3-2. 表3-2:不同输入情况下的输入输出波形图。

全差分放大器设计

对于全差分放大器,一般可以得到更大的swing (由于差分信号),同时可以实现对共模干扰、噪声以及偶数阶的非线性的抑制;但其需要有两个匹配的反馈网络,以及共模反馈电路 顺便提一下,对于全差分的折叠共源共栅(folded cascode)放大器,需要注意 转换速率(正向与负向)对输入对差分对的尾电流源和cascode电流源的考虑 非主极点的位置–输入对管的drain节点(注意全差分没有镜像极点的问题..),如果考虑PMOS输入的结构,将会折叠到n管的cascode,从而减小此节点阻抗,提高此非主极点的频率;但是P输入结构亦有其问题,如直流增益和cmfb电路的速度(考虑cmfb控制的为cascode的pmos电流源) 关于共模反馈CMFB 从反馈环路来看,共模的稳定问题来源于闭环的共模增益:由于输入差分对的尾电流源的local-feedback,通常共模增益较小,导致运放无法控制其输出共模点;通过CMFB共模反馈电路,可以提高共模反馈环路的增益,以稳定共模信号。 设计CMFB需考虑补偿以减小环路的稳定时间(settling time)和提高稳定性。 从性能上,我们希望共模反馈的单位增益带宽足够大,但由于cmfb的环路相较于差模通路可能有更多高频极点,故此在一定的功耗要求下其UGB一般比较难做的高,有书中提到可以将其设计为差模UGB 的1/3 一般共模反馈的方法是控制放大器的电流源,这里如果是folded-cascode的结构,可以考虑用cmfb控制cascode的电流源而不是输入差分对的电流源—-因其在共模环路中有较少的节点–>更容易补偿等..(另一种考虑是控制尾电流源可能导致共模增益的问题) 另外,对于cmfb控制的尾电流源,常见将尾电流源分为两半,其中之一由cmfb控制,另一半接恒定偏置电流;这种结构的具体分析可见Gray书12.4.2节的内容,简单来说,single-stage的opamp中控制尾电流源的cmfb结构,其UGB主要为gmt/CL, 其中gmt为尾电流源的跨导,这里拆分尾电流源来减半cmc共模控制的部分,这样UGB减小,即缩减带宽来提升共模反馈环路的相位裕度,当然cmfb的增益相应也减小了;另外恒定偏置部分也可帮助共模电压的初始建立,减小cmfb大的扰动。 具体的,共模反馈可以分为连续时间和开关电容两类 连续时间的共模反馈 一般的问题是信号幅度的限制和共模信号干扰,具体的共模反馈的方法: 1.电阻分压resistive-divider (如下左图) 电阻和cm-sense amplifier的输入电容会引入一个极点,可以通过在电阻上并联电容的方法,引入一个左半平面零点,来减小高频极点的影响

射频放大器的设计与实现

第 6 卷 第 3 期 2009 年 9 月苏 州 工 职 院 Journal of SIIT Vol. 6 No.3 Sep.2009 一、引言 放大器是射频接收机中的主要部件,它处于接收系统的前段,对射频信号进行放大,由于放大器在接收系统中的特殊地位和作用,因此该部件的设计对接收系统的性能有极其重要的影响。 在对低噪声放大器的设计中,要考虑放大能力、噪声性能,稳定性等许多特殊因素,给设计工作带来较大的困难。本文使用Agilent公司的ADS软件对放大器进行了设计,获得了较好的仿真效果。 二、放大器设计理论 在射频放大器设计中,最重要的设计观念是电路的输入输出阻抗的匹配性、电路的稳定性、功率增益、工作带宽、噪声和直流偏置。一个射频放大器的设计常常开始于最初的要求和适当的有源射频器件的选择,然后通过系统数值解和辅助作图法来决定晶体管在特定稳定度和功率增益要求下的工作条件(即信号源和负载的反射系数)。一个绝对稳定的晶体管在任何无源置端条件下,不会产生振荡。换句话说,用一个潜在不稳的晶体管进行设计时,必须经过仔细的分析和考虑,才能用无源置端获 射频放大器的设计与实现 王 栋 (苏州工业职业技术学院 电子工程系,江苏 苏州 215104) 【摘要】本文首先介绍了低噪声放大器的设计理论、方法和过程,然后介绍使用射频微波仿真设计软件Agilent公司的ADS进行分析和设计一个放大器的过程和方法。仿真得到了比较理想的效果。 【关键词】放大器;ADS Design and Realization of RF Ampli ? er WANG Dong Abstract: First,the designing theory 、method and process of Amplifer are introduced. Then an ampli ? er is designed by the microwave software ADS designed by the company Agilent. the simulation result is perfect.Key words: Ampli ? er ;ADS 得稳定的放大器。各种电路的分析选择正确的直流工作点以及适当的直流偏置电路,对于获得设计要求的交流特性也是十分重要的。 对射频放大器的设计电路的输入输出阻抗的匹配性是及其重要的,在微波频段,传输线问题和匹配电路问题的分析都很麻烦。Smith圆图为这些问题的分析提供了一个非常有用的图解法。通过归一化阻抗和导纳Smith圆图,可以很容易并且快速设计出实现微波放大器最佳性能的匹配电路。微带传输线作为无源电路分析和全部微波放大器工艺的载体被广泛的应用。微波传输线相互连接的方式是跨越式的。芯片中或者封装式的晶体管可以很容易地贴到微带线的导体上。很多电路设计中采用了微带线方式。 三、放大器的仿真设计1、放大器设计目标 ●输入输出阻抗为50欧姆,工作在0.75~1.25GHZ。 ●放大器增益大于20dB。 ●放大器噪声低于10dB。 ●放大器处于绝对稳定状态(稳定因子k>1)。2、放大器设计步骤 ●选取符合要求的射频放大管。 收稿日期:2009 - 02 - 14 作者简介:王栋(1981 - ),浙江湖州人,助教,研究方向:应用电子。

全差分运算放大器设计说明

全差分运算放大器设计 岳生生(6) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的 ,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11135711 3 5 1 3 5 7 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=- +P 第二级增益 9 2 291129 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- +P 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r == ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

采用折叠式共源共栅结构实现高速CMOS全差分运算放大器的设计

采用折叠式共源共栅结构实现高速CMOS全差分运算放 大器的设计 “随着数/模转换器(DAC)、模/数转换器(ADC)的广泛应用,高速运算放大器作为其 部件受到越来越广泛的关注和研究。速度和 是模拟集成电路的2个重要指标,然而速度的提高取决于运放的单位增益带宽及单极点特性并相互制约,而 则与运放的直流增益密切相关。在实际应用中需要针对运放的特点对这2个指标要进行折衷考虑。 1运放结构与选择 根据需要,本文设计运算放大器需要在较低的电压下能有大的转换速率、快的建立时间,同时要折衷考虑增益与频率特性及共模抑制比(CMRR)和电源抑制比(PSRR)等性能。 常见的用于主运放设计的结构大致可分3种:两级式(TwoStage)结构、套简式共源共栅(TelescopicCascode)结构及折叠式共源共栅(FoldCascode)结构。两级式结构的第1级可提供高的直流增益,而第2级提供大的输出摆幅。但由于第2级电流很大,故使得运放功耗大大增加,同时由于级联而多产生一个非主极点,速度及带宽都有所降低,需进行频率补偿,这样不仅增加的设计复杂度还会大大影响运放的速度;套简式共源共栅结构由于只有2条支路,功耗为三者 ,频率特性 ,但由于需要层叠多级管子,导致输出摆幅很低,在低电压工作下很难正常工作,并且输入输出端不能短接;而折叠式共源共栅结构的各参数特性介于前两者之间,增益基本与套简式共源共栅相同而低于两级运放,虽为4条支路,功耗及频率特性均远好于两级运

放,输出摆幅大于套筒式共源共栅结构,输入输出可以短接且输入共模电平更容易选取并可接近电源供给的一端电压。经综合考虑,本设计采用折叠式共源共栅结构作为主运放。 2主运放分析 2.1全差分折叠式共源共栅 全差分运放即指输入和输出都是差分信号的运放,其优点为能提供更低的噪声,较大的输出电压摆幅和共模抑制比,可较好地抑制谐波失真的偶数阶项等。虽然NMOS管中载流子迁移率较大,作为输入器件可达到更高的增益,但付出的代价是折叠点上的极点更低而导致相位裕度下降且噪声更大。综合考虑,本设计采用PMOS管为输入管的共源共栅结构。如图1所示,PMOS管M0为偏置电流源,输入管M1,M2将在M0提供的固定偏置电流作用下,将差分输入电压转化为差分电流,经过共源共栅管M5,M6的作用下再产生差分输出电压Vout1与Vout2。而层叠的PMOS对管M7,M8与M9,M10起到了稳定输出电平与提高增益的作用。

多级放大电路的分析与设计

摘要 电子设备中,往往需要放大微弱的信号,这主要是通过放大电路实现的。基本放大电路由单个晶体管或场效应管构成,为单级放大电路,其电压放大倍数可以达到几十倍。而当信号非常微弱时,单级放大电路无法满足放大需求,此时我们把若干个单级放大电路串接在一起,级联组成多级放大电路。 本文主要研究多级放大电路的分析与设计,根据各级电路级间耦合方式的不同,分别设计了直接耦合放大电路、阻容耦合放大电路和光耦合放大电路,分析了电路的静态工作点、电压放大倍数、输入电阻和输出电阻等指标特性。在此基础上,讨论了差分放大电路以及消除互补输出级交越失真的方法。 最后,以前面的讨论为基础,设计了一款具有差分输入的多级放大电路,对电路性能指标进行了设定,并分析了各部分的作用。

2.1直接耦合多级放大电路的设计 2.1.1 设计原理 根据设计要求,本设计主要采用两级放大,为了传递变化缓慢的直流信号,可以把前级的输出端直接接到后级的输入端。这种连接方式称为直接耦合。如图2.1所示。直接耦合式放大电路有很多优点,它既可以放大和传递交流信号,也可以放大和传递变化缓慢的信号或者是直流信号,且便于集成。实际的集成运算放大器其内部就是一个高增益的直接耦合多级放大电路。直接耦合放大电路,由于前后级之间存在着直流通路,使得各级静态工作点互相制约、互相影响。因此,在设计时必须采取一定的措施,以保证既能有效地传递信号,又要使各级有合适的工作点。

图2.1 直接耦合两级放大电路 通常在第二级的发射极接入稳压二极管,这样既提高了第二级的基级电位,也使第一级的集电极静态电位抬高,脱离饱和工作区,可以使整个电路稳定正常的工作,稳定三极管的静态工作点。 但是在一个多级放大电路的输入端短路时,输出电压并非始终不变,而是会出现电压的随机漂动,这种现象叫做零点漂移,简称零漂。产生零漂的原因有很多,主要是以下两点:一方面,由于元器件参数,特别是晶体管的参数会随温度的变化而变化;另一方面,即使温度不变化,元器件长期使用也会使远见老化,参数就会发生变化,由温度引起的叫做温漂,由元器件老化引起的叫做零漂,在多级放大电路中,第一级的影响尤为严重,它将被逐级放大,以至影响整个电路的工作,所以零漂问题是直接耦合放大电路的特殊问题。 解决零漂的方法有很多种,例如引入直流负反馈来稳定静态工作点,以减小零漂;利用温度补偿元件补偿放大管的零点漂移,利用热敏电阻或二极管来与工作管的温度特性相补偿;利用工作特性相同的管子构成对称的一种电路—差动放大电路,这是最为行之有效的方法,故本次设计采用差动放大电路来设计实现。

全差分套筒式共源共栅放大器及其共模反馈电路

一 毕业设计(论文)进展情况 运算放大器是许多模拟系统和混合数字信号系统中的一个完整部分,也是构成这些系统的基本单元. 因而设计高性能的运算放大器可以使系统的总体性能得到提高。 一、两级运算放大器分析 两级CMOS 运算放大器的设计 V DD V SS M1 M2 M3M4M5 M6 M7 M8 Vn C L C c vout vin1 vin2 iref x y 3 I d5 两级CMOS 运算放大器 1、基本目标 参照《CMOS 模拟集成电路设计第二版》p223.例6.3-1设计一个CMOS 两级放大器,满足以下指标: 5000/(74)v A V V db = 2.5DD V V = 2.5SS V V =- 5GB MHz = 10L C pF = 10/SR V s μ> out V V ±范围=2 1~2ICMR V =- 2diss P mW ≤ 相位裕度:60 为什么要使用两级放大器,两级放大器的优点: 单级放大器输出对管产生的小信号电流直接流过输出阻抗,因此单级电路增益被抑制在输出对管的跨导与输出阻抗的乘积。在单级放大器中,增益是与输出摆幅是相矛盾的。要想得到大的增益我们可以采用共源共栅结构来极大地提高输出阻抗的值,但是共源共栅结构中堆叠的MOS 管不可避免地减少了输出电压的范围。因为多一层管子就要至少多增加一个管子的过驱动电压。这样在共源共栅结构的增益与输出电压范围相矛盾。为了缓解这种矛盾引进了两级运放,在两极运放中将这两点各在不同级实现。如本文讨论的两级运

放,大的增益靠第一级与第二级相级联而组成,而大的输出电压范围靠第二级这个共源放大器来获得。 典型的无缓冲CMOS 运算放大器特性 边界条件 要求 工艺规范 见表2、3 电源电压 %105.2±±V 电源电流 100Μa 工作温度范围 0~70° 特性 要求 增益 dB 70≥ 增益带宽 ≥5MHz 建立时间 s μ1≤ 摆率 s /5μV ≥ ICMR ≥V 5.1± CMRR ≥60dB PSRR ≥60dB 输出摆幅 ≥V 5.1± 输出电阻 无,仅用于容性负载 失调 mV 10±≤ 噪声 ≤100Hz nV (1kHz 时) 版图面积 ≤50002)(最小沟道长度? 表1 典型的无缓冲CMOS 运算放大器特性 2、两级放大电路的电路分析 图1中有多个电流镜结构,M5,M8组成电流镜,流过M1的电流与流过M2电流 1,23,45/2d d d I I I ==,同时M3,M4组成电流镜结构,如果M3和M4管对称,那么相同的 结构使得在x ,y 两点的电压在Vin 的共模输入范围内不随着Vin 的变化而变化,为第二极放大器提供了恒定的电压和电流。图1所示,Cc 为引入的米勒补偿电容。

模电设计-电流镜负载的差分放大器..

模拟集成电路课程设计报告电流镜负载的差分放大器

摘要: 差分放大器是最重要的电路发明之一,它可以追溯到真空管时代。有于差动放大具有很多有用的特性,像对差模输入信号的放大作用和对共模输入信号的抑制作用,所以它已经成为当代高性能模拟电路和混合信号电路的主要选择。电流源在差分放大器中广泛应用,电流源起一个大电阻的作用,但不消耗过多的电压余度。在模拟电路中,电流源的设计是基于对基准电流的“复制”,稳定的基准电流则由一个相对复杂的电路来产生。在电流镜中,只需调整MOS管的W/L就能获得不同的、精确的复制电流。在本课程设计中,将根据典型电流镜负载差动对中,增益、带宽与MOS管W/L之间的关系,获得满足要求的放大器。

一.设计目标 ................................................................................................................................ - 1 - 二.单个MOS管的的特性 ...................................................................................................... - 2 - 2.1 、NMOS特性仿真...................................................................................................... - 2 - 2.2 、PMOS特性仿真 ...................................................................................................... - 4 - 三.电路设计与参数推导.......................................................................................................... - 6 - 3.1电路设计:.................................................................................................................... - 6 - 3.2手工推导参数................................................................................................................ - 7 - 四.差分放大器仿真 ................................................................................................................. - 9 - 4.1、HSPICE仿真:......................................................................................................... - 9 - 4.2、器件参数修改........................................................................................................... - 10 - 4.3 仿真波形..................................................................................................................... - 12 - 4.2、共模电平的范围:................................................................................................... - 13 - 4.3 数据对比..................................................................................................................... - 16 - 五.总结 ...................................................................................................................................... - 17 -

相关文档
最新文档