KTMicro单芯片VHF/UHF射频收发系统

KTMicro单芯片VHF/UHF射频收发系统
KTMicro单芯片VHF/UHF射频收发系统

射频电路调试测试流程

射频电路调试测试流程(准备阶段) 射频电路的调试作为通信整机研发工作中的重要一环,工作量非常大,几乎所有电路都需要调试,为了提高效率,需要对调试环境、调试方法等进行规范。 环境准备如下 1、防静电 佩戴“静电手环”,并良好接地,若着化纤、羊毛、羽绒服装,外层需加穿防静电服,或防辐射服;小功率、低电压、高频率、小封装的器件均ESD敏感,最容易被ESD击穿的射频器件:RF开关,其次是LNA;所有仪器,开机使用前必须将机壳良好接地;2、电源 稳压电源接入负载前,先校准输出电压,电压等于负载的额定电压; 3、仪器保护 为安全起见:只要射频功率大于20dBm,射频信号源(30dBm)、频谱分析仪(27dBm)、信号源分析仪(23dBm)输入端必须级联同轴衰减器,一般情况下,5W 5dB衰减器为常态配置,若测试功放模块需根据实际输出功率大小配置合适的衰减器; 4、仪器设置 射频信号源:Keysight输出功率<13dBm,R&S输出功率<18dBm,若超出,输出功率可能小于显示值,需实测并进行补偿; 频谱分析仪:屏幕显示的有效动态范围,FSV约70dB,FSW约80dB;仪器的线性输入功率<-3dBm,超出会恶化待测IM3(ACLR)、谐波,应选择合适的内部/外部衰减值; 矢量网络分析仪:仪器的IF带宽决定噪声,测无源器件的带外抑制,应适当降低IF带宽;调测任何电路,必须保证输出功率

雷达射频集成电路的发展及应用

龙源期刊网 https://www.360docs.net/doc/f614684034.html, 雷达射频集成电路的发展及应用 作者:黄林锋 来源:《山东工业技术》2017年第24期 摘要:本文概述了雷达射频集成电路技术的特点,是一种以半导体和射频电路技术为基础,一种集信号放大、数据传输和转化功能为一体的技术,并从其发展与演变切入进行研究,探讨了目前常用的几种雷达射频集成电路的发展成果及其应用状况。 关键词:雷达射频集成电路;发展;应用 DOI:10.16640/https://www.360docs.net/doc/f614684034.html,ki.37-1222/t.2017.24.099 现代的雷达系统越来越注重高精度的距离探测与跟踪,还要求较强的抗干扰性、目标识别作用和气象探测功能。由此,要求完整一套的现代雷达系统包含近万个信号接收器和信号发射装置,这也极大提高了系统的复杂性和设备的成本造价。雷达系统的现代化除保留上述基本功能,还应减少设备的造价,这推进了射频集成电路在现代雷达领域的研发 [1]。由无线天线、电磁信号处理器、显示屏幕、控制面板、信号的发射和接收器所组成的现代雷达系统。目前,射频集成系统已经应用于信号的发射和接收器,下文从射频集成电路在雷达系统的研发入手,通过深入研究,介绍雷达系统目前的几种应用现状。 1 雷达射频集成电路的发展概述 随射频集成技术和信息化在雷达系统中的深入发展,射频集成电路已经演变了好几个架构形态[2]。以信号接收系统为例,在三十年内演化出三种不同的形态。在此过程,雷达系统的 数字化不断提高,实现某些频段的完全数字化,使射频集成电路向混合集成电路的方向不断发展。 2 雷达系统射频集成电路的发展及应用研究 2.1 射频集成SOC 以单片作为射频电路的集成基板,SiGe和CMOS作为集成射频与数字化特点的技术平台。技术的快速发展极大提高了射频电路的集成化程度,上部集混合频率、放大频率和合成信号功能为一体,下部集增频、分贝放大功能的器件。雷声公司(美国)研发的最新设备——X 波段应用了上述技术 [3],其在实际中具有高性能、减小雷达体积和节约造价的应用优势。 2.2 射频多通道集成电路 在一个集成芯片上集多通道于一体,这种集成电路没有射频集成电路那么多的器件,应用系统的封装工艺,以高度集成化的多通道芯片,实现射频混合电路的性能优化和结构简化。采

基于无线通信射频收发机系统的设计毕业设计

摘要:近年来,射频(RF)无线通信技术的迅速发展增加了人们对低电压高性能射频前端的需求,无线通讯系统中的关键模块-RFIC 成为当前的研究热点,如:蜂窝式个人通信与基站、无线接入系统、卫星通信、全球卫星定位系统、无线局域网等。经过三代移动通信的发展,通信系统发展成了支持多媒体的通信系统,系统的速度更快,误码率更低。射频收发机是通信系统的前端部分,负责信号的接收和发射部分,是无线通信系统中不可缺少的一部分,它决定了通信距离和影响着通信质量通信系统的发展也带动了射频收发机的发展。本论文探讨了收发机的基本结构,射频收发机的发展,然后介绍了射频收发机的一些关键指标,然后根据重要指标计算出射频系统的主要技术指标,最后仿真整个收发机的主要技术指标。 关键词:移动通信;射频收发机;系统指标 RF transceiver system design based on wireless communication In recent years,the rapid development of radio frequency (RF) wireless communication increase the RF front-end needs of low-voltage and high-performance.The key modules-RFIC of Wireless communication systems become research focus,such as cellular personal communications and base station, wireless access systems, Satellite Communications,GPS, wireless lan,etc. After the development of three generations of mobile communications, communications system developed into a multimedia communication system and the system has faster rate and lower BER. RFtransceiver which is front of the communication system is responsible for receiving and transmitting the signal part and that is an integral part the wireless communication system. RF transceiver determines the distance of communication and affects the communication s quality. The development of communication system has also led to thedevelopment of the RF transceiver. The paper discussed transceiver's basic structure and radio frequency transceiver's development and some key indicators. Then according to these important target, it has calculated the radio frequency system's major technique target. Finally it simulated entire transceiver's major technique target. Keywords: mobile communication RF transceiver system specifications 1引言 射频是指该频率的载波功率能通过天线发射出去(反之亦然),以交变的电磁场形式在自由空间以光速传播,碰到不同介质时传播速率发生变化,也会发生电磁波反射、折射、绕射、穿透等,引起各种损耗。在金属线传输时具有趋肤效应现象[1]。 该频率在各种无源和有源电路中R, L, C各参数反映出是分布参数。因此说所谓射频RF (Radio Frequency)是指频率较高,可用于发射无线电频率,一般常指几十到几百兆赫的频

射频电路调试经验及问题分析

射频电路调试经验及问题分析 1前言 文档总结了我工作一年半以来的一些射频(Radio Frequency)调试(以下称为Debug)经验,记录的是我在实际项目开发中遇到并解决问题的过程。现在我想利用这份文档与大家分享这些经验,如果这份文档能够对大家的工作起到一定的帮助作用,那将是我最大的荣幸。 个人感觉,Debug过程用的都是最简单的基础知识,如果能够对RF的基础知识有极为深刻(注意,是极为深刻)的理解,我相信,所有的Bug解起来都会易如反掌。同样,我的这篇文档也将会以最通俗易懂的语言,讲述最通俗易懂的Debug技巧。 在本文中,我尽量避免写一些空洞的理论知识,但是第二章的内容除外。“微波频率下的无源器件”这部分的内容截取自我尚未完成的“长篇大论”——Wi-Fi产品的一般射频电路设计(第二版)。 我相信这份文档有且不只有一处错误,如果能够被大家发现,希望能够提出,这样我们就能够共同进步。 2微波频率下的无源器件 在这一章中,主要讲解微波频率下的无源器件。一个简单的问题:一个1K的电阻在直流情况下的阻值是1K,在频率为10MHz的回路中可能还是1K,但是在10GHz的情况下呢?它的阻值还会是1K吗?答案是否定的。在微波频率下,我们需要用另外一种眼光来看待无源器件。 2.1.微波频率下的导线 微波频率下的导线可以有很多种存在方式,可以是微带线,可以是带状线,可以是同轴电缆,可以是元件的引脚等等。 2.1.1.趋肤效应 在低频情况下,导线内部的电流是均匀的,但是在微波频率下,导线内部会产生很强的磁场,这种磁场迫使电子向导体的边缘聚集,从而使电流只在导线的表面流动,这种现象就称为趋肤效应。趋肤效应导致导线的电阻增大,结果会怎样?当信号沿导体传输时衰减会很严重。在实际的高频场合,如收音机的感应线圈,为了减少趋肤效应造成的信号衰减,通常会使用多股导线并排绕线,而不会使用单根的导线。我们通常用趋肤深度来描述趋肤效应。趋肤深度是频率与导线本身共同的作用,在这里我们不会作深入的讨论。 2.1.2.直线电感 我们知道,在有电流流过的导线周围会产生磁场,如果导线中的电流是交变电流,那么磁场强度也会随着电流的变化而变化,因此,在导线两端会产生一个阻止电流变化的电压,这种现象称之为自感。也就是说,微波频率下的导线会呈现出电感的特性,这种电感称为直线电感。也许你会直线电感很微小,可以忽略,但是我们将会在后面的内容中看到,随着频率的增高,直线电感就越来越重要。 电感的概念是非常重要的,因为微波频率下,任何导线(或者导体)都会呈现出一定的电感特性,就连电阻,电容的引脚也不例外。 2.2.微波频率下的电阻 从根本上说,电阻是描述某种材料阻碍电流流动的特性,电阻与电流,电压的关系在欧姆定律中已经给出。但是,在微波频率下,我们就不能用欧姆定律去简单描述电阻,这个时候,电阻的特性应经发生了很大的变化。 2.2.1.电阻的等效电路 电阻的等效电路。其中R就是电阻在直流情况下电阻自身的阻值,L是电阻的引脚,C 因电阻结构的不同而不同。我们很容易就可以想到,在不同的频率下,同一个电阻会呈现出不同的阻值。想想平时在我们进行Wi-Fi产品的设计,几乎不用到直插的元件(大容量电解

RF 设计与应用----射频集成电路封装

RF设计与应用----射频集成电路封装 关键词:射频,多层电路板,电路封装 摘要:针对无线通信产品业者所面临的课题,本文试着从封装技术在射频集成电路上应用的角度,来介绍射频集成电路封装技术的现况、现今封装技术对射频集成电路效能的影响,以及射频集成电路封装的未来发展和面临的挑战。 在行动通讯质量要求的提高,通讯带宽的需求量大增,因应而生的各项新的通讯规范如GPRS、W-CDMA、CDMA-2000、Bluetooth、 802.11b纷纷出笼,其规格不外乎:更高的数据传输速率、更有效的调变方式、更严谨的噪声规格限定、通讯功能的增强及扩充,另外再加上消费者对终端产品“轻、薄、短、小、久(包括产品的使用寿命、维护保固,甚至是手机的待机时间)”的诉求成了必要条件;于是乎,为了达成这些目的,各家厂商无不使出混身解数,在产品射频(Radio Frequency)、中频(Intermediate Frequency)与基频(Base Band)电路的整合设计、主动组件的选择应用、被动组件数目的减少、多层电路板内线路善加运用等,投注相当的心血及努力,以求获得产品的小型化与轻量化。 针对这些无线通信产品业者所面临的课题,我们试着从封装技术在射频集成电路上应用的角度,来介绍射频集成电路封装技术的现况、现今封装技术对射频集成电路效能的影响,以及射频集成电路封装的未来发展和面临的挑战。 射频集成电路封装技术的现况 就单芯片封装(Single Chip Package)的材质而言,使用塑料封装( P l a s t i c Pac kage)的方式,是一般市面上常见到的高频组件封装类型,低于3GHz工作频率的射频集成电路及组件,在不严格考虑封装金属导线架(Metal Lead Frame)和打线(Wire Bond)的寄生电感(Parasitic Inductance)效应下,是一种低成本且可薄型化的选择。由于陶瓷材料防水气的渗透性特佳及满足高可靠度的需求,故也有采用陶瓷封装技术;对于加强金属屏蔽作用及散热效果的金属封装,可常在大功率组件或子系统电路封装看到它的踪迹。

射频接收系统的设计与仿真

1 前言 (2) 2 工程概况 (2) 3 正文 (2) 3.1零中频接收系统结构性能和特点 (3) 3.2基于ADS2009对零中频接收系统设计与仿真 (3) 3.3超外差接收系统结构性能和特点 (12) 3.4基于ADS2009对超外差接收系统设计与仿真 (13) 4 有关说明 (16) 5 心得体会 (18) 6 致谢 (18) 7 参考文献 (19)

射频是一种频谱介于75kHz-3000GHz之间的电波,当频谱范围介于20Hz-20kHz之间时,这种低频信号难以直接用天线发射,而是要利用无线电技术先经过转换,调制达到一定的高频范围,才可以借助无线电电波传播。射频技术实质是一种借助电磁波来传播信号的无线电技术。 无线电技术应用最早从18世纪下半段开始,随着应用领域的扩大,世界已经对频谱进行了多次分段波传播。当前,被广泛采用的频谱分段方式是由电气和电子工程师学会所规定的。随着科学技术的不断发展,射频所含频率也不断提高。到目前为止,经过两个多世纪的发展,射频技术也已经在众多领域的到应用。特别是高频电路的应用。其中在通信领域,射频识别是进步最快的重要方面。 工程概况 近年来随着无线通信技术的飞速发展,无线通信系统产品越来越普及,成为当今人类信息社会发展的重要组成部分。射频接收机位于无线通信系统的最前端,其结构和性能直接影响着整个通信系统。优化设计结构和选择合适的制造工艺,以提高系统的性能价格比,是射频工程师追求的方向。由于零中频接收机具有体积小、成本低和易于单片集成的特点,已成为射频接收机中极具竞争力的一种结构,在无线通信领域中受到广泛的关注。本文在介绍超外差结构和零中频结构性能和特点的基础上,对超外差结构和零中频结构进行设计与仿真。 正文 下面设计一个接收机系统,使用行为级的功能模块实现收信机的系统级仿真。

基于RFID的仓库管理系统设计

摘要 存储作为物流系统的一部分,它在原产地、消费地,或者在这两地之间存储管理物品,并且向管理者提供有关存储物品的状态、条件和处理情况等信息。从物流发达国家来看,仓储在物流战略中的重要性日益提高,在物流管理中占据着核心的地位,并己成为供应链管理的核心环节。供应链环境下的仓储管理涉及大量各类型的产品,同时对应的业务和结构比较复杂,对信息的准确性和及时性要求非常高。目前,仓储管理通常使用条码标签或是人工仓储管理单据等方式。但是条码的许多方面容易造成人为损失,使得现在国内的仓储管理始终存在着缺陷。射频识别(RFID)技术是在无线电技术基础上,利用射频信号对静止或移动的物体进行自动识别和数据交换的技术。RFID技术的优点使其在物料跟踪、运载工具和货架识别等要求非接触数据采集、交换和频繁改变数据,具有很大的发展潜力与前景。本文针对传统的物流仓储管理存在的缺陷,利用RFID技术来解决传统物流仓储管理存在的问题,满足当前物流仓储管理的需要。 关键字:RFID,智能存储,信息技术

前言 物联网是新一代信息技术的重要组成部分。其英文名称是“The Internet of things”。顾名思义,“物联网就是物物相连的互联网”。这有两层意思:第一, 物联网的核心和基础仍然是互联网,是在互联网基础上的延伸扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。因此,物 联网的定义是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器 等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现对物品的智能化识别、定位、跟踪、监控和管理的一种网络。 射频技术(RFID)是一种世界上较为领先的自动识别技术,RFID射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种恶劣环境。RFID技术可识别高速运动物体并可同时识别多标签,操作快捷方便。RFID是一种突破性的技术:"第 一,可以识别单个的非常具体的物体;第二,其采用无线电射频,可以透过外部材料读取数据;第三,可以同时对多个物体进行识读。此外,储存的信息量也非常大。目前该技术广范应用于以下领域,如身份识别、防伪、大型设备固定资产管理、药品物流识别、档案、车辆管理等诸多领域。 最基本的RFID系统由三部分组成:A、标签(有、无源):由耦合元件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象;B、读写器:读取(可以写入)标签信息的设备;C、天线:在标签和读取器间传递射频信号。

集成电路与系统

集成电路与系统 集成电路设计与集成系统专业工资待遇 截止到 2013年12月24日,57740位集成电路设计与集成系统专业毕业生的平均薪资为4639元,其中应届毕业生工资3701元,0-2年工资4104元,10年以上工资5104元,3-5年工资6069元,8-10年工资10494元,6-7年工资11198元。 集成电路设计与集成系统专业就业方向 集成电路设计与集成系统专业学生毕业后可到国内外各通信、雷达、电子对抗等电子系统设计单位和微电子产品的单位从事微电子系统的研发设计。。 集成电路设计与集成系统专业就业岗位 硬件工程师、电气工程师、模拟集成电路设计工程师、研发工程师、射频集成电路设计工程师、设计工程师、等。 集成电路设计与集成系统专业就业地区排名 集成电路设计与集成系统专业就业岗位最多的地区是上海。薪酬最高的地区是肇庆。 就业岗位比较多的城市有:上海[36个]、北京[30个]、深圳[28个]、苏州[11个]、西安[10个]、武汉[9个]、广州[7个]、成都[6个]、无锡[6个]、济南[6个]等。 就业薪酬比较高的城市有:肇庆[8065元]、信阳[6999元]、北京[6279元]、上海[6194元]、佛山[5265元]、厦门[5231元]、杭州[5024元]、南京[5013元]、惠州[4999元]、沈阳[4867元]、大连[4799元]等。 集成电路设计与集成系统专业在同类专业排名

集成电路设计与集成系统专业在专业学科中属于工学类中的电气信息类,其中电气信息类共34个专业,集成电路设计与集成系统专业在电气信息类专业中排名第28,在整个工学大类中排名第95位。 在电气信息类专业中,就业前景比较好的专业有:计算机科学与技术,自动化,软件工程,信息工程,电气工程及其自动化,网络工程,计算机软件,电子信息工程,通信工程等。

WiFi产品射频电路调试经验

Wi-Fi产品射频电路调试经验 https://www.360docs.net/doc/f614684034.html,/article/11-04/422921302067041.html?sort=1111_1119_1438_0 2011-04-06 13:17:21 来源:电子发烧友 关键字:Wi-Fi 射频电路调试经验 这份文档是生花通信的一线射频工程师总结了的Wi-Fi产品开发过程中的一些射频调试经验,记录并描述在实际项目开发中遇到并解决问题的过程。 1 前言 这份文档总结了我工作一年半以来的一些射频(Radio Frequency)调试(以下称为Debug)经验,记录的是我在实际项目开发中遇到并解决问题的过程。现在我想利用这份文档与大家分享这些经验,如果这份文档能够对大家的工作起到一定的帮助作用,那将是我最大的荣幸。 个人感觉,Debug过程用的都是最简单的基础知识,如果能够对RF的基础知识有极为深刻(注意,是极为深刻)的理解,我相信,所有的Bug解起来都会易如反掌。同样,我的这篇文档也将会以最通俗易懂的语言,讲述最通俗易懂的Debug技巧。 在本文中,我尽量避免写一些空洞的理论知识,但是第二章的内容除外。“微波频率下的无源器件”这部分的内容截取自我尚未完成的“长篇大论”——Wi-Fi产品的一般射频电路设计(第二版)。 我相信这份文档有且不只有一处错误,如果能够被大家发现,希望能够提出,这样我们就能够共同进步。 2 微波频率下的无源器件 在这一章中,主要讲解微波频率下的无源器件。一个简单的问题:一个1K的电阻在直流情况下的阻值是1K,在频率为10MHz的回路中可能还是1K,但是在10GHz的情况下呢?它的阻值还会是1K吗?答案是否定的。在微波频率下,我们需要用另外一种眼光来看待无源器件。 2.1. 微波频率下的导线 微波频率下的导线可以有很多种存在方式,可以是微带线,可以是带状线,可以是同轴电缆,可以是元件的引脚等等。 2.1.1. 趋肤效应 在低频情况下,导线内部的电流是均匀的,但是在微波频率下,导线内部会产生很强的磁场,这种磁场迫使电子向导体的边缘聚集,从而使电流只在导线的表面流动,这种现象就称为趋肤效应。趋肤效应导致导线的电阻增大,结果会怎样?当信号沿导体传输时衰减会很严重。 在实际的高频场合,如收音机的感应线圈,为了减少趋肤效应造成的信号衰减,通常会使用多股导线并排绕线,而不会使用单根的导线。

915MHz射频收发系统的ADS设计与仿真

1引言 近几年来,无线射频识别技术越来越受各国重视。随着供应链管理、集装箱、工业、科研和医药等行业对3m以上射频识别技术的需求不断增加,国内外已经把研究的热点转向超高频段和微波频段。射频电路的设计主要围绕着低成本、低功耗、高集成度、高工作频率和轻重量等要求进行。本文对915 M Hz射频收发系统做了进一步的研究。 ADS(Advanced Design System)软件是Agilent 公司开发的,可以支持从模块到系统的设计,能够完 915MHz射频收发系统的 ADS设计与仿真 李宝山,张香泽 (内蒙古科技大学信息工程学院,内蒙古包头014010) 摘要:针对无线通信环境中的应用,使用A D S软件设计了一种915M H z射频收发系统。射频收发系统中的关键模块均根据实际的集成射频模块的参数设计。使用A D S软件对设计进行功率增益预算仿真、S参数仿真。仿真结果表明,设计的射频收发系统符合实际的无线通信环境的要求。 关键词:A D S;915M H z收发系统;射频模块;增益 ADS Design and Simulation of915MHz RF Transceiver system LI Bao-shan,ZHANG Xiang-ze (School of Information Engineering,Inner Mongolia University of Science and Technology,Baotou014010,China) Abstract:The design and simulation of915M Hz RF Transceiver system using Advanced Design System(ADS)for wireless communication application is presented.The key modules in RF system are designed by using the parameters ofactual integrated RF modules.Some simulations have been done by using ADS,such as Budget simulation,S parameter simulation.The simulation results show that this RF transceiver system with real wireless communication demand. Keywords:ADS;915MHz RF Transceiver system;RF module;gain

射频电路PCB的设计技巧

射频电路PCB的设计技巧 摘要:针对多层线路板中射频电路板的布局和布线,根据本人在射频电路PCB设计中的经验积累,总结了一些布局布线的设计技巧。并就这些技巧向行业里的同行和前辈咨询,同时查阅相关资料,得到认可,是该行业里的普遍做法。多次在射频电路的PCB设计中采用这些技巧,在后期PCB的硬件调试中得到证实,对减少射频电路中的干扰有很不错的效果,是较优的方案。 关键词:射频电路;PCB;布局;布线 由于射频(RF)电路为分布参数电路,在电路的实际工作中容易产生趋肤效应和耦合效应,所以在实际的PCB设计中,会发现电路中的干扰辐射难以控制,如:数字电路和模拟电路之间相互干扰、供电电源的噪声干扰、地线不合理带来的干扰等问题。正因为如此,如何在PCB的设计过程中,权衡利弊寻求一个合适的折中点,尽可能地减少这些干扰,甚至能够避免部分电路的干涉,是射频电路PCB设计成败的关键。文中从PCB的LAYOUT角度,提供了一些处理的技巧,对提高射频电路的抗干扰能力有较大的用处。 1 RF布局 这里讨论的主要是多层板的元器件位置布局。元器件位置布局的关键是固定位于RF路径上的元器件,通过调整其方向,使RF路径的长度最小,并使输入远离输出,尽可能远地分离高功率电路和低功率电路,敏感的模拟信号远离高速数字信号和RF信号。 在布局中常采用以下一些技巧。 1.1 一字形布局 RF主信号的元器件尽可能采用一字形布局,如图1所示。但是由于PCB板和腔体空间的限制,很多时候不能布成一字形,这时候可采用L形,最好不要采用U字形布局(如图2所示),有时候实在避免不了的情况下,尽可能拉大输入和输出之间的距离,至少1.5 cm 以上。

射频集成电路综述

射频集成电路低噪声放大器研究前景

摘要 近年来,随着无线通信技术在移动通信、全球互联接入以及物联网等领域越来越广泛的应用。对于现代通信系统往往要求提供两个甚至更多的无线服务,因此就要求射频电路前端中的关键部件低噪声放大器(Low Noise Amplifier,LNA)能在多个频带下具有放大能力。因此如何能够放大多个频带的宽带低噪声放大器成为研究热点。 低噪声放大器是现代无线通信、雷达、电子对抗系统等应用中的十分重要的部分,常用于接收系统的前端,在放大信号的同时降低噪声干扰,提高系统灵敏度。如果在接受系统的前端连接高性能的低噪声放大器,在低噪声放大器增益足够大的情况下,就能抑制后级电路的噪声,则整个接收机系统的噪声系数将主要取决于放大器的噪声。如果低噪声放大器的噪声系数降低,接收机系统的噪声系数也会变小,信噪比得到改善,灵敏度大大提高。由于可见噪声放大器的性能制约了整个接收系统的性能,对于整个接收系统技术水平的提高,也起了决定性的作用。 宽带低噪声放大器是一种需要有良好的输入匹配的部分。输入匹配是要求兼顾阻抗匹配和噪声系数的,对于这两个指标一般来说是耦合在一起的。现有的宽带匹配技术需要反复协调电路各部分参数,通过对阻抗匹配和噪声系数这两个指标的折中设定来达到输入匹配的要求,因此给设计增大了难度。 噪声抵消技术是一种可以有效的将上述两个重要参数进行分离的方法,对降低设计复杂度、缩短设计周期、降低设计成本具有重要意义。现有的噪声抵消电路结构基本上都是基于CMOS工艺的。近年来,随着SiGe 技术的发展,SiGe BiCMOS工艺逐渐成为射频集成电路工艺的主流。然而,基于 SiGe工艺的采用噪声抵消结构的设计方法还未见报道。因此,本文基于SiGe工艺,开展对工作于0.8-5.2GHz频段低噪声放大器的噪声抵消电路结构的设计研究。

无线通信射频收发系统设计研究

无线通信射频收发系统设计研究 射频是一种特定频率的电磁波信号,它可以在自由空间中传播,射频通信技术具有宽频带、高信息容量、体积小、可用频谱多、干扰小等特点,在无线通信系统中应用广泛,日常生活中有线电视信号就是通过由射频通信系统传送的。射频收发系统处理线通信系统中信号的接收和发射,它位于无线通信系统的最前端,关系到通信的质量。研究射频收发系统工作原理优化其设计方案,可有效提高无线通信质量。 一、射频收发系统的构成及工作原理 射频收发系统根据它的应用目的和使用环境的不同,会有不同的组成部分。但从射频收发系统的工作原理来看,射频发射机、射频接收机、天线是系统的基本组成部分。(一)射频发射机的构成及工作原理。射频发射机是通过调制、功率放大、上变频、滤波等手段把低频的基本频带信号转换为对应的高频信号,并把处理后的信号经天线发出。天线、滤波器、数模转换器、调制器、混频器、放大器、本振器等组成射频发射机系统。调制器通过数字调制或模拟调制的方式将低频信号向高频段传播;本振器通过数字分频电路、鉴相器电路,锁相环电路等将频率送至混频器;滤波器可以对不同的信号进行分离,得到特定频率的信号或消除干扰信号,滤波器种类繁多,实际使用时可根据需要处理信号的形式选用模拟滤波器或数字滤波器;数模转换器主要作用是完成数字信号到模拟信号的转换;混频器主要作用是实现频率变化,常用的有双平衡混频器和三平衡混频器。放大器是把信号通过幅度放大器增大或降低,在经由功率放大器将信号功率放大用以满足天线发射需要。(二)射频接收机的构成及工作原理。射频接收机主要作用是从天线接收的众多信号中选出基本频带所需的有用信号并放大。射频接收机的信号选择能力关系到信号的接收质量,影响无线通信射频收发系统的运行状况。射频接收机把天线接收到信号传送至低噪声放大器,通过两次下变频,将信号变为满足需要的基本频带信号。射频接收机主要性能指标要求包括:接收微弱信号的灵敏度要求,降低系统噪声系数要求,相似频率信号的选择能力要求及射频接收机接收信号大小比的动态范围要求,射频接收机的性能指标关系到无线通信射频收发系统运行质量。

射频电路设计困境及对策

射频电路设计地困境及对策 hc360慧聪网通信行业频道 2004-04-16 11:23:41 射频电路地设计技术一度专属于少数专家掌握并拥有其自己地专用芯片组,如今已能和数字电路模块及模拟电路模块集成在同一块 IC 里了.再则,射频电路设计中固有地临界尺寸要求,更增加了工程压力. 要点●射频电路设计师必须经常采用间接测量电路性能地方式,来推断电路故障地原因. ●射频电路设计问题正在影响数字电路设计和模拟电路设计. ●将射频电路集成在同一块印制电路板或 IC 上,这会促使人们使用一种新地设计方法. ● EDA 厂商正在开始提供集成时域仿真和频域仿真地分析工具. 射频电路设计就是对发射电磁信号地电路进行设计.射频意为无线电频率,因为射频电路在其初期,只能发射调幅和调频两个波段地无线电信号.今天,把高频电路设计称为“射频电路设计”,只是沿用了历史名称.图1表明,自从 20 世纪 60 年代使用 UHF 电视技术以来,广播设备使用高于 300000 MHz地频率.从那时以来,通信设备地内容、频率和带宽都增加了.安捷伦科技平台地经理Joe Civello说,对模拟/混合信号 IC 设计师地挑战正以前所未有地速度在加剧.在加大带宽和提高最终产品功能地市场需求推动下,设计正在进入更高地频率范围,并不断提高复杂性.工程师们正在把射频电路与模拟及数字纳M电路集成在一起.吉比级数据速率正在使数字电路像微波电路那样工作.不断扩充而更复杂地无线通信标准,如 WiFi<无线相容性认证)802.11a/b/g、超宽带和蓝牙标准,都要求设计师去评估其设计对系统整体性能地影响. 形状因子、功耗和成本推动着模拟电路设计、射频电路设计和数字电路设计地日益集成化.便携式设备小巧轻便,功耗和成本尽可能低.集成度直接影响着最终电子产品地制造成本、尺寸和重量,通常也决定所需功率地大小.设计师从材料清单中每去掉一个元件,维持该元件地供应链所需日常开支就会随之减少,最终产品地制造成本就会下降,产品尺寸也会缩小. 德州仪器公司(TI>负责无线应用地研究经理Bill Krenik说,射频电路地设计一向是很困难地,因为缺乏恰当地检测仪器,使高频信号地分析复杂化了.工程师们不得不采取间接地测量方法,并根据他们能够观察到地电路行为状态来推断电路特性.随着工程师们在同一块芯片上实现数字电路、模拟电路和射频电路,种种集成问题就使这一问题进一步复杂化.通过衬底传输或通过 IC 表面辐射地数字信号会影响射频或模拟部分地噪声敏感度.这些潜在地影响大多会结合在一起,从而使最初地硅片存在各种问题.传统地调试方法也许不再适用,这意味着你必须正确地进行设计,并在设计投片之前就要准确无误地对尽可能多地物理效应建立模型.当设计方法不能准确地建立硅片地模型时,设计小组通常别无选择,只能把器件制造出来,再去观察其工作状态.走这条途径就像一场赌注很高地赌博,多数公司只是把它作为最后地一招. 模拟电路和射频电路历来都制作在各自地芯片上,这样可以更方便地在系统中隔离噪声,防止耦合到电路地敏感节点中.工程师们把这几类设计元件都集成在同一块芯片上时,就不能忽视噪声问题.假如没有某种形式地精确硅衬底模型,工程师们也许要到硅片从工厂退回后才会知道问题地存在.这类产品地开发几乎总是需要一个由各个工程领域地专家组成地小组.很少有哪个设计师既有射频专业知识,又有模拟电路专业知识;再则,射频电路专家和模

RFID仓库管理系统设计

RFID仓库管理系统 设计 1

摘要 存储作为物流系统的一部分,它在原产地、消费地,或者在这两地之间存储管理物品,而且向管理者提供有关存储物品的状态、条件和处理情况等信息。从物流发达国家来看,仓储在物流战略中的重要性日益提高,在物流管理中占据着核心的地位,并己成为供应链管理的核心环节。供应链环境下的仓储管理涉及大量各类型的产品,同时对应的业务和结构比较复杂,对信息的准确性和及时性要求非常高。当前,仓储管理一般使用条码标签或是人工仓储管理单据等方式。可是条码的许多方面容易造成人为损失,使得现在国内的仓储管理始终存在着缺陷。射频识别(RFID)技术是在无线电技术基础上,利用射频信号对静止或移动的物体进行自动识别和数据交换的技术。RFID技术的优点使其在物料跟踪、运载工具和货架识别等要求非接触数据采集、交换和频繁改变数据,具有很大的发展潜力与前景。本文针对传统的物流仓储管理存在的缺陷,利用RFID 技术来解决传统物流仓储管理存在的问题,满足当前物流仓储管理的需要。 关键字:RFID,智能存储,信息技术 2

前言 物联网是新一代信息技术的重要组成部分。其英文名称是”The Internet of things”。顾名思义,”物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础依然是互联网,是在互联网基础上的延伸扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。因此,物联网的定义是经过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现对物品的智能化识别、定位、跟踪、监控和管理的一种网络。射频技术(RFID)是一种世界上较为领先的自动识别技术,RFID 3

HY016射频设计6_射频匹配电路调试

HY016射频设计6_射频匹配电路调试 全部频段在QSPR中校准通过后,便可以进行电路优化了,也就是我们通常说的调匹配。 我们实验室采用的是盲调,即以最终实测性能的好坏来决定最终的匹配电路;与之对应的另一种方法是根据器件规格书,用网络分析仪逐个端口调试,使其和规格书要求相对应。对于RDA PhaseII方案,盲调性能挺好。 对于频分电路(FDD LTE/WCDMA/CDMA),重点是调双工器的输入输出端匹配;对于时分电路(TDD-LTE/TDSCDMA),重点是调滤波器的输入输出匹配。双工的调试相对复杂,本文会以HY016欧洲版中B20双工为例进行说明。 射频电路调试的最终原则包括: 1,发射端兼顾电流和线性度,也就是在ACLR余量足够的情况下尽可能的降低最大发射功率的电流,同时兼顾整个频段中高中低信道的平坦度。 2,接收端以提高接收灵敏度为最终原则 3,不是把某块板子的性能调到最佳为准;而是要留够余量,保证量产大批量板子的性能都能达到良好为准 双工器电路我通常的调试步骤: 1,初始bom采用datasheet的参考匹配 2,调节公共端的到地电感,让低、中、高信道特性一致,包括电流和ACLR 3,调节公共端的串联电感/电容,找出ACLR和电流的最佳权衡 4,调节发射端输入匹配,找出ACLR和电流的最佳权衡,最终确认发射端匹配 5,在QSPR下直接校准接收进行接收调试:若信道间差距过大就优先到地电感;若信道间差距不大则优化串联电感/电容;调试完成后实测灵敏度最终确认接收匹配 调试发射电路时,需要和仪表相连。通常在用QSPR完成校准后,再在QPST->PDC中导入并激活ROW_Gen_Commercial.MBN便可以和仪表通信了。关于MBN激活这部分,会在后续工厂文件部分详细说明,这里不再展开。

电子标签系统设计方案

电子标签系统设计方案 RFID技术的基本工作原理并不复杂:标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息,或许主动发送某一频率的信号;解读器读取信息并解码后,送至中央信息系统进行有关数据处理。 目录 1.电子标签系统的核心技术 2.电子标签系统的发展前景 3.电子标签系统的应用范围 1.电子标签系统的核心技术 RFID射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种低劣环境。RFID技术可识别高速运动物体并可同时识别多个标签,操作快捷方便。RFID电子标签是一种突破性的技术:“第一,

可以识别单个的非常具体的物体,而不是像条形码那样只能识别一类物体;第二,其选用无线电射频,可以透过外部材料读取数据,而条形码必须靠激光来读取信息;第三,可以同时对多个物体进行识读,而条形码只能一个一个地读。另外,储存的信息量也非常大。” 2.电子标签系统的发展前景 我国在政府在1993年制定的金卡工程实施计划及全国范围的金融卡网络系统的10年策划,是一个旨在加速推动我国国民经济信息化进程的重大国家级工程。由此各种自动识别技术的发展及应用十分迅猛。现在,射频识别技术做为一种新兴的自动识别技术,也将在中国很快地普及,可以说、我国射频识别产品的市场是十分巨大的,举一个例子来说明,使用射频识别技术的不停车高速公路自动收费系统是将来的发展方向,人工收费包括IC卡的停车收费方式也终将被

淘汰。随着经济交流、旅游的发展、我国的高速公路发展势头十分强劲、对自动收费系统的需要会日益增长、我国的国土面积大、公路多、车辆多,估计在将来十年内将有数十亿元的需要。 3.电子标签系统的应用范围 1、防伪通过扫描,详尽的物流记录就生成了。 2、生产流水线管理电子标签在生产流水线上可以方便准确地记录工序信息和工艺操 作信息,满足柔性化生产需要。对工人工号、时间、操作、质检结果的记录,可以完全实现生产的可追溯性。还可防止生产环境中手写、眼看信息造成的错误。3、仓储管理将RFID系统用于智慧仓库货物管理,有效地解决了仓储货物信息管理。对于大型仓储基地来说,管理中心可以实时了解货物位置、货物存储的状况,对于提升仓储效率、反馈产品信息、指导生产都有很重要的意义。它不但增加了一天内处

射频发射机电路设计

射频发射机电路设计 文献综述 前言 超外差接收是一种巧妙的接收方法,利用它,能使因无线电信号直接接收和放大而引起的一系列困难得到解决。在费森登思想的基础上,1912年,阿姆斯特朗在接收机中设置了本机振荡(简称“本振”)电路,通过双联可变电容器进行同步调谐,保证本振频率始终跟踪外来信号频率的变化,而且始终比外来信号高一个固定的中频。这样,不管所接收的各个电台的载波频率差别多大,与本振频率混频后,产生的都是统一的中频信号。再对这个统一的中频信号进行放大、检波,就可得到所需要的音频信号。利用超外差原理设计的电路,能使接收机电路大大简化,接收机的性能与灵敏度也得到提高。当时阿姆斯特朗还成功地组装出一台超外差接收机。同年,阿姆斯特朗与德·福雷斯特及兰茂尔各自独立发明了再生电路。 超外差接收原理不仅适用于收音机电路,还具有广泛的应用价值,它适用于电视广播、微波通信、雷达等无线电技术的各个领域。超外差原理已成为现代无线电接收理论的基础,凡是涉及无线电信号接收的电子设备,都离不开超外差接收电路。阿姆斯特朗的这项重要发明,不仅推动了无线电技术早期发展的进程,而且在无线电事业的征途上至今还闪现着它的技术光芒。 超外差原理的典型应用是超外差接收机。从天线接收的信号经高频放大器(见调谐放大器)放大,与本地振荡器产生的信号一起加入混频器变频,得到中频信号,再经中频放大、检波和低频放大,然后送给用户。接收机的工作频率范围往往很宽,在接收不同频率的输入信号时,可以用改变本地振荡频率f1的方法使混频后的中频fi保持为固定的数值。 概述 超外差接收机是超外差电路的典型应用,是全面学习模拟电路基础知识最好的切入点之一。通过简单分析超外差式接收机中输入电路、变频电

相关文档
最新文档