切削加工过程数值模拟的研究进展

切削加工过程数值模拟的研究进展
切削加工过程数值模拟的研究进展

渗碳过程的数值模拟

渗碳过程中表层碳含量的预测与验证 摘要 渗碳是机械制造业中应用最广泛的一种化学热处理工艺,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热并保温使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分。它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。 为了了解工件渗碳后的碳浓度分布情况,本设计根据渗碳过程的基本理论和数学模型,通过MATLAB软件编写渗碳过程各种不同边界条件的解析解以及一维数值解的程序,并对不同渗碳时间,渗碳温度以及不同渗碳碳势下的渗碳过程进行模拟,得到渗碳后的碳浓度分布情况。通过计算模拟得到的结果,可以得到不同渗碳工艺条件对渗碳层的组织和性能的影响,进而优化工艺参数。通过合理的控制渗碳时间,渗碳温度和渗碳碳势,我们可以得到渗碳后工件预期的碳浓度分布。在本文中,渗碳时间的延长,渗碳温度的提高以及渗碳碳势的增加都可以增加渗碳层的深度和碳浓度。同时通过计算模拟的出的碳浓度分布与实测的碳浓度分布做比较之后,计算模拟得到的结果和实测值比较符合. 关键词:渗碳;模拟;MATLAB;解析解;数值解

Abstract Carburizing is one of the most widely used chemical heat treatment in mechanical industry, which is mostly applied to low-carbon steel and low alloy steel.In the specific method, the workpiece is placed in an active carburizing medium,heated and keeping one holding time, which could make the active carbon atoms decomposed from carburizing medium diffuse into the surface of the workpiece, and then the affected area can vary in carbon content.it can make the surface of the workpiece obtain a high hardness and improve its abrasion. In order to find out the carbon concentration distribution of the workpiece after carburizing ,this article is based on the basic theory and mathematical model of the carburizing, using MATLAB to write a program of analytical solution and numerical solution of one-dimensional for various boundary conditions during the carburizing process, as well as calculating and simulating the carburizing process at different carburizing time, carburizing temperature and carburizing carbon potential, finally we obtain the distribution of the carbon concentration after the carburizing. Through the final result, we can get the different affects to the structure property of the carburized layer, and then optimize the process parameters. By mean of controlling the carburizing time, carburizing temperature and carburizing carbon potential, the expected Carbon concentration distribution could be gotten. In this text,longer carburizing times, higher temperatures and higher carbon potential lead to greater carbon diffusion into the part as well as increased depth of carbon diffusion. In addition, the results of calculating and simulating are compared to the measured value, the carbon concentration distribution of the workpiece of the results agrees well with the measured value. Key words: Carburizing, Simulate, MATLAB, Analytical solution, Numerical solution

土木工程随机风场数值模拟研究的进展

土木工程随机风场数值模拟研究的进展 来源:工业洗衣机 https://www.360docs.net/doc/f616424703.html, 风荷载是大跨空间结构、高层和高耸结构、桅式结构、大跨度桥梁等土木工程结构的主要设计荷载之一。 风荷载的确定手段主要有风洞试验、现场实测、数值模拟等。但前两类风荷载确定手段均较为复杂,且耗时耗资巨大,因而仅仅针对特定的工程结构才进行。通过数值模拟方法得到的风速时程满足风主要统计特性的任意性,而且比实际记录更具有代表性,因而在实际工程中被广泛使用。首先简要介绍大气边界层风的特性与风荷载的作用特点,接着重点讨论了土木工程风工程中平稳高斯、非平稳高斯、非高斯随机风场的模拟技术,最后对该领域的进展情况给出了一些展望。 1 风的基本特性1·1风的概述大气边界层内风特性的研究是风工程研究的基础。大气边界层是指受地球表面磨擦力影响的大气层,大气边界层的高度随气象条件、地形和地面粗糙度的不同而有差异,大致是在离地面400 m~1 000 m的范围。大气边界层内的风是大气层中空气相对地球表面的运动,一种随机的湍流流动。它的形成主要是由于大气层吸收地球表面辐射热导致空气温度、密度、湿度不均匀,从而在大气层中形成压差,引起空气流动。长期以来,人们对它进行了大量的研究工作,期望能用一个理论模型来准确描述,但未能实现。目前仅对100m 高度以下的地表层的风特性比较了解,将风特性分为平均风特性和脉动风特性来进行研究。风速观测记录表明:在较平阔的地形中,风场中某一点的风速可以分为风场内大气流动的平均速度和在此点的紊流速度(脉动风速)两个部分。前者是宏观上大

气整体运动形成的,方向一般为水平纵向,大小只与高度有关;后者是局部的紊流运动形成的,由于紊流的随机性,风场中各点的脉动风速各不相同。因此,可以对平均速度和脉动速度分别进行计算,再迭加得到总的风速。 在笛卡尔坐标系下,三维风场中任一点的风速可以表示为:U =U(z) +u(x,y,z, t)v =v(x,y,z, t)w =w(x,y,z, t)(1)式中:x轴为横向,即风的主流方向;y轴为纵向,与风的主流方向垂直;z轴为竖向,亦与风的主流方向垂直;U(z)为主流方向的平均风速;u(x,y,z, t)、v(x,y,z, t)、w(x,y,z, t)为脉动风速在三个方向上的投影,大小随时间变化; t表示时间。 由于自然风在x、y、z三个方向上的脉动分量间的相关性较弱,且目前对三个脉动分量之间的相关关系缺乏卓有成效的研究,实际应用中通常不考虑风速在x、y、z三个方向之间的相关性,而仅考虑风速在空间上的相关性,从而在理论上将三维相关的风场简化为三个方向上独立的一维风速场,亦即将三维相关的多变量随机过程简化为三个独立的一维多变量随机过程。 1·2平均风特性平均风特性包括平均风速、平均风向、风速廓线和风频曲线。大气流动平均风速受天气变化的影响比较大,在不考虑剧烈的天气变化(台风)情况下,根据每10 min间隔的大气流动速度的平均值来计算。平均风速沿着高度变化的规律即风速廓线是表征风特性的最重要指标之一。风速廓线可以用对数律或指数律表示: UUs=zzsα或UUs=ln(z/z0)ln(zs/z0)(2)其中:Us为标准高度zs处平均风速;α为地面粗糙度系数;z0为地面粗糙度。对数形式对于近地面的下部摩擦层较适合,可以很好地表达高度较低(离地100 m以下)大气层的强风轮廓。指数形式在地面

最新当前国内外环境保护形势及其研究进展论文

当前国内外环境保护形势及其研究进展论 文 论文一般比较麻烦,连格式都得做好,写论文不是那么容易的,不过也不是很难只要你知道了格式,找到了材料,就方便多了。以下是由查字典范文大全为大家整理的当前国内外环境保护形势及其研究进展论文,希望对你有帮助,如果你喜欢,请继续关注查字典范文大全。 在社会和经济的不断发展的同时,全世界已经开始注意到环境污染的全球性影响,环境污染的程度在不断扩大,而且大规模的事件发生也频频不绝,严重的影响了人类的生活环境,甚至是生存的基础。全球的气候开始变暖,臭氧层遭到日益的破坏,多种生物频临灭绝,森林减少,海洋污染,水污染、雾霾、危险性废物等给人类带来了严重的伤害,环境的严重恶化,造成了环境不能得到一个持续的稳定,已经威胁到人类的生存与经济的发展。 一.当前水环境保护形势和研究 我国经济的飞速发展造成了严重的水污染,对人们的生活造成了严重的影响,直接危害到人们的健康问题。我国的七大水系水质均遭到污染,最为严重的是太湖、滇池水质,检测呈现为劣V类;其次是海河,为重度污染,黄河、淮河等水质遭到轻度污染。综合我国的水环境,可以为分以下几点:①还没有有效的方法来控制遭到污染的水质,地表水和地下水的污染都非常严重;②最主要的污染为重金属污染;③湖库水中氮、磷等浓度高,负荷大,甚至出现异常营养;④新型、复合型污染物严日趋扩大;⑤水资源超过开发限制,工业用水极度浪费。 全球的水资源都受到不同程度的染污,上述情况也均有显现,不过发达都对水

污染给予了有效的治理。目前,国际上对于水浸染,采取了生物监测、遥感监测等技术的应用,我国也相继开发和使用了多种水质监测系统。美国开发了S treeterPhelps等模型体系和水质模型,以便对污染物在水环境中迁移转化规律进行描述。我国对于水污染数值模拟的研究开发还在进一步进行中,虽然与一些发达国家的研究水平还存在距离,不过我国所构建的湖库等水域富营养化生态系统动力学模型,有着突破性进展。 从二十世纪七十年代,美国、日本和欧洲一些国家开始了水环境治理以及修复的工作,同时获得了明显的成果。国际上主要有三种治理水污染的技术手段,包括物理法,化学法以及生态法。我国在不仅对三湖、三河进行有效治理,而且对另一些湖泊、河流等给予了治理,在治理的过程中积累了不少经验,不过依然尚有诸多不足之处。我国迫切需要辨认、识别以及预测重大的水环境问题缘故,分析水污染的潜在发展走向,将水质改善、水生态系统恢复以及饮用水安全做为重点保护方向,合理的制定出水环境的保护方案以及水污染防治工作。 二.土壤环境保护形势和研究 我国的工业化的飞速发展以及日趋城市化,更受到全球变化的影响,土壤环境逐步受到污染。我国的受污染土壤大部分是因农药、重金属所至,矿区、石油以及固体废弃为主要污染来源,对我国的生态环境以及食品安全造成了严重的破坏。我国的土壤污染呈局部扩散至区域、从城市扩散到农村、单一发展到复合的多种交叉污染特征。土壤的浸染日趋严峻,已经不只是净土洁食的问题困扰,而是已经发展到土壤的侵蚀、荒漠化等生态问题。 我国从二十世纪八十年代开始关注土壤污染,不过目前对于土壤污染的状况了解并不完全,缺少一个系统的掌握。

基于ANSYS模拟金属切削切削力变化的数值仿真

基于ANSYS模拟金属切削切削力变化的数值仿真 李根 天津理工大学天津300384 摘要:本文是基于金属切削的基本理论,借助ANSYS软件从刀具,工件的材料选取以及ansys模型 的建立中都符合实际的进行了准确设置,最终得到切削力的变化曲线,目的就是为了预测切削力的变化,为进一步对刀具破损,磨损和切削振动等方面进行研究提供数据,节约实验成本。 关键词:ANSYS;切削力:仿真;分析 1 前言 切削加工机理很复杂,它涉及到金相学、弹性力学、塑性力学、断裂力学、传热学以及摩擦接触、润滑等很多领域,受工件材料、刀具参数、加工工艺等多方面的影响,这些都给切削力的建模计算带来了困难。以往切削力的主要研究方法是在切削理论研究的基础上建立切削力的解析表达式,搭建切削实验平台拟合得到切削力经验公式。传统的通过搭建实验平台获取切削力的方法只能获得特定加工工艺下特定刀具、工件参数的结果,其结果的准确性依赖实验平台搭建的合理与否,并且实验周期长,相对花费比较高[1]。随着有限元技术的不断发展和完善,有限元商业软件日益成熟利用计算机仿真切削过程逐渐成为切削力研究的主要方向,通过有限元软件建立切削力模型,可以根据具体的材料参数、刀具模型及边界条件进行灵活的处理,仿真周期短,结果直观。 本文就是基于ANSYS软件对于刀具切削过程中切削力的分析仿真,获得研究刀具性能的大量数据,不仅使刀具研究、刀具产品的开发更加精确、可靠,并且大大缩短了研究开发的周期,节省了用于样品试制及实验设备等方面的费用。 2 建模与计算 2.1 基本理论 金属切削过程中切削力只要来源于以下两个方面[2]: (1)切削层金属,切屑和工件表面层金属的弹性、塑性变形所产生的抗力。 (2)刀具与切屑、工件表面间的摩擦阻力。 因此,在金属切削过程中仿真要考虑的因素很多,其中主要有以下三个方面: 首先,在切削过程中,材料模型既有弹性变形,又有塑性变形。被剪切工件材料由弹性变形到塑性变形,最后被撕裂并脱离已加工表面形成切屑,整个切削过程是一个非常复杂的

环境流体动力学代码EFDC模型的研究及应用进展

Journal of Water Resources Research 水资源研究, 2014, 3, 247-256 Published Online June 2014 in Hans. https://www.360docs.net/doc/f616424703.html,/journal/jwrr https://www.360docs.net/doc/f616424703.html,/10.12677/jwrr.2014.33031 The Research and Application Progress of Environmental Fluid Dynamics Code Hainan Ai, Wenshi Zhang, Xuebin Hu, Qiang He, Yuanyuan Liu Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing Email: aihainan@https://www.360docs.net/doc/f616424703.html, Received: Apr. 2nd, 2014; revised: Apr. 9th, 2014; accepted: Apr. 15th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/f616424703.html,/licenses/by/4.0/ Abstract With improvement of people’s understanding of environmental problems and the rapid develop-ment of computer science, simulation of environmental processes has become a research focus in the field of environmental science and geochemistry. Environmental Fluid Dynamics Code is de-veloped according to multiple mathematical models by Virginia Institution of Marine Science. Based on more than 200 papers from journal at home and abroad from 2003 to 2013, this paper presents the application and study of hydrodynamic model, water quality model and sediment model about estuaries, rivers, lakes and reservoirs, and meanwhile analyzes the development di-rection of EFDC. Keywords EFDC, Hydrodynamic Model, Water Quality Model, Sediment Model 环境流体动力学代码EFDC模型的研究及 应用进展 艾海男,张文时,胡学斌,何强,刘媛媛 重庆大学三峡库区生态环境教育部重点实验室,重庆 Email: aihainan@https://www.360docs.net/doc/f616424703.html, 作者简介:艾海男(1982-),男,副教授,主要从事活性污泥数学模型、排水管道污水处理研究。

LS-DYNA 2D金属切削模拟步骤

在ANSYS Launcher界面中,选择ANSYS Mechanical/LS-DYNA 1、菜单过滤 Main Menu→Preprocessor→LD-DYNA Explicit→OK 2、设置文件名及分析标题 Utility Menu→File→change Jobname→2D cutting→New log and error file :YES→OK Utility Menu→File→change Title→cutting analysis →OK 3、选择单元类型 Main menu→preprocessor→Element Type→Add/Edit/Delete→Add→2D solid 162→OK→options→选择const.stress ;Lagrangian→OK 4、定义材料模型 (1)定义刀具材料模型 Main menu→preprocessor→Material Props→Material Models→rigid material→ 输入:DENS:5.2e3 ;EX:4.1e11 ;NUXY:0.3 ;选择“Y and Zdisps” ;“All rota tions”→OK (2)定义工件Johnson-cook材料模型 Main menu→preprocessor→Material Props→Material Models→Gruneisen→Johnson-cook→输入:DENS:7.8e3 ;EX:2.06e11 ;NUXY:0.3 A:507;B:320;C:0.28;n;0.064;m=1.06 D1:0.15;D2:0.72;D3:1.66;D4:0.005;D5:--0.84 yangmeng11 2010-8-30 17:43:43 5、创建几何模型 (1)创建工件模型 Main menu→preprocessor→Create→Areas→Rectangle→By Dimensions→输入:X1,X2:0,5;Y1,Y2:0,3→OK (2)创建刀片模型 Main menu→preprocessor→Create→Keypionts→In Active CS→依次输入: keypoint number:5,X、Y、Z :5.1,2.9,0; keypoint number:6,X、Y、Z :6,3.228,0; keypoint number:7,X、Y、Z :6,4,0; keypoint number:8,X、Y、Z :5.294,4,0→OK yangmeng11

城市景观格局演变的生态环境研究进展

城市景观格局演变的生态环境研究进展 摘要:随着人类生活的进化、进步,逐渐形成城市这一现象。随着城市的诞生,不可避免的出现了城市景观,城市景观对于人类活动的影响开始逐渐突显出来,而且越来越明显的影响着人类的生活各个方面。城市景观格局的改变影响物质循环、能量流动等生态过程,降低区域生态系统的抗干扰能力好稳定性,这样就产生了一系列的生态环境效应。本文的目的是研究的原因和在调查的演变生态环境研究进展的影响演化的城市景观格局分析的影响。 关键词:城市景观,格局演变,环境效应,热岛效应 中图分类号:TU984.2 文献标识码:A DOI: 10.11974/nyyjs.20150932025 1 景观格局研究进展 1.1 景观分类 景观生态学是一个跨学科的多个领域。景观生态系统本身是非常庞杂和层次,也就是因为这个,景观生态分类系统就出现了一定的必要性和可能性。 景观分类是建立在景观格局分析的基础上的,期间最主要的就是确定好景观类型,因为这样可以直接决定景观分类的精度。想要确定景观类型的方式是多种多样的,但是在早

期的时候,仍然是采用集中国土、林业、测绘部门的土地覆盖利用的数据进行。当前社会,随着社会技术的发展,景观格局的研究形式也采用到了遥感数据这样的高技术,变成了提取景观信息的不可忽视的方式。 最传统的遥感图像分类办法有2种,监督和非监督分类办法,而且这2种办法都是依据光谱信息统计作为基础的。其中,监督分类的精度较高,但是缺点是需要率先建立起训练样本,因此对需要分类地物、地形要有了解。而非监督分类就是比较简单的一种,不需要像监督分类那样提前进行信息的了解,因此判别的精度就会稍微差一些了。 具有不同光谱的光谱和光谱分类过程异物常常基于的分类精度的特性函数的冲击性能。分形维数可以有效地显示出质地粗糙,并揭示了表面的性质的自相似性,因此,在基本的分形纹理的复杂功能受到关注的分类。因为在一定范围内,该材料的分形性质是独立的分辨率和视角是稳定的。基于分形理论的分形维数的景观分类是根据稳定的一个大问题,计算出的差异,如何提高分类准确度,该方法进一步研究分形维数的稳定和优化。 1.2 景观演变驱动力 景观格局变化的影响是多种因素作用的结果,通常分为2种自然力和社会经济,并且在不同的时空尺度上,2种驱动力作用也是不尽相同的。

国内外环境效率研究进展

Sustainable Development 可持续发展, 2020, 10(1), 45-50 Published Online January 2020 in Hans. https://www.360docs.net/doc/f616424703.html,/journal/sd https://https://www.360docs.net/doc/f616424703.html,/10.12677/sd.2020.101006 Research Progress on Environmental Efficiency at Home and Abroad Jingrong Sun School of Tourism and Social Management, Nanjing Xiaozhuang University, Nanjing Jiangsu Received: Nov. 29th, 2019; accepted: Dec. 12th, 2019; published: Dec. 19th, 2019 Abstract As an effective tool to measure the coordination degree of human economic development and en-vironmental protection, relevant organizations and institutions have carried out in-depth re-search on it and achieved a lot of research results, at present, the application research on envi-ronmental efficiency has penetrated into various fields, since it was put forward in the early 1990s. This study mainly analyzes the concept and connotation of environmental efficiency, environ-mental efficiency index system, environmental efficiency research method system, regional envi-ronmental efficiency, industrial environmental efficiency, enterprise environmental efficiency, product environmental efficiency, etc. Finally, on the basis of the above analysis, the future re-search of environmental efficiency is prospected from the aspects of measurement model, re-search index system and research scale, so as to bring reference significance to the further devel-opment of environmental efficiency in the future. Keywords Environmental Efficiency, Research Progress, Research Prospect 国内外环境效率研究进展 孙景荣 南京晓庄学院旅游与社会管理学院,南京江苏 收稿日期:2019年11月29日;录用日期:2019年12月12日;发布日期:2019年12月19日 摘要 环境效率作为一种衡量经济发展与环境保护协调度的有效工具,自20世纪90年代初提出以来,相关组织

加工过程的数值模拟作业

材料加工数值模拟 论文 专业:材料加工 姓名:闫禹伯 学号:2013432109

目录

第一章.铸造过程的数值模拟分析 传统铸件的生产是根据经验确定铸造工艺,先试浇铸,检验试样是否存在浇铸缺陷,如有则修改工艺方案,然后重复上述过程,直至获得合格铸件。由于这种方法必须在浇铸后才能对铸件工艺是否合理进行评价,因而该方法存在设计周期长、生产成本高、效率低等缺点;而且得到的往往不是最终铸造工艺,对于大型或复杂形状铸件该缺点显得更加突出。铸造CAE模拟技术是利用计算机技术来改造和提升传统铸造术,对降低产品的成本、提高铸造企业的竞争力有着不可替代的作用。 一.铸造过程数值模拟的发展现状 计算机技术的飞速发展,已使其自电力发明以来最具生产潜力的工具之一,数字化时代正一步步向我们走来。计算机辅助设计(CAD)、计算机辅助工程分析(CAM)和计算机辅助制造(CAE)等技术在材料科学领域的应用正在不断扩大和深入,已经成为材料科学领域的技术前沿和十分活跃的研究领域。就铸造领域而言,铸造过程数值模拟已经成为计算机在铸造研究和生产应用中最为核心的内容之一,涉及铸造理论、凝固理论、传热学、工程力学、数值分析、计算机图形学等多个学科[1-5],是公认的材料科学的前沿领域。 铸造过程数值模拟技术经过了四十年的发展历程,其间,从简单到复杂、从温度场发展到流动场、应力场,从宏观模拟深入到微观领域,从普通的重力铸造拓展到低压、压铸等特种铸造,从实验室研究进入到工业化实际应用。特别是近些年来,在包括计算机硬件、软件、信息处理技术以及相关学科的强有力的支持下,数值模拟技术在人类社会的各个领域得到了广泛的应用,取得了长足的进步。如果说10年前,大多数铸造技术人员对模拟仿真技术还抱有观望、怀疑的态度的话,那么10年后的今天,已有众多的企业纷纷采用数值模拟技术,应用于实际生产。目前欧美日等西方发达国家的铸造企业普遍应用了模拟技术,特别是汽车铸件生产商几乎全部装备了仿真系统,成为确定工艺的固定环节和必备工具。上世纪90年代中后期以来,国内铸造厂家逐渐认识到其重要性,纷纷引入该技术,目前已有超过200家铸造企业拥有模拟仿真手段,在实际生产中起到了较为

地下水数值模拟研究进展和发展趋势

地下水数值模拟研究进展与发展趋势 摘要:地下水数值模拟的应用研究进展国外对地下水数值模拟的研究和应用较早,且理论、技术等各方面相对成熟,目前已经从“水量问题”的应用研究逐步过渡到“水质问题”的应用研究上,以解决各种更复杂的地下水问题。国内相关研究起步较晚、同国外存在一定的差距,主要应用研究在地下水位预测、地下水资源开发利用、地下水循环机制研究、地下水资源预报评价等水量、水位问题方面,但在加油站渗漏场、石油渗漏场、垃圾填埋场、工业废料填埋场、矿区、核废料处置场等污染场地污染物的迁移问题方面的应用研究逐渐增多,并已取得了一定的成果。 关键词:数值模拟、进展、发展趋势 随着计算机技术的快速发展,科学有效的数值计算方法在处理地下水污染、分析地下水资源评估等问题中的应用越来越广泛; 利用数值模拟软件对地下水流等问题进行模拟,以其有效性、灵活性和相对廉价性逐渐成为地下水研究领域的一种不可缺少的重要方法[1]。尤其针对加油站渗漏场、石油渗漏场、垃圾填埋场、工业废料填埋场、矿区、核废料处置场等污染场地污染物的迁移问题,建立准确的数值模型进行预测是查明污染物污染潜水范围、程度及其分布特征最有效最直观的方法之一,同时还可以为污染区实施污染防治与修复等优化配置提供科学技术支持[2]。 地下水数值模拟的应用研究进展国外对地下水数值模拟的研究和应用较早,且理论、技术等各方面相对成熟,目前已经从“水量问题”的应用研究逐步过渡到“水质问题”的应用研究上,以解决各种更复杂的地下水问题。国内相关研究起步较晚、同国外存在一定的差距,主要应用研究在地下水位预测、地下水资源开发利用、地下水循环机制研究、地下水资源预报评价等水量、水位问题方面,但在加油站渗漏场、石油渗漏场、垃圾填埋场、工业废料填埋场、矿区、核废料处置场等污染场地污染物的迁移问题方面的应用研究逐渐增多,并已取得了一定的成果[4]。 近几十年来,随着地下水科学和计算机科学的发展,地下水数值模拟也得到了快速发展,主要体现在:加拿大Borden基地、美国Cape Cod基地与Columbus基地开展的大型野外试验场研究,大大丰富了地下水溶质运移的理论和方法,取得不少新的认识,并为发展和检验溶质运移理论和相应数学模型提供了大量数据(MacKay et al,1986; LeBlanc et al,1991;Bogga et al,1992;Zheng and Gorelick,2003);随机方法在非均质介质渗流和溶质运移的模拟中得到比较多的应用,从而加深、甚至改变了人们对此类介质中流体运动和溶质运移的认识(Dagan and Neuman,1997; Zhang D,2002);通过多孔介质中水流运动、溶质运移和化学反应,甚至生物过程的耦合建立模型来集成地研究这些过程也取得很多进展(van Genuchten and Sudicky,1999; Yeh and Tripathi,1989; Barry et al,2002)。此外,计算方法也取得不少进展,但溶质运移模拟中数值弥散和振荡问题的解决和地下水模拟逆问题的求解进展比较缓慢(Sun and Yeh,2007)。 由于种种原因,国内地下水数值模拟开展得比较晚,始于20世纪70年代初,当时文化大革命还没有结束,所以从事这项工作困难重重,而且人也不多,主要来自高等学校和研究部门,以后才逐步扩展到产业部门。为了加快我国地下水数值模拟的发展,深切感到有必要

ABAQUS金属切削实例

CAE联盟论坛精品讲座系列【二】 ABAQUS金属切削实例 主讲人:fuyun123CAE联盟论坛—ABAQUS版主 背景介绍: 切削过程是一个很复杂的工艺过程,它不但涉及到弹性力学、塑性力学、断裂力学,还有热力学、摩擦学等。同时切削质量受到刀具形状、切屑流动、温度分布、热流和刀具磨损等影响,切削表面的残余应力和残余应变严重影响了工件的精度和疲劳寿命。利用传统的解析方法,很难对切削机理进行定量的分析和研究。计算机技术的飞速发展使得利用有限元仿真方法来研究切削加工过程以及各种参数之间的关系成为可能。近年来,有限元方法在切削工艺中的应用表明,切削工艺和切屑形成的有限元模拟对了解切削机理,提高切削质量是很有帮助的。这种有限元仿真方法适合于分析弹塑性大变形问题,包括分析与温度相关的材料性能参数和很大的应变速率问题。ABAQUS作为有限元的通用软件,在处理这种高度非线性问题上体现了它独到的优势,目前国际上对切削问题的研究大都采用此软件,因此,下面针对ABAQUS的切削做一个入门的例子,希望初学者能够尽快入门,当然要把切削做好,不单单是一个例子能够解决问题的,随着深入的研究,你会发现有很多因素影响切削的仿真的顺利进行,这个需要自己去不断探索,在此本人权当抛砖引玉,希望各位切削的大神们能够积极探讨起来,让我们在切削仿真的探索上更加精确,更加完善。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 切削参数:切削速度300m/min,切削厚度0.1mm,切削宽度1mm 尺寸参数:本例作为入门例子,为了简化问题,假定刀具为解析刚体,因为在切削过程中,一般我们更注重工件最终的切削质量,如应力场,温度场等,尤其是残余应力场,而如果是要进行刀具磨损或者涂层刀具失效的分析的话,那就要考虑建立刀具为变形体来进行分析了。工件就假定为一个长方形,刀具设置前角10°,后角6°,具体尺寸见INP文件。 下面将切削过程按照ABAQUS的模块分别进行叙述,并对注意的问题作出相应的解释。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 建模:建模过程其实没有什么好注意的,对于复杂的模型,我一般用其他三维软件导入进来,注意导入的时候尽量将格式转化为IGES格式,同时要把一些不必要的东西去掉,比如一些尖角,圆角之类的,如果不是分析那个部位的应力集中的话就没必要导入它,如果导入,还要进行一些细化,大大降低了计算的效率。我一般做的是二维切削,模型相对比较简单,所以一般都是直接在ABAQUS中进行建模。由于此处为刚体,要在part里面建立刚体参考点,而且注意不要在装配模块建立参考点,因为有时候ABAQUS找不到装配模块相应的参考点。 1、工件

机械制造工程之切削过程和控制复习题

机械制造工程之切削过程及其控制复习题-----------------------作者:

-----------------------日期:

机械制造工程学复习题 第二章切削过程及其控制 2-1 什么是切削用两三要素?在外圆车削中,它们与切削层参数有什么关系? 2-2 确定外圆车刀切削部分几何形状最少需要几个基本角度?试画图标出这些基本角度。 2-3 试述刀具标注角度和工作角度的区别。为什么车刀作横向切削时,进给量取值不能过大? 2-4 刀具切削部分的材料必须具备哪些基本性能? 2-5 常用的硬质合金有哪几类?如何选用? 2-6 怎样划分切削变形区?第一变形区有哪些变形特点? 2-7 什么是积削瘤?它对加工过程有什么影响?如何控制积削瘤的产生? 2-8 试述影响切削变形的主要因素及影响规律。

2-9 常用的切屑形态有哪几种?它们一般都在什么情况下生成?怎 样对切屑形态进行控制? 2-10 切削力为什么要分解为三个分力?各分力的大小对加工过程有 什么影响? 2-11 在CA6140型车床上车削外圆,已知:工件材料为灰铸铁, 其牌号为HT200;刀具材料为硬质合金,其牌号为YG6;刀具几何参数为:0010=γ,οοοο10,10,45,8''00-=====s r r k k λαα(s λ对三向切削分力的修正系数分别为75.0,5.1,0.1===f s p S C s F F F k k k λλλ),mm r 5.0=ε;切削用量为: min /80,/4.0,3m v r mm f mm c p ===α。试求切削力F c 、F f 、F p 及切削功率。 2-12 影响切削力的主要因素有哪些?试论述其影响规律。 2-13 影响切削温度的主要因素有哪些?试论述其影响规律。 2-14 试分析刀具磨损四种磨损机制的本质与特征,它们各在什么条 件下产生? 2-15 什么是刀具的磨钝标准?制定刀具磨钝标准要考虑哪些因素? 2-16 什么是刀具寿命和刀具总寿命?试分析切削用量三要素对刀具 寿命的影响规律。 2-17 什么是最高生产率刀具寿命和最小成本刀具寿命?怎样合理选 择刀具寿命? 2-18 试述刀具破损的形式及防止破损的措施。 2-19 试述前角的功用及选择原则。

金属切削过程的基本概念

第一章金属切削过程的基本知识 本章主要介绍以下内容: 1、金属切削过程的基本概念 2、刀具材料 课时分配:1,两个学时,2,一个学时 重点、难点:金属切削过程的基本概念 1.1 金属切削过程的基本概念 一、切削表面与切削运动(见P4-5) (一)切削表面 切削加工过程是一个动态过程,在切削过程中,工件上通常存在着三个不断变化的切削表面。即: 待加工表面:工件上即将被切除的表面。 已加工表面:工件上已切去切削层而形成的新表面。 过渡表面(加工表面):工件上正被刀具切削着的表面,介于已加工表面和待加工表面之间。以车削外圆为例,如下图。

(二)切削运动 刀具与工件间的相对运动称为切削运动(即表面成形运动)。按作用来分,切削运动可分为主运动和进给运动。上图给出了车刀进行普通外圆车削时的切削运动,图中合成运动的切削速度V e、主运动速度V c和进给运动速度V f之间的关系。 1、主运动 主运动是刀具与工件之间的相对运动。它使刀具的前刀面能够接近工件,切除工件上的被切削层,使之转变为切屑,从而完成切屑加工。一般,主运动速度最高,消耗功率最大,机床通常只有一个主运动。例如,车削加工时,工件的回转运动是主运动。 2、进给运动 进给运动是配合主运动实现依次连续不断地切除多余金属层的刀具与工件之间的附加相对运动。进给运动与主运动配合即可完成所需的表面几何形状的加工,根据工件表面形状成形的需要,进给运动可以是多个,也可以是一个;可以是连续的,也可以是间歇的。 3、合成运动与合成切削速度 当主运动和进给运动同时进行时,刀具切削刃上某一点相对于工件的运动称为合成切削运动,其大小和方向用合成速度向量v e表示, 见上图。 V e=V c+V f 二、切削用量三要素与切削层参数 (一)切削用量三要素 1、切削速度v c 切削速度v c是刀具切削刃上选定点相对于工件的主运动瞬时线速度。由于切削刃上各点的切削速度可能是不同,计算时常用最大切削速度代表刀具的切削速度。当主运动为回转运动时: 式中d—切削刃上选定点的回转直径,mm; n—主运动的转速,r/s或r/min。 2、进给速度vf 、进给量f 进给速度v f—切削刃上选定点相对于工件的进给运动瞬时速度,mm/s或mm/min.。 进给量f—刀具在进给运动方向上相对于工件的位移量,用刀具或工件每转或每行程的位移量来表述,mm/r或mm/行程。

“金属切削原理”模拟试题参考答案

“金属切削原理”模拟试题参考答案 一、外圆车刀标注图(见附图3)。 ①法平面内与正交平面(主剖面)内的角度换算公式为 前角γo: tan γn = tanγo cos λs 后角αn:cot αn =cot αn cos λs ②垂直基面的任意剖面与正交平面(主剖面)内的角度换算公式为 前角γi: tan γi = tanγo sin τi + tan λs cos τi 后角αi:cot αi =cot αo sin τi + tan λs cos τi ③假定工作平面(进给剖面)和背平面(切深剖面)与正交平面(主剖面)内的角度换算 公式为: 当τi=1808-κr时,可得假定工作平面的前角和后角与正交平面内前角、后角的换算公式: 前角γf: tan γf = tanγo sin κr + tan λs cos κr 后角αf:cot αf =cot αo sin κr + tan λs cos κr 当τr=908-κr,时,可得背平面的前角和后角与正交平面内的前角、后角换算公式:前角γp: tan γp = tanγo cos κr + tan λs sin κr 后角αp:cot αp =cot αp cos κr + tan λs sin κr 当已知γp、αp和γf、αf时,可得γo、αp及λs

tan γo = tanγp cos κr + tan γf sin κr cot αo =tan αp cos κr +cot αf sin κr tanλs= tanγp sin κr -tg γf cos κr ④最大前角、最小后角及方位角的计算公式为: 一、 1.YG8国际标准为K类,屑钨钴类(WC—Co)硬质合金。Y——硬质合金,G——钨钴类,8——含钴量8%。适于铸铁、有色金属及其合金与非金属材料加工,不平整断面 和间断切削时的粗车、粗刨、粗铣,一般孔和深孔的钻孔、扩孔。 YTl5国际标准为P类,属钨钴钛类(WC—TiC—Co)硬质合金。T——钨钴钛类,15——含碳化钛(TiC)15%。适于碳钢和合金钢加工,连续切削时的半精车及精车,间断 切削时的小断面精车,旋风车螺纹,连续面的半精铣及精铣,孔的精扩及粗扩。 2.主要区别 (1)单晶金刚石具有各向异性的特点,每个晶面的硬度、耐磨程度、摩擦系数等性质 都不相同。聚晶金刚石是由无数微小金刚石晶粒随机取向聚合而成,没有各向异性的缺点,做刀具材料时,可以任意取向刃磨。(2)聚晶金刚石具有比单晶金刚石高的强度及抗 冲击性。由于聚晶金刚石晶粒是随机取向的,所以没有固定的解理面,当一个晶粒解理或破裂时,相邻晶粒将起阻碍作用,阻止任何因扩散而引起的破碎。无论每个晶粒的方面性如何,作为一个整体,聚晶金刚石原机械性能是不变的。表现出比单晶金刚石更优良的抗冲击性和抗振性能。(3)加工工件精度低,聚晶金刚石是以聚合体形式存在的金刚石,刀 具表面不易磨成单晶金刚石那样高的表面质量,所以加工质量低。 三、切削力的计算有理论公式和经验公式。理论公式计算所得的切削力数值往往和实际切削力相差很大。根据试验可得出在固定切削条件(工件材料、刀具材料及几何参数等) 下的切削力经验公式。所得的经验公式数学模型为 该公式中的Y Fz和X Fz分别代表了进给量f和背吃刀量αp对切削力F z的影响。通常 情况下X Fz接近于1,Y Fz接近于0.8,这就是说背吃刀量对切削力的影响是成正比的。即 背吃刀量增加1倍,切削力增加1倍。进给量对切削力的影响不成正比。即进给量增加1 倍,切削力不会增加1倍。这是因为背吃刀量o,增大、进给量厂增大,都会使切削面积A c(A c=αp f)增大,从而使变形力增大,摩擦力增大,因此切削力也随之而增大。但是 进给量增大,切削厚度αc也成正比增大(αc= f sin κr),而αc增大,变形系数芒减小,摩擦系数也降低,又会使切削力减小。综合效果为切削力增大,但与进给量厂不成正比。背吃刀量αp增大,切削厚度αc不变,而切削宽度αw则随αp的增大成正比增大(αw= αp/sin κr)。由于切削宽度的变化几乎与摩擦系数μ和变形系数?无关。因此,背吃刀量αp对切削力的影响成正比关系。 四、所谓相对加工性是以强度σb=0.637 GPa的45钢之v60作为基准,写作(v60)j, 其它被切削的工件材料的V60与之相比的数值,记作是。,即相对加工性 k v=v60/(v60)j 各种工件材料的相对加工性k v乘以T=60min时的45钢的切削速度(v60)j,则可得出

相关文档
最新文档