(完整版)一元二次方程根的分布情况归纳(完整版)

(完整版)一元二次方程根的分布情况归纳(完整版)
(完整版)一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳

1、一元二次方程

02=++c bx ax 根的分布情况 设方程()2

00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的

根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)

表一:(两根与0的大小比较即根的正负情况)

布情况

两个负根即两根都小于0

()120,0x x << 两个正根即两根都大于0

()120,0x x >>

一正根一负根即一个根小于0,一个大于0()120x x <<

大致图象(

>a )

得出的结论

()00200b a f ?>???

-?? ()0

0200

b a f ?>???

->??>?? ()00

致图象(

得出的结论

()00200b a f ?>???

-

0200

b a f ?>???

->??f

合结论(不讨论

a

()00200b a a f ?>???-

??>?? ()0

0200

b a a f ?>???->?

??>?? ()00

布情况

两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即

21x k x <<

大致图象(

>a )

得出的结论

()020b k a f k ?>???

-?? ()0

20

b k a f k ?>???

->??>?? ()0

致图象(

得出的结论

()020b k a f k ?>???

-

20

b k a f k ?>???

->??k f

合结论(不讨论

a

()020b k a a f k ?>???-

??>?? ()0

20

b k a a f k ?>???->?

??>?? ()0

k

k

k

布情况

两根都在()n m ,内

两根有且仅有一根在()n m ,内

(图象有两种情况,只画了一种) 一根在()n m ,内,另一根在()

q p ,内,q p n m <<<

大致图象(

>a )

得出的结论

()()0002f m f n b m n

a ?>??

>??

>???<-

()()0

()()()()0

000f m f n f p f q ?>?

?

或()()()()0

0f m f n f p f q

? 大致图象(

得出的结论

()()0002f m f n b m n

a ?>??

()()0

()()()()0000

f

m f n f p f q ???>??

或()()()()0

0f m f n f p f q

综合结论(不讨论

a

——————

()()0

()()()()???

?

?<<0

0q f p f n f m f 根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满

足的条件是

(1)0a >时,()()00f m f n

f m f n >???>??

对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:

若()0f m =或()0f n =,则此时()()0f m f n

()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为

2

m

,由213m <<得22

3m <<即为所求;

方程有且只有一根,且这个根在区间()n m ,内,即0?=,此时由0?=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。如方程2

4260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。分析:①由()()300f f -

314

m -<<-;②由0?=即()2

164260m m -+=得出1m =-或3

2

m =

,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =?-,故3

2

m =不满足题意;综上分析,得出15314m -<<-或1m =-

根的分布练习题

例1、已知二次方程()()2

21210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。

解:由 ()()2100m f +

12

m -

<<即为所求的范围。 例2、已知方程()2

210x m x m -++=有两个不等正实根,求实数m 的取值范围。 解:由

()()0102200m f ?>??

-+?->??>??

g ? ()2

18010m m m m ?+->?>-?

?>? ? 322322

0m m m ?<->+??>??或?

03m <<-3m >+

例3、已知二次函数()()()222433y m x m x m =+-+++与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围。

解:由 ()()210m f +

22

m -<<即为所求的范围。

例4、已知二次方程()22340mx m x +-+=只有一个正根且这个根小于1,求实数m 的取值范围。 解:由题意有方程在区间()0,1上只有一个正根,则()()010f f

3

m <-

即为所求范围。 (注:本题对于可能出现的特殊情况方程有且只有一根且这个根在()0,1内,由0?=计算检验,均不复合题意,计

算量稍大)

例1、当关于x 的方程的根满足下列条件时,求实数a 的取值范围: (1)方程22

70x ax a -+-=的两个根一个大于2,另一个小于2;

(2)方程2

2

7(13)20x a x a a -++--=的一个根在区间(0,1)上,另一根在区间(1,2)上; (3)方程022

=++ax x 的两根都小于0; 变题:方程022

=++ax x 的两根都小于-1.

(4)方程2

2

(4)2530x a x a a -+-++=的两根都在区间[1,3]-上; (5)方程042

=+-ax x 在区间(-1,1)上有且只有一解;

例2、已知方程042

=+-mx x 在区间[-1,1]上有解,求实数m 的取值范围.

例3、已知函数f (x )1)3(2

+-+=x m mx 的图像与x 轴的交点至少有一个在原点右侧,求实数m 的取值范围.

检测反馈:

1.若二次函数2

()(1)5f x x a x =--+在区间1(,1)2

上是增函数,则(2)f 的取值范围是___________.

2.若α、β是关于x 的方程06k kx 2x 2

=++-的两个实根, 则22)1()1(-β+-α的最小值为 .

3.若关于x 的方程2

(2)210x m x m +-+-=只有一根在(0,1)内,则m ∈_ _.

4.对于关于x 的方程x 2+(2m -1)x+4 -2m=0 求满足下列条件的m 的取值范围:

(1)有两个负根 (2) 两个根都小于-1 (3)一个根大于2,一个根小于2 (4) 两个根都在(0 ,2)内 (5)一个根在(-2,0)内,另一个根在(1,3)内 (6)一个根小于2,一个根大于4 (7) 在(0, 2)内 有根 (8) 一个正根,一个负根且正根绝对值较大

5.已知函数1)(2

-+=x mx x f 的图像与x 轴的交点至少有一个在原点的右侧,求实数m 的取值范围。

2、二次函数在闭区间[]n m ,上的最大、最小值问题探讨

设()()002

>=++=a c bx ax x f ,则二次函数在闭区间[]n m ,上的最大、最小值有如下的分布情况:

a

b n m 2-

<< n a b m <-

<2即[]n m a

b ,2∈- n m a

b

<<-

2 图

最大、最小值

()()

()()

n f x f m f x f ==min max

()()(){}

()?

?

?

??-==a b f x f m f n f x f 2,max min max

()()

()()

m f x f n f x f ==min max

对于开口向下的情况,讨论类似。其实无论开口向上还是向下,都只有以下两种结论:

(1)若[]n m a b

,2∈-

,则()()()????????? ??-=n f a b f m f x f ,2,max max ,()()()?

????????

??-=n f a b f m f x f ,2,min min ; (2)若[]n m a

b

,2?-

,则()()(){}n f m f x f ,m ax max =,()()(){}n f m f x f ,m in min = 另外,当二次函数开口向上时,自变量的取值离开x 轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离开x 轴越远,则对应的函数值越小。

二次函数在闭区间上的最值练习

二次函数在闭区间上求最值,讨论的情况无非就是从三个方面入手:开口方向、对称轴以及闭区间,以下三个例题各代表一种情况。

例1、函数()()2

220f x ax ax b a =-++≠在[]2,3上有最大值5和最小值2,求,a b 的值。

解:对称轴[]012,3x =?,故函数()f x 在区间[]2,3上单调。 (1)当0a >时,函数()f x 在区间[]2,3上是增函数,故()()()()max min

32f x f f x f ?=??

=?? ? 32522a b b ++=??+=? ? 10a b =??=?;

(2)当0a <时,函数()f x 在区间[]2,3上是减函数,故()()()()max min

23f x f f x f ?=??=?? ? 25322b a b +=??++=?? 1

3a b =-??=?

例2、求函数()[]2

21,1,3f x x ax x =-+∈的最小值。

解:对称轴0x a =

(1)当1a <时,()min 122y f a ==-(2)当13a ≤≤时,()2

min 1y f a a ==-;(3)当3a >时,()min 3106y f a ==-

改:1.本题若修改为求函数的最大值,过程又如何?

解:(1)当2a <时,()()max 3106f x f a ==-; (2)当2a ≥时,()()max 122f x f a ==-。

2.本题若修改为求函数的最值,讨论又该怎样进行?

解:(1)当1a <时,()()max 3106f x f a ==-,()()min 122f x f a ==-;

(2)当12a ≤<时, ()()max 3106f x f a ==-,()()2min 1f x f a a ==-; (3)当23a ≤<时,()()max 122f x f a ==-,()()2min 1f x f a a ==-; (4)当3a ≥时, ()()max 122f x f a ==-,()()min 3106f x f a ==-。

例3、求函数2

43y x x =-+在区间[],1t t +上的最小值。

解:对称轴02x =

(1)当2t <即2t >时,()2min 43y f t t t ==-+;(2)当21t t ≤≤+即12t ≤≤时,()min 21y f ==-; (3)当21t >+即1t <时,()2min 12y f t t t =+=- 例4、讨论函数()21f x x x a =+-+的最小值。

解:()22

21,11,x a

x x a f x x x a x a

x x a ≥?+-+=+-+=?<-++?,这个函数是一个分段函数,由于上下两段上的对称轴分别为直线

12x =-,12x =,当12a <-,1122a -≤<,1

2

a ≥时原函数的图象分别如下(1)

,(2),(3)

因此,(1)当12a <-

时,()min 1324

f x f a ??=-=- ???; (2)当1122a -≤<时,()()2

min 1f x f a a ==+; (3)当12a ≥时,()min 1324

f x f a ??==+ ???

一元二次方程知识点总结与易错题

一元二次方程知识点总结 考点一、一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次 多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 考点二、一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(242 2≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c 。 4、因式分解法

因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 5、韦达定理 利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和等于-a b ,二根之积等于 a c ,也可以表示为x 1+x 2=-a b ,x 1 x 2=a c 。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。 考点三、一元二次方程根的判别式 根的判别式: 一元二次方程)0(02≠=++a c bx ax 中, ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=? I 当△>0时,一元二次方程有2个不相等的实数根; II 当△=0时,一元二次方程有2个相同的实数根; III 当△<0时,一元二次方程没有实数根。 考点四、一元二次方程根与系数的关系 如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,a c x x =21。也就是 说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。 考点五、一元二次方程的二次函数的关系 二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y 的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X 轴的交点。也就是该方程的解了 二次函数知识点 一、二次函数概念:

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

最新一元二次方程知识点总结

一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次 方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关 于未知数x 的二次多项式,等式右边是零,其中2 ax 叫做二 次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系 数;c 叫做常数项。 3.一元二次方程的解法 (1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平 方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平 方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)配方法:配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看 做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项 的系数的一半的平方,最后配成完全平方公式 (3)公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方 法。一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的 系数为b ,常数项的系数为c (4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单 易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的 是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形 式 4.一元二次方程根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元 二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“?” 来表示,即ac b 42 -=? I 当△>0时,一元二次方程有2个不相等的实数根;

一元二次方程根的情况试题练习题

一元二次方程根的情况练习题(含答案) 一.选择题 1.一元二次方程2x2﹣5x﹣2=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 2.一元二次方程3x2﹣4x+1=0的根的情况为() A.没有实数根 B.只有一个实数根 C.两个相等的实数根D.两个不相等的实数根 3.一元二次方程x2﹣7x﹣2=0的实数根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.不能确定 4.一元二次方程x2﹣4x+4=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.无实数根D.无法确定 5.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.无实数根D.有一根为0 6.一元二次方程2x2﹣3x+1=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 7.一元二次方程2x2﹣3x+1=0根的情况是()

C.只有一个实数根D.没有实数根 8.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为() A.没有实数根 B.有一个实数根 C.有两个不相等的实数根D.有两个相等的实数根 9.一元二次方程x2+2x+1=0的根的情况() A.有一个实数根B.有两个相等的实数根 C.有两个不相等的实数根D.没有实数根 10.一元二次方程x2﹣x﹣1=0的根的情况为() A.有两个不相等的实数根B.有两个相等的实数根 C.只有一个实数根D.没有实数根 11.一元二次方程x2﹣2x﹣1=0的根的情况为() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 12.一元二次方程4x2+1=4x的根的情况是() A.没有实数根 B.只有一个实数根 C.有两个相等的实数根D.有两个不相等的实数根 13.方程x2﹣2x+3=0的根的情况是() A.有两个相等的实数根B.只有一个实数根 C.没有实数根 D.有两个不相等的实数根 14.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()

一元二次方程应用题经典题型汇总含答案

z一元二次方程应用题经典题型汇总 一、增长率问题 例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率. 解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去). 答这两个月的平均增长率是10%. 说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n. 二、商品定价 例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少? 解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0, 解这个方程,得a1=25,a2=31. 因为21×(1+20%)=25.2,所以a2=31不合题意,舍去. 所以350-10a=350-10×25=100(件). 答需要进货100件,每件商品应定价25元. 说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税) 解设第一次存款时的年利率为x. 则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0. 解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去. 答第一次存款的年利率约是2.04%. 说明这里是按教育储蓄求解的,应注意不计利息税. 四、趣味问题 例4一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗? 解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m. 则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0. 解这个方程,得x1=-1.8(舍去),x2=1. 所以x+1.4+0.1=1+1.4+0.1=2.5. 答渠道的上口宽2.5m,渠深1m. 说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

一元二次方程根的分布教学设计

一元二次方程根的分布教学设计 大庆一中高中部孙庆夺 一、教学分析 (一)教学内容分析 本节课所讲的内容是高中数学必修一第三章第一节《函数与方程》之后的一个专题内容,是中学数学的重要内容之一。这段内容与一元二次不等式,二次函数等内容有着紧密的联系。它是在前面学习了函数与方程,二次方程,二次不等式基础上对函数与方程内容的深化和拓展,通过根的分布的不同情况,充分体现了由简单到复杂、特殊到一般的化归的数学思想。从而提升学生对数学知识的应用能力。通过学习一元二次方程根的分布,有助于学生进一步理解二次方程,二次函数,加深函数与方程思想,数形结合思想在数学学习中的应用的认识,同时也为以后数学的学习打下扎实的基础。 (二)教学对象分析 高中一年级的学生已经有了一定的观察识图能力及分析判断能力,有利用已有知识解决新问题的愿望。学生学习了函数与方程,二次方程,二次函数的知识, 已经具有用数学知识解决实际问题的能力。学生抽象逻辑思维很大程度上还属于经验型,需要感性经验的直接支持。通过学习,抽象逻辑思维逐步成熟,能够用理论作为指导来分析、综合各种事实材料,从而不断扩大自己的知识领域。 (三)教学环境分析 由于本节课涉及到根的分布情况较多,对老师的的作图提出了很高的要求。采用传统的板式教学,根本就无法向学生演示动态过程,很难满足学生的求知欲,达不到教学的最佳效果。多媒体网络教学,是现代高中数学教学全新的教育技术,

使传统的教学方式得到补充。在计算机的帮助下,利用制作好的几何画板课件,操作演示,感受根的分布的不同情况,加深学生的认识和理解,同时也符合学生认识事物从感性认识到理想认识的认知过程。 (四)教学手段 采用多媒体网络教学。《普通高中数学课程标准》指出:“现代信息技术的广泛应用真正对数学教学、数学学习方面产生深刻的影响,数学课程的设计应重视运用现代信息技术,大力开发并向学生提供更为丰富的学习资源,提倡实现信息技术与课程内容的有机结合。”本节课涉及到的图象信息较多,利用多媒体网络教学可以实现最大容量地向学生提供图象信息,并让学生整理归纳信息,增强学生的动手能力、思考能力和自主学习能力,也能实现数学课堂中学生的高参与度,从而实现资源、时间、效率的最优化。 (五)教学方式 自主式探究,学案式导学。自主探究,学案导学的教学方式,能够激发学生的学习兴趣、突出学生的主题地位,培养学生的数学应用意识、合作精神,这与《新课标》的要求是吻合的。 二、教学目标 1.知识与能力 加深对一元二次方程,二次函数图象与性质的认识;会利用函数知识,方法重新审视一元二次方程. 2.过程与方法 体验“观察-猜想-验证”探究问题的方法,领会由简单到复杂,由特殊到一般的化归思想,加深对函数与方程,数形结合思想的理解。

(完整版)中考数学一元二次方程应用题经典题型汇总

一元二次方程应用题经典题型汇总同学们知道,学习了一元二次方程的解法以后,就会经常遇到解决与一元二次方程有关的生活中的应用问题,即列一元二次方程解应用题,不少同学遇到这类问题总是左右为难,难以下笔,事实上,同学们只要能认真地阅读题目,分析题意,并能学会分解题目,各个击破,从而找到已知的条件和未知问题,必要时可以通过画图、列表等方法来帮助我们理顺已知与未知之间的关系,找到一个或几个相等的式子,从而列出方程求解,同时还要及时地检验答案的正确性并作答.现就列一元二次方程解应用题中遇到的常见的十大典 型题目,举例说明. 一、增长率问题 例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率. 解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去). 答这两个月的平均增长率是10%. 说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n. 二、商品定价 例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?

解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0, 解这个方程,得a1=25,a2=31. 因为21×(1+20%)=25.2,所以a2=31不合题意,舍去. 所以350-10a=350-10×25=100(件). 答需要进货100件,每件商品应定价25元. 说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点. 三、储蓄问题 例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税) 解设第一次存款时的年利率为x. 则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0. 解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去. 答第一次存款的年利率约是2.04%. 说明这里是按教育储蓄求解的,应注意不计利息税. 四、趣味问题 例4一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,

1元二次方程各种题型总结

一元二次方程各种题型总结 (一)一元二次方程的概念 1.一元二次方程的项与各项系数 把下列方程化为一元二次方程的一般形式,再写出二次项,一次项,常数项: (1)x x 3252 =- (2)015622 =--x x (3)5)2(7)1(3-+=+y y y (4)2 2)3(4)15(-=-a a (5)m m m m m m 57)2())((2-=-+-+ 2.应用一元二次方程的定义求待定系数或其它字母的值 (1)m 为何值时,关于x 的方程m x m x m m 4)3()2(2 =+--是一元二次方程? (2)若分式01 8 72=---x x x ,则=x . 3.由方程的根的定义求字母或代数式值 (1)关于x 的一元二次方程01)1(2 2=-++-a x x a 有一个根为0,则=a . (2)已知关于x 的一元二次方程)0(02 ≠=++a c bx ax 有一个根为1,一个根为1-,则=++c b a , =+-c b a . (3)已知c 为实数,并且关于x 的一元二次方程032=+-c x x 的一个根的相反数是方程0 32 =-+c x x 的一个根,求方程032 =-+c x x 的根及c 的值. (二)一元二次方程的解法 1.用直接开平方法解下列方程: (1)012552 =-x (2)2 169(3)289t -= (3)03612 =+y (4)0)31(2=-m (5) 2 2(31)85 n +=

2.用配方法解方程: (1)0522 =-+x x (2)0152 =++y y (3)3422 -=-y y 3.用公式法解下列方程: (1)2632 -=x x (2)p p 3232=+ (3)y y 1172 = (4)2592 -=n n (5)2(2)(21)3m m m +=--- 4.用因式分解法解下列方程: (1)094 12 =-x (2)04542=-+y y (3)2 81030m m +-= (42 0= (5)2 6t -=- (6)2 (5)2(5)1y y -=-- (7)2 2 2 (3)2(3)80t t t +-+-= 5.解法的灵活运用(用适当方法解下列方程): (1)128)72(22=-x (2)222)2(212m m m m -=+- (3)6(2)(2)(3)y y y y -=-+ (4)3 ) 13(2)23(332-+-=+y y y y y (5)2 2 81(25)144(3)m m -=-

九年级数学一元二次方程与实际问题题型归纳

实际问题与一元二次方程题型归纳总结 一、列一元二次方程解应用题的一般步骤:与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。 (1)审:审清题意,弄清已知量与未知量; (2)找:找出等量关系; (3)设:设未知数,有直接和间接两种设法,因题而异; (4)列:列出一元二次方程; (5)解:求出所列方程的解; (6)验:检验方程的解是否正确,是否符合题意; (7)答:作答。 二、典型题型 1. 数字问题 例1、有两个连续整数,它们的平方和为25,求这两个数。 例2、有一个两位数,它的个位上的数字与十位上的数字的和是6,如果把它的个位上的数字与十位上的数字调换位置,所得的两位数乘以原来的两位数所得的积就等于1008,求调换位置后得到的两位数。 练习:1、两个连续的整数的积是156,求这两个数。 2、一个两位数等于它个位上数字的平方,个位上的数字比十位上的数字大3,则这个两位数为() A. 25 B. 36 C. 25 或36 D. -25 或-36 2. 传播问题:公式:(a+x)n=M 其中a 为传染源(一般a=1),n 为传染轮数,M 为最后得病总人数 例3 、有一人患了流感,经过两轮传染后共有121 人患了流感,每轮传染中平均一个人传染了几个人? 8. 有一人患了流感,经过两轮传染后共有100 人患了流感,那么每轮传染中平均一个人传染的人数为() A. 8 B. 9 C. 10 D. 11

练习:有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感? 3. 相互问题(循环、握手、互赠礼品等)问题循环问题:又可分为单循环问题1 n(n-1),双循环问题n(n-1). 2 例4、(1)参加一次足球联赛的每两队之间都进行一场比赛,共比赛45 场比赛,共有多少个队参加比赛? (2)参加一次足球联赛的每两队之间都进行两次比赛,共比赛90 场比赛,共有多少个队参加比赛? 66,请问参加例5 、一次会上,每两个参加会议的人都相互握手一次,一共握 手会议的人数共有多少人? 例6 、生物兴趣小组的同学,将自己收集的标本向本组其他同学各赠送1 件,全组共互赠了182件,设全组有x 个同学,则根据题意列出的方程是() A. x x 1 182 B. x x 1 182 C. 2x x 1 182 D. x x 1 182 2 练习:1、甲A 联赛中的每两队之间都要进行两次比赛,若某一赛季共比赛110 场,则联赛中共有多少个队参加比赛? 2、参加一次聚会的每两人都握了一次手, 所有人共握手15 次, 有多少人参加聚会? 3、初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

(完整版)一元二次方程归纳总结

一元二次方程归纳总结 1、一元二次方程的一般式:2 0 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。 2、一元二次方程的解法 (1)直接开平方法 (也可以使用因式分解法) ①2 (0)x a a =≥ 解为:x = ②2 ()(0)x a b b +=≥ 解为:x a += ③2 ()(0)ax b c c +=≥ 解为:ax b += ④2 2() ()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+ (2)因式分解法:提公因式分,平方公式,平方差,十字相乘法 (3)公式法:一元二次方程2 0 (0)ax bx c a ++=≠,用配方法将其变形为:222 4()24b b ac x a a -+= ①当2 40b ac ?=-> 时,右端是正数.因此,方程有两个不相等的实根:1,22b x a -=② 当2 40b ac ?=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a =- ③ 当2 40b ac ?=-<时,右端是负数.因此,方程没有实根。 注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。 备注:公式法解方程的步骤: ①把方程化成一般形式:一元二次方程的一般式:2 0 (0)ax bx c a ++=≠,并确定出a 、b 、c ②求出2 4b ac ?=-,并判断方程解的情况。 ③代公式:1,2x = 3、一元二次方程的根与系数的关系 法1:一元二次方程2 0 (0)ax bx c a ++=≠的两个根为: 1222b b x x a a -+-== 所以:12b x x a += +=-, 221222()422(2)4b b b ac c x x a a a a a -+----?=?===

一元二次方程题型分类总结

一元二次方程题型分类总结 一、知识结构:一元二次方程考点类型一概念(1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。 (2)一般表达式: ⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。典型例题:例 1、下列方程中是关于x的一元二次方程的是()A B C D 变式:当k 时,关于x的方程是一元二次方程。例 2、方程是关于x的一元二次方程,则m的值为。针对练习:★ 1、方程的一次项系数是,常数项是。★ 2、若方程是关于x的一元一次方程,⑴求m的值;⑵写出关于x的一元一次方程。★★ 3、若方程是关于x的一元二次方程,则m的取值范围是。★★★ 4、若方程nxm+xn-2x2=0是一元二次方程,则下列不可能的是() A、m=n=2

B、m=3,n=1 C、n=2,m=1 D、m=n=1考点类型二方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。⑵应用:利用根的概念求代数式的值;典型例题:例 1、已知的值为2,则的值为。例 2、关于x的一元二次方程的一个根为0,则a的值为。例 3、已知关于x的一元二次方程的系数满足,则此方程必有一根为。例 4、已知是方程的两个根,是方程的两个根,则m的值为。针对练习:★ 1、已知方程的一根是2,则k为,另一根是。★ 2、已知关于x的方程的一个解与方程的解相同。⑴求k的值;⑵方程的另一个解。★ 3、已知m是方程的一个根,则代数式。★★ 4、已知是的根,则。★★ 5、方程的一个根为()A B1 C D ★★★ 6、若。考点类型三解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型 一、直接开方法:※※对于,等形式均适用直接开方法典型例题:例 1、解方程:

一元二次方程根的差别式

典型例题一 例 求证:如果关于x 的方程922+=+m x x 没有实数根,那么,关于y 的方程0522=+-+m my y 一定有两个不相等的实数根. 分析:由已知,可根据一元二次方程的根的判别式证之. 证明 设方程922+=+m x x 即0922=--+m x x 的根的判别式为1?,方程 0522=+-+m my y 的根的判别式为2?,则 . 36)4( 208)25(4. 440)9(42222221-+=-+=--=?+=++=?m m m m m m m ∵方程922+=+m x x 无实数根, 01+∴m ,即036)4(2>-+m . 故方程0522=+-+m my y 有两个不相等的实数根. 说明:上述证明中,判定02>?用到了01

分析:运用根的判别式判定根的情况时,要首先把方程变形为一元二次方程的一般形式,然后从求出的判别式的值来判定根的判别式的符号,尤其是当方程系数中含有字母时,一般利用配方法将“?”化成完全平方式或完全平方式加上(或减去)一个常数,再根据完全平方式的非负性判断“?”的符号,从而判定方程的根的情况,有时还需要对字母进行讨论.这是不解方程判别根的情况的关键. 解:(1)),1(4,2,1-=-==k c k b a )1(414)2(422-??--=-=?∴k k ac b )2(4)44(416 16422 2≥-=+-=+-=k k k k k ∴方程有两个实数根. (2)0≠a , ∴方程02=+bx ax 是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项,将常数项看作零. ∴2204b a b =?-=?. ∴不论b 取任何实数,2b 均为非负数, 02≥=?b 恒成立. ∴方程有两个实数根. (3)0≠a , ∴方程02=+c ax 是缺少一次项的不完全的一元二次方程,它的一次项系数0=b . ac a 40402-=?-=?, ∴需要讨论a 、c 的符号,才能确定?的符号. 当0=c 时,0=?,方程有两个相等的实数根; 当a 、c 异号时,0>?,方程有两个不相等的实数根; 当a 、c 同号时,0

一元二次方程的根的判别式练习题

一元二次方程的根的判别式 1、方程2x 2+3x -k=0根的判别式是 ;当k 时,方程有实根。 2、关于x 的方程kx 2+(2k+1)x -k+1=0的实根的情况是 。 3、方程x 2+2x+m=0有两个相等实数根,则m= 。 4、关于x 的方程(k 2+1)x 2-2kx+(k 2+4)=0的根的情况是 。 5、当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。 6、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。 7、关于x 的一元二次方程mx 2+(2m -1)x -2=0的根的判别式的值等于4,则m= 。 8、设方程(x -a)(x -b)-cx=0的两根是α、β,试求方程(x -α)(x -β)+cx=0的根。 9、不解方程,判断下列关于x 的方程根的情况: (1)(a+1)x 2-2a 2x+a 3=0(a>0) (2)(k 2+1)x 2-2kx+(k 2+4)=0 10、m 、n 为何值时,方程x 2+2(m+1)x+3m 2+4mn+4n 2+2=0有实根? 11、求证:关于x 的方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。 12、已知关于x 的方程(m 2-1)x 2+2(m+1)x+1=0,试问:m 为何实数值时,方程有实数根? 13、 已知关于x 的方程x 2-2x -m=0无实根(m 为实数),证明关于x 的方程x 2+2mx+1+2(m 2-1)(x 2+1)=0 也无实根。 14、已知:a>0,b>a+c,判断关于x 的方程ax 2+bx+c=0根的情况。 15、m 为何值时,方程2(m+1)x 2+4mx+2m -1=0。 (1)有两个不相等的实数根; (2)有两个实数根; (3)有两个相等的实数根; (4)无实数根。 16、当一元二次方程(2k -1)x 2-4x -6=0无实根时,k 应取何值? 17、已知:关于x 的方程x 2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。 18、若x 1、x 2是方程x 2+ p x+q=0的两个实根,且23x x x x 222121=++,25x 1x 12221=+求p 和q 的值。 19、设x 1、x 2是关于x 的方程x 2+px+q=0(q ≠0)的两个根,且x 2 1+3x 1x 2+x 2 2=1, 0)x 1(x )x 1(x 2211=+++,求p 和q 的值。 20、已知x 1、x 2是关于x 的方程4x 2-(3m -5)x -6m 2=0的两个实数根,且23x x 21=,求常数m 的值。 21、已知α、β是关于x 的方程x 2+px+q=0的两个不相等的实数根,且α3-α2β-αβ2+ β3=0,求证:p=0,q<0 22、已知方程(x -1)(x -2)=m 2(m 为已知实数,且m ≠0),不解方程证明: (1)这个方程有两个不相等的实数根;

一元二次方程应用题总结归类及典型例题库

一元二次方程应用题总结分类及经典例题 1、列一元二次方程解应用题的特点 列一元二次方程解应用题是列一元一次方程解应用题的继续和发展,从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等. 2、列一元二次方程解应用题的一般步骤 和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤是: “审、设、列、解、答”. (1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.这一步是解决问 题的基础; (2)“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的,但由于对列方程有利,因此间接设元也十分重要.恰当灵活设元直接影响着列方程与解方程的难易; (3)“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相 等关系列出含有未知数的等式,即方程.找出相等关系列方程是解决问题的关键; (4)“解”就是求出所列方程的解; (5)“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,如线段的长度 不能为负数,降低率不能大于100%等等.因此,解出方程的根后,一定要进行检验. 3、数与数字的关系 两位数=(十位数字)×10+个位数字 三位数=(百位数字)×100+(十位数字)×10+个位数字 4、翻一番 翻一番即表示为原量的2倍,翻两番即表示为原量的4倍.

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) a

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧 12,x m x n <>,(图形分别如下)需满足的条件是 (1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 若()0f m =或()0f n =,则此时()()0f m f n

一元二次方程知识点归纳与复习

一元二次方程专题 知识点1:一元二次方程的概念及一般形式 1、方程(1)3x-1=0;(2) 2310x -=;(3) 2130x x + =;(4) 221(1)(2)x x x -=--; (5) 2(52)(37)15x x x +-=;(6) 232x y x +=.其中一元二次方程的个数为 ( ) A 、1个 B 、2个 C 、3个 D 、4个 2、将下列方程化为一元二次方程的一般形式,并指出方程的二次项系数、一次项系数和常数项。 (1)2(5)3x x x --=- (2)(21)(5)6x x x -+= 知识点2:用直接开平方法解一元二次方程 3、用直接看平方法解一元二次方程: (1)2169x = (2)2450x -= (3)24(21)360x --= (4)(21)40x +-= 知识点3:用配方法解一元二次方程

4、用配方法解方程2250x x --=时,原方程变形为 ( ) A 、2(1)6x += B 、2(1)6x -= C 、2(2)9x += D 、2(2)9x -= 5、用配方法解一元二次方程: (1)22410x x -+= (2)2213x x += 知识点4:用公式法解一元二次方程 6、用公式法解一元二次方程: (1)2410x x +-= (2)2441018x x x ++=- 知识点5:根的判别式(24b ac -)的应用 7、若关于x 的一元二次方程2210mx x --=有两个不相等的实数根,则实数m 的取值范围是 ( ) A 、m>-1 B 、m>-1且m ≠0 C 、m<1 D 、m<1且m ≠0 8、已知a 、b 、c 分别是三角形ABC 的三边,其中a=1,c=4,且关于x 的方程240x x b -+=有两个相等的实数根,试判断三角形ABC 的形状。 4、 已知关于x 的一元二次方程2223840x mx m m --+-=. (1)求证:原方程恒有两个实数根; (2)若方程的两个实数根一个小于5,另一个大于2,求m 的取值范围. 知识点6:用分解因式法解一元二次方程 9、用分解因式法解一元二次方程 (1)230x x += (2)2(3)4(3)0x x x -+-=

相关文档
最新文档