INVERTER工作原理讲解

INVERTER工作原理讲解
INVERTER工作原理讲解

显卡供电电路和工作原理

显卡供电电路和工作原理 1、从PCI bus进入GPU将CPU送来的数据送到GPU里面进行处理。 2、从GPU进入显存将芯片处理完的数据送到显存。 3、从显存进入DAC由显存读取出数据再送到RAMDAC(随机读写存储数模转换器),RAMDAC的作用是将数字信号转换成模拟信号。 4、从DAC进入显示器将转换完的模拟信号送到显示屏。下面扯显卡的供电电路。绝大多数显卡是由主板上的AGP/pcie插槽供电的,没有电池来供应所需的工作电能,而是由显卡上的金手指通过主板的插槽和电源的+12V6pin接口等来获得所需的电量。原本打算把AGP插槽的供电定义发上来,但考虑到已经不合实际情况,故作罢。PCIE插槽的定义:靠近CPU的那一组触点为A组,对面为B组,由主板的I/O芯片往南桥方向数,每一边各有82个触点。+12V供电:A2,A3,B1,B2,B3 + 3、3V:A9,A10,B8+ 3、3Vaux:B10PCIE显卡没有+5V供电。显卡的供电无论是通过主板进入,还会是直接外接电源进入,都不可能正好符合显卡各种芯片正常工作的电压值。超过频的都知道,GPU的核心供电是 0、9~ 1、6V,显存供电是

1、5~ 3、3V,接口部分有的需要 3、3v,有的需要+5V,各不相同,于是这就涉及到显卡上直流电源模块设计的问题。直流电源模块的基本工作原理:无论输入端的电压怎么变化,它都能输出一个相对稳定的预先设计的较为平滑的电压值,并可以带动一定的负载。显卡上的直流电源供电模块主要有三大类:三端稳压;场效应管线性降压和开关电源稳压方式。他们的工作模式都是采取降压工作模式,即输出电压总是低于输入电压。 1、三端稳压供电方式这是显卡中相对较简单的一种供电方式,采用的集成电路主要有1117,7805等。这种方式虽然较简单,但是提供的电流很小。一般DAC电路和接口部分的电路供电采用这种方式。 下载 ( 94、46 KB)xx-11-2316:55图上这玩意儿就是7805,1脚输入,2脚接地,3脚输出的电压即为5V。箭头方向从右往左分别为1,2,3脚。 2、场效应管线性降压方式一般低端显卡的显存供电采用MOS 管线性降压供电方式。N沟道MOS管特性:G极电压越高,DS导通程度越强。不同MOS管的具体引脚数据可以通过型号查阅相关PDF 得到。下载 (

显卡结构及工作原理详细解读

什么是显卡? 显卡的工作非常复杂,但其原理和部件很容易理解。在本文中,我们先来了解显卡的基本部件和它们的作用。此外,我们还将考察那些共同发挥作用以使显卡能够快速、高效工作的因素。 显示卡(videocard)是系统必备的装置,它负责将CPU送来的影像资料(data)处理成显示器(monitor)可以了解的格式,再送到显示屏(screen)上形成影像。它是我们从电脑获取资讯最重要的管道。因此显示卡及显示器是电脑最重要的部份之一。我们在监视器上看到的图像是由很多个小点组成的,这些小点称为“像素”。在最常用的分辨率设置下,屏幕显示一百多万个像素,电脑必须决定如何处理每个像素,以便生成图像。为此,它需要一位“翻译”,负责从CPU获得二进制数据,然后将这些数据转换成人眼可以看到的图像。除非电脑的主板内置了图形功能,否则这一转换是在显卡上进行的。我们都知道,计算机是二进制的,也就是0和1,但是总不见的直接在显示器上输出0和1,所以就有了显卡,将这些0和1转换成图像显示出来。 显卡的基本原理

显卡的主要部件是:主板连接设备、监视器连接设备、处理器和内存。不同显卡的工作原理基本相同CPU与软件应用程序协同工作,以便将有关图像的信息发送到显卡。显卡决定如何使用屏幕上的像素来生成图像。之后,它通过线缆将这些信息发送到监视器。 显卡的演变自从IBM于1981年推出第一块显卡以来,显卡已经有了很大改进。第一块显卡称为单色显示适配器(MDA),只能在黑色屏幕上显示绿色或白色文本。而现在,新型显卡的最低标准是视频图形阵列(VGA),它能显示256种颜色。通过像量子扩展图矩阵(QuantumExtendedGraphicsArray,QXGA)这样的高性能标准,显卡可以在最高达2040x1536像素的分辨率下显示数百万种颜色。 根据二进制数据生成图像是一个很费力的过程。为了生成三维图像,显卡首先要用直线创建一个线框。然后,它对图像进行光栅化处理(填充剩余的像素)。此外,显卡还需添加明暗光线、纹理和颜色。对于快节奏的游戏,电脑每秒钟必须执行此过程约60次。如果没有显卡来执行必要的计算,则电脑将无法承担如此大的工作负荷。 显卡工作的四个主要部件 显卡在完成工作的时候主要靠四个部件协调来完成工作,主板连接设备,用于传输数据和供电,处理器用于决定如何处理屏幕上的每个像素,内存用于存放有关每个像素的信息以及暂时存储已完成的图像,监视器连接设备便于我们查看最终结果。 处理器和内存 像主板一样,显卡也是装有处理器和RAM的印刷电路板。此外,它还具有输入/输出系统(BIOS)芯片,该芯片用于存储显卡的设置以及在启动时对内存、输入和输出执行诊断。显卡的处理器称为图形处理单元(GPU),它与电脑的CPU类似。但是,GPU是专为执行复杂的数学和几何计算而设计的,这些计算是图形渲染所必需的。某些最快速的GPU所具有的晶体管数甚至超过了普通CPU。GPU会产生大量热量,所以它的上方通常安装有散热器或风扇。

显卡教材每章测试题

一.显卡发展史测试试题 学校班级得分 一、填空题(30分,每空1分)。 1.显卡(Video Card,Graphics Card)又叫显示卡,显示适配卡或 者叫显示接口卡,是PC机上最基本也是最重要的设备之一,它负责把电脑处理好的信号通过加工后输出到显示器上展现给终端用户。 2.显卡总线的发展经历了从ISA总线接口→PCI总线接口→AGP总 线接口→PCI E总线接口的四个阶段。 3.ISA总线其实是8/16bit的系统总线,最大传输速率仅为8MB/S, 但它允许多个CPU共享系统资源,由于兼容性好,它在上个世纪80年代是最广泛被采用的系统总线。 4.1992年Intel在发布486处理器的时候,也同时提出了32 biT的 PCI总线。 5.AGP 1.0规中1X的模式带宽是266MB/S,理论上是PCI总线的两 倍。2X模式下传输速率达到533MB/S。AGP 2.0规下,4X模式传输速率达到1064MB/S,到了AGP 3.0规的时候,即8X的模式传输速度已达了2.1GB/S。 6.显卡Chipset的发展比较有影响的是SIS、S3﹑ATI、和NVIDIA 等。 7.史上十大成功的民用系列显卡是Trident 9000、S3 765、S3 765、 nVIDIA Riva TNT系列、Matrox G400、nVIDIA GeForce256、

ATi Radeon 8500、nVIDIA GeForce4 Ti、ATi Radeon 9800系列、nVIDIA GeForce 6600系列。 8.Radeon 7500是ATI公司生产的芯片,ATi异军突起:携Radeon 7500叫嚣nVIDIA。 9.NVIDIA公司的显卡芯片系列有TNT 、TNT2、Geforce系列的 显卡。 10.SIS科技研发生产的显示芯片主要有:SIS 300、SIS 315、SIS 350、 Xabre 400、Xabre 600、SIS 630 等芯片生产。 11.PCI E总线即PCI Express总线,是第三代输入/输出总线,是Intel 在2001年的春季IDF大会上正式公布的,在显示卡的应用方面PCI Express 总线插槽是以X16的模式出现的。 12.ISA总线接口的显卡和PCI总线接口的显示卡现在已经淘汰了, 目前市场上主要的显卡是AGP总线接口的显卡和PCI E总线接口的显卡。 13.在显卡芯片市场上,ATI与NVIDIA公司的竞争十分激烈,他们 相当的芯片是,在低端竞争中是GeForce 6200系列Vs X300系列,中端竞争中GeForce 6600系列VSX700系列,高端竞争中GeForce 6800系列与X800系列。 14.电脑的周边板卡和设备主要有显卡、声卡、MODEM卡、硬盘、 显示器等等。

三极管开关电路工作原理解析

三极管开关电路工作原理解析 图一所示是NPN三极管的共射极电路,图二所示是它的特性曲线图,图中它有3 种工作区域:截止区(C utoff Region)、线性区(Active Region) 、饱和区(Saturation Region)。三极管是以B 极电流IB 作为输入,操控整个三极管的工作状态。若三极管是在截止区,IB 趋近于0 (VBE 亦趋近于0),C 极与E 极间约呈断路状态,IC = 0,VCE = VCC。若三极管是在线性区,B-E 接面为顺向偏压,B-C 接面为逆向偏压,I B 的值适中(VBE = 0.7 V),I C =h F E I B 呈比例放大,Vce = Vcc -Rc I c = V cc - Rc hFE I B可被IB 操控。若三极管在饱和区,IB 很大,VBE = 0.8 V,VCE = 0.2 V,VBC = 0.6 V,B-C 与B -E 两接面均为正向偏压,C-E间等同于一个带有0.2 V 电位落差的通路,可得I c=( Vcc - 0.2 )/ Rc ,I c 与IB 无关了,因此时的IB大过线性放大区的IB 值,Ic

图3、截止态如同断路线图图4、饱和态如同通路 实验:三极管的开关作用 简单三极管开关:电路如图5,电阻RC是LED限流用电阻,以防止电压过高烧坏LED(发光二极管),将输入信号VIN 从0 调到最大(等分为约20 个间隔),观察并记录对的VOUT 以及LED 的亮度。当三极管开关为断路时,VOUT =VCC =12 V,LED 不亮。当三极管开关通路时,VOUT = 0.2V ,LED 会亮。改良三极管开关:因为三极管由截止区过度到饱和区需经过线性区,开关的效果不会有明确的界线。为使三极管开关的效果明确,可串接两三极管,电路如图六。同样将输入信号VIN 从0 调到最大(等分为约20 个间隔),观察并记录对应的VOUT 以及LED 的亮度。

A卡-N卡 GPU架构解析

SIMD架构示意图 一个矢量就是N个标量,一般来说绝大多数图形指令中N=4。所以,GPU的ALU指令发射端只有一个,但却可以同时运算4个通道的数据,这就是SIMD(Single Instruction Multiple Data,单指令多数据流)架构。 ● “管线”弊端越发明显,引入混合型设计 显然,SIMD架构能够有效提升GPU的矢量处理性能,由于顶点和像素的绝大部分运算都是4D Vector,它只需要一个指令端口就能在单周期内完成4倍运算量,效率达到100%。但是4D SIMD架构一旦遇到1D标量指令时,效率就会下降到原来的1/4,3/4的模块被完全浪费。为了缓解这个问题,ATI和NVIDIA在进入DX9时代后相继采用混合型设计,比如R300就采用了3D+1D的架构,允许Co-issue操作(矢量指令和标量指令可以并行执行),NV40以后的GPU支持2D+2D和3D+1D两种模式,虽然很大程度上缓解了标量指令执行效率低下的问题,但依然无法最大限度的发挥ALU运算能力,尤其是一旦遇上分支预测的情况,SIMD在矢量处理方面高效能的优势将会被损失殆尽。

G8X家族核心架构图 如此一来,对于依然占据主流的4D矢量操作来说,G80需要让1个流处理器在4个周期内才能完成,或者是调动4个流处理器在1个周期内完成,那么G80的执行效率岂不是很低?没错,所以NVIDIA大幅提升了流处理器工作频率(两倍于核心频率),扩充了流处理器的规模(128个),这样G80的128个标量流处理器的运算能力就基本相当于传统的64个(128×2/4)4D矢量ALU。 G8X/G9X系列:8个流处理器为一组,2x8=16个为一簇

认识显卡!浅析显卡及显卡工作原理

纵观计算机诞生到如今所度过的60年时间我们不难发现计算机的发展速度是非常惊人的,很多网友会发现自己在一两年之前买的电脑到此时可能已经到了面临过时的境地。伴随着计算机高速发展所带给我们的是计算机硬件制造工艺地不断提升、性能的突飞猛进和更加节能环保的设计。但是不论计算机技术如何发展都离不开构成计算机所必须的几大硬件,就拿显卡来说,经过多年的发展显卡已经越来越受到人们的关注,而直接关系到显卡性能的显示核心GPU也第一次到达和CPU同样重要的位置。目前AMD和NV分别发布了自己最高端的HD 4870 X2和GTX295显卡,这两张卡虽然代表了目前显卡的最高水平,但是无论它们如何高端,其工作原理和发展基础都是在显卡的基本原理上发展而来的。显卡技术虽然在不断地发展,但是了解显卡的基本知识与工作原理相信无论是对于我们对显卡的清晰认识还是对今后购买显卡都有一定的帮助,为此我们PConline就为大家准备了一篇有关显卡与显卡工作原理有关的文章供大家参考。 什么是显卡? 显卡的工作非常复杂,但其原理和部件很容易理解。在本文中,我们先来了解显卡的基本部件和它们的作用。此外,我们还将考察那些共同发挥作用以使显卡能够快速、高效工作的因素。

显示卡(videocard)是系统必备的装置,它负责将 CPU 送来的影像资料(data)处理成显示器(monitor) 可以了解的格式,再送到显示屏 (screen) 上形成影像。它是我们从电脑获取资讯最重要的管道。因此显示卡及显示器是电脑最重要的部份之一。我们在监视器上看到的图像是由很多个小点组成的,这些小点称为“像素”。在最常用的分辨率设置下,屏幕显示一百多万个像素,电脑必须决定如何处理每个像素,以便生成图像。为此,它需要一位“翻译”,负责从CPU获得二进制数据,然后将这些数据转换成人眼可以看到的图像。除非电脑的主板内置了图形功能,否则这一转换是在显卡上进行的。我们都知道,计算机是二进制的,也就是0和1,但是总不见的直接在显示器上输出0和1,所以就有了显卡,将这些0和1转换成图像显示出来。 显卡的基本原理

显卡做工详细讲解

显卡做工详细讲解 (2005-08-22 09:43:19) 如果仅仅还是10年前,因为价格的理由你去选择杂牌配件,那还是非常值得理解的,毕竟那时电脑配件价格昂贵,组装一台电脑的价格动辄万元。名牌和杂牌配件的差距会达数百元之多,在提前享受高科技产物,还是继续攒钱眼巴巴的等待面前,很多消费者选择了前者,因为超前的享受可以换来更早的接触与学习电脑的机会。 更多DIY的目光已经转向品质以及外形设计 时间飞转到了现在,电脑早就不是什么新鲜事物了,很多用户已经购买了第二、第三台电脑,笔记本、准系统也纷纷进入家庭。虽然电脑价格相比以前有了大幅度的下降,但是对于普通用户来说他们的消费水平有限,购买电脑仍算是一笔大投入,所以DIY组装是很多用户的选择。 同使用一种芯片,做工不同的显卡差价巨大 虽然仍然是选择DIY组装电脑,但用户的消费理念较以前已有很大的转变,注重品牌和品质的消费者越来越多,毕竟一分钱一分货,品牌叫得响、品质有保证的产品成为很多人的首选。在DIY市场上显卡仍然是最为火热的焦点,今天我们的话题还是聚焦在显卡上。

显卡是在所有配件中公认受DIY的关注度最高,目前市场上的各种显卡品牌和型号琳琅满目数不胜数,而显卡产品不像其他配件,能从外观简单的一眼看穿是优是劣,这一点可以说令很多消费者在挑选显卡时无所适从。 显卡是DIY配件中最活跃分子,淡及做工引起的争论也最大 特别是对于采用同一芯片的不同品牌和型号的显卡,有时有很大的差价。用户想知道如果多花钱到底能买到了什么?便宜显卡是否有偷工减料?其实剔除用户能直接区分的品牌与服务的因素,剩下的就是显卡的做工与用料上的差别。 下文我们就将详细的来看一下显卡做工的方方面面,另外我们通过大量的图片展示让用户明白哪些是低品质的缩水产品,而哪些又是品质优良的产品,并且最终让消费者掌握一定的技巧,可以在购买的时候快速辨别一款做工和用料出色的显卡。 偷工减料的事情最容易发生在拿一类的显卡上呢?答案不是单卡利润丰厚的高端显卡,而是销售量很大的低端显卡。 ○ 偷工减料,低端显卡严重 高端显卡因为生产要求比较高,所以基本上只有极少极具实力的大厂才有能力对高端显卡进行少量的修改,比如PCB电路等方面,大多数中下游的厂商根本不会轻易随便改动。相反低端显卡的电气性能要求不高,可以改动的余地则比较大。

三极管工作原理介绍

三极管工作原理介绍,NPN和PNP型三极 管的原理图与各个引脚介绍 三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种电流控制电流的半导体器件·其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。 PNP与NPN两种三极管各引脚的表示: 三极管引脚介绍

NPN三极管原理图: PNP三极管原理图:

常见的三极管为9012、s8550、9013、s8050.单片机应用电路中三极管主要的作用就是开关作用。 其中9012与8550为pnp型三极管,可以通用。 其中9013与8050为npn型三极管,可以通用。 区别引脚:三极管向着自己,引脚从左到右分别为ebc,原理图中有箭头的一端为e,与电阻相连的为b,另一个为c。箭头向里指为PNP(9012或8550),箭头向外指为NPN(9013或8050)。 如何辨别三极管类型,并辨别出e(发射极)、b(基极)、c (集电极)三个电极 ①用指针式万用表判断基极b 和三极管的类型:将万用表欧姆挡置“R &TI mes; 100”或“R&TI mes;lk”处,先假设三极管的某极为“基极”,并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大(约为几千欧至几十千欧),则假设的基极是正确的,且被

显卡工作原理

显卡工作原理 显卡工作原理 首先我们应该了解一下显卡的简单工作原理:首先,由CPU 送来的数据会 通过AGP 或PCI-E 总线,进入显卡的图形芯片(即我们常说的GPU 或VPU)里 进行处理。当芯片处理完后,相关数据会被运送到显存里暂时储存。然后数字 图像数据会被送入RA 骂死我吧AC(Random Access Memory Digital Analog Converter),即随机存储数字模拟转换器,转换成计算机显示需要的模拟数据。 最后RA 骂死我吧AC 再将转换完的类比数据送到显示器成为我们所看到的图 像。在该过程中,图形芯片对数据处理的快慢以及显存的数据传输带宽都会对 显卡性能有明显影响。 技术参数和架构解析 一、核心架构: 我们经常会在显卡文章中看到8 乘以1 架构、4 乘以2 架构这样的字样,它 们代表了什么意思呢?8 乘以1 架构代表显卡的图形核心具有8 条像素渲染管线,每条管线具有1 个纹理贴图单元;而4 乘以2 架构则是指显卡图形核心具有4 条 像素渲染管线,每条管线具有2 个纹理贴图单元。也就是说在一个时钟周期内,8 乘以1 架构可以完成8 个像素渲染和8 个纹理贴图;而4 乘以2 架构可以完成 4 个像素渲染和8 个纹理贴图。从实际游戏效果来看,这两者在相同工作频率 下性能非常相近,所以常被放在一起讨论。 举例来说,nVIDIA 在发布GeForce FX 5800 Ultra 的时候,对于其体系架构就没有给出详尽说明。后来人们发现官方文档中提到的每个周期处理8 个像素 的说法,只是指的Z/stencil 像素,其核心架构可以看作是GeForce4 Ti 系列4 乘以2 架构的改进版本,其后发布的GeForce FX 5900 系列也是如此。ATi 的

详解经典三极管基本放大电路

详解经典三极管基本放大电路 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP 两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 图1:三极管基本放大电路 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

NVIDIAOptimus智能显卡切换技术全解析

NVIDIA Optimus智能显卡切换技术全解析 紫雷《微型计算机》 2010年3月下期2010-04-09 这种显卡切换技术无需手动开关和重启电脑; 它修正了可切换显卡技术之前存在的诸多问题; 它既节能,又能保证性能; 它就是NVIDIA新近推出的智能显卡切换技术—Optimus。 解析—Optimus是什么 Optimus技术是NVIDIA新推出的一项智能化多显卡切换技术,它能够根据程序的运行状况与图形任务负载,灵活地在集成显卡与独立显卡之间切换。其主要的特色在于: 第一,无需手动干预,显卡的切换完全根据实际程序运行状况自动进行,当你浏览网页时用集显,玩游戏时则自动切换到独显;

第二,切换过程无缝实现,无需退出程序,无需重启笔记本电脑;第三,实现了性能与节能的双效目标。 可切换显卡技术的目的不言而喻——自然是为了在性能与节能之间做到最好的平衡。当今的笔记本电脑应用多元化需求的趋势已经日益明显,消费者不但要求笔记本电脑具有相当的电池续航时间,以便外出携带使用,而且还要求笔记本电脑具有不错的性能,以应付3 D游戏、视频压缩以及渐入佳境的高清视频播放需求。性能与节能,一直以来都是笔记本电脑产品上几乎不可调和的对立面,各大厂商为此也是花招百出。而显卡的可切换技术的出现,也正是消费者对笔记本电脑性能与节能双向要求的最直接体现——在某些时候,需要使用独立显卡运行3D游戏和高清视频播放等,而更多时候,只需要集成显卡来进行网页浏览、办公等简单任务,以达到延长电池使用时间的目的。 Optimus并不是首个出现的显卡可切换技术,为什么它却受到了很大的关注呢?或许通过回顾笔记本电脑可切换显卡技术的发展历程,我们能从中知晓原因。 显卡冷启动切换 大约在2006年左右,伴随SONY VAIO SZ的发布,带来了一项吸引眼球的技术——集显与独显的切换技术,本刊当时也在第一时间对这款产品进行了评测。读者一定还记得VAIO SZ C面上的“Stamina”(电池时间)与“Speed”(性能)拨动按钮吧。拨到“Stamina”可获得更长的电池续航时间(使用集显),而在“Speed”模式下则可获得更高的性能(独显)。不过,这一技术在当时也被一些人看作是噱头——要切换显卡,必须得重启电脑方可完成。 哪为什么SZ需要重启?因为在操作系统下切换按钮之后,系统与显卡驱动程序并未接收到这一指令。这种纯硬件层面的切换直接由系统BIOS负责管理,因此必须要重启电脑之后,BIOS才能正确识别你想用的是独显,还是集显。操作上的麻烦程度也因此而凸显。 不过,通过SZ的面世,我们看到了厂商为解决性能与节能这两个矛盾而做出的努力,也算是显卡可切换技术第一次有益的尝试。 显卡热切换 2007年,NVIDIA带来了Switchable Graphics(Hybrid Power)技术,这算显卡可切换技术的第二次有益尝试,相比之前的冷启动切换时代,有了长足的进步。

GPU工作原理简介

GPU工作原理简介 计算机0601 沈凯杰 【引言】 在GPU出现以前,显卡和CPU的关系有点像“主仆”,简单地说这时的显卡就是画笔,根据各种有CPU发出的指令和数据进行着色,材质的填充、渲染、输出等。 较早的娱乐用的3D显卡又称“3D加速卡”,由于大部分坐标处理的工作及光影特效需要由CPU亲自处理,占用了CPU太多的运算时间,从而造成整体画面不能非常流畅地表现出来。 例如,渲染一个复杂的三维场景,需要在一秒内处理几千万个三角形顶点和光栅化几十亿的像素。早期的3D游戏,显卡只是为屏幕上显示像素提供一个缓存,所有的图形处理都是由CPU单独完成。图形渲染适合并行处理,擅长于执行串行工作的CPU实际上难以胜任这项任务。所以,那时在PC上实时生成的三维图像都很粗糙。不过在某种意义上,当时的图形绘制倒是完全可编程的,只是由CPU来担纲此项重任,速度上实在是达不到要求。 随着时间的推移,CPU进行各种光影运算的速度变得越来越无法满足游戏开发商的要求,更多多边形以及特效的应用榨干了几乎所有的CPU性能,矛盾产生了······ 【目录】 第一章.GPU的诞生 3.1 GPU中数据的处理流程 3.2 CPU与GPU的数据处理关系 3.3 传统GPU指令的执行 3.4 GPU的多线程及并行计算 3.4.1 多线程机制 3.4.2 并行计算 第二章.GPU的结构 第三章.GPU的工作原理 第四章.GPU未来的展望 4.1 GPU能否包办一切 4.2 GPU时代即将到来 【正文】 第一章.GPU的诞生 NVIDIA公司在1999年8月31日发布GeForce 256图形处理芯片时首先提出GPU的概念。 GPU之所以被称为图形处理器,最主要的原因是因为它可以进行几乎全部与计算机图形有关的数据运算,而这些在过去是CPU的专利。 目前,计算机图形学正处于前所未有的发展时期。近年来,GPU技术以令人惊异的速度在发展。渲染速率每6个月就翻一番。性能自99年,5年来翻番了10次,也就是(2的10次方比2)提高了上千倍!与此同时,不仅性能得到了提高,计算质量和图形编程的灵活性也逐渐得以改善。 以前,PC和计算机工作站只有图形加速器,没有图形处理器(GPU),而图形加速器只能简单的加速图形渲染。而GPU取代了图形加速器之后,我们就应该摒弃图形加速器的旧观念。 第二章.GPU的结构

PNP三极管结构及工作原理解析

PNP三极管工作原理解密 对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量,但三极管厉害的地方在于:它可以通过小电流控制大电流。放大的原理就在于:通过小的交流输入,控制大的静态直流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。 如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。 饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。 在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。 而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。 晶体三极管是一种电流控制元件。发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结。晶体三极管按材料分常见的有两种:锗管和硅管。而每一种又有NPN 和PNP两种结构形式,使用最多的是硅NPN和PNP两种,两者除了电源极性不同外,其工作原理都是相同的,三极管工作在放大区时,三极管发射结处于正偏而集电结处于反偏,集电极电流Ic受基极电流Ib的控 制,Ic的变化量与Ib变化量之比称作三极管的交流电流放大倍数β(β=ΔIc/ΔIb,Δ表示变化量。)在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。 要判断三极管的工作状态必须了解三极管的输出特性曲线,输出特性曲线表示Ic随Uce的变化关系(以Ib为参数),从输出特性曲线可见,它分为三个区域:截止区、放大区和饱和区。 根据三极管发射结和集电结偏置情况,可以判别其工作状态: 对于NPN三极管,当Ube≤0时,三极管发射结处于反偏工作,则Ib≈0,三极管工作在截止区;当晶体三极管发射结处于正偏而集电结处于反偏工作时,三极管工作在放大区,Ic随Ib近似作

关于显卡的名词解释

AGP AGP英文全称是Accelerate Graphical Port,这是Intel公司开发的一项视频接口技术标准。其主要目的是为了解决低带宽的PCI总线对显卡性能的制约。它将显卡与系统主内存连接起来,这样就在CPU和图形处理器之间直接开辟了更快的通道,大大提高了显卡的工作效率。AGP接口技术经历了AGP1.0(AGP1X/2X)、AGP2.0(AGP4X)、AGP3.0(AGP8X)的发展过程。目前最新的AGP8X接口,其理论带宽为2.1Gbit/秒。 1、显卡 又被称为:视频卡、视频适配器、图形卡、图形适配器和显示适配器等等。它是主机与显示器之间连接的“桥梁”,作用是控制电脑的图形输出,负责将CPU送来的的影象数据处理成显示器认识的格式,再送到显示器形成图象。显卡主要由显示芯片(即图形处理芯片Graphic Processing Unit)、显存、数模转换器(RAMDAC)、VGA BIOS、各方面接口等几部分组成。下面会分别介绍到各部分。 2、显示芯片 图形处理芯片,也就是我们常说的GPU(Graphic Processing Unit即图形处理单元)。它是显卡的“大脑”,负责了绝大部分的计算工作,在整个显卡中,GPU负责处理由电脑发来的数据,最终将产生的结果显示在显示器上。显卡所支持的各种3D特效由GPU的性能决定,GPU也就相当于CPU在电脑中的作用,一块显卡采用何种显示芯片便大致决定了该显卡的档次和基本性能,它同时也是2D显示卡和3D显示卡区分的依据。2D显示芯片在处理3D图像和特效时主要依赖CPU的处理能力,这称为“软加速”。而3D显示芯片是将三维图像和特效处理功能集中在显示芯片内,也即所谓的“硬件加速”功能。现在市场上的显卡大多采用nVIDIA和ATI两家公司的图形处理芯片,诸如:NVIDIA FX5200、FX5700、RADEON 9800等等就是显卡图形处理芯片的名称。不过,虽然显示芯片决定了显卡的档次和基本性能,但只有配备合适的显存才能使显卡性能完全发挥出来。 3、显存 全称显示内存,与主板上的内存功能基本一样,显存分为帧缓存和材质缓存,通常它是用来存储显示芯片(组)所处理的数据信息及材质信息。当显示芯片处理完数据后会将数据输送到显存中,然后RAMDAC从显存中读取数据,并将数字信号转换为模拟信号,最后输出到显示屏。所以显存的速度以及带宽直接影响着一块显卡的速度,即使你的显卡图形芯片很强劲,但是如果板载显存达不到要求,无法将处理过的数据即时传送,那么你就无法得到满意的显示效果。显存的容量跟速度直接关系到显卡性能的高低,高速的显卡芯片对显存的容量就相应的更高一些,所以显存的好坏也是衡量显卡的重要指标。要评估一块显存的性能,主要从显存类型、工作频率、封装和显存位宽等方面来分析: 4)显存容量

显卡基础知识

显卡基础知识 显卡基础知识 显卡的工作原理 1.从总线(bus)进入GPU(GraphicsProcessingUnit,图形处理器):将CPU送来的数据送到北桥(主桥)再送到GPU(图形处理器)里 面进行处理。 2.从videochipset(显卡芯片组)进入videoRAM(显存):将芯片 处理完的数据送到显存。 3.从显存进入DigitalAnalogConverter(=RAMDAC,随机读写存 储数—模转换器):从显存读取出数据再送到RAMDAC进行数据转换 的工作(数字信号转模拟信号)。但是如果是DVI接口类型的显卡, 则不需要经过数字信号转模拟信号。而直接输出数字信号。 4.从DAC进入显示器(Monitor):将转换完的模拟信号送到显示屏。 显示效能是系统效能的一部份,其效能的高低由以上四步所决定,它与显示卡的效能(videoperformance)不太一样,如要严格区分, 显示卡的效能应该受中间两步所决定,因为这两步的资料传输都是 在显示卡的内部。第一步是由CPU(运算器和控制器一起组成的计算 机的核心,称为微处理器或中央处理器)进入到显示卡里面, 最后一步是由显示卡直接送资料到显示屏上。 显卡的基本结构 GPU介绍

GPU全称是GraphicProcessingUnit,中文翻译为“图形处理器”。GPU是相对于CPU的一个概念,由于在现代的计算机中(特别 是家用系统,游戏的发烧友)图形的处理变得越来越重要,需要一个 专门的图形核心处理器。NVIDIA公司在发布GeForce256图形处理 芯片时首先提出的.概念。GPU使显卡减少了对CPU的依赖,并进行 部分原本CPU的工作,尤其是在3D图形处理时。GPU所采用的核心 技术有硬件T&L(几何转换和光照处理)、立方环境材质贴图和顶点 混合、纹理压缩和凹凸映射贴图、双重纹理四像素256位渲染引擎等,而硬件T&L技术可以说是GPU的标志。GPU的生产主要由 nVIDIA与AMD两家厂商生产。 显存 显存是显示内存的简称。其主要功能就是暂时储存显示芯片要处理的数据和处理完毕的数据。图形核心的性能愈强,需要的显存也 就越多。以前的显存主要是SDR的,容量也不大。2012年市面上的 显卡大部分采用的是DDR3显存,最新的显卡则采用了性能更为出色 的GDDR5显存。 显卡BIOS 与驱动程序之间的控制程序,另外还储存有显示卡的型号、规格、生产厂家及出厂时间等信息。打开计算机时,通过显示BIOS内的一 段控制程序,将这些信息反馈到屏幕上。早期显示BIOS是固化在ROM中的,不可以修改,而截至2012年底,多数显示卡采用了大容 量的EPROM,即所谓的FlashBIOS,可以通过专用的程序进行改写或 升级。 显卡PCB板 就是显卡的电路板,它把显卡上的各个部件连接起来。功能类似主板。 显卡的分类 一、集成显卡

DVR的结构解析以及工作原理

DVR的结构解析以及工作原理 DVRDigitalVideoRecorder(数字硬盘录像机),是目前视频监控行业最为常见并且最为理想的监控和记录视频资料的设备。 DVR是一套进行图像存储处理的计算机系统,具有对图像/语音进行长时间录像、录音、远程监视和控制的功能,DVR集合了录像机、画面分割器、云台镜头控制、报警控制、网络传输等五种功能于一身,用一台设备就能取代模拟监控系统一大堆设备的功能,而且在价格上也逐渐占有优势。此外DVR影像录 制效果好、画面清晰,并可重复多次录制,能对存放影像进行回放检索。 DVR系统的硬件主要由CPU,内存,主板,显卡,视频采集卡,机箱,电源,硬盘,连接线缆等构成。 目前市面上主流的DVR采用的压缩技术有MPEG-2、MPEG-4、H.264、M-JPEG,而MPEG-4、H.264是国内最常见的压缩方式;从压缩卡上分有软压缩和硬压缩两种,软压受到CPU的影响较大,多半做不到全实时显示和录像,故逐渐被硬压缩淘汰;从摄像机输入路数上分为1路、2路、4路、6路、9路、12路、16路、32路,甚至更多路数;总的来说,按系统结构可以分为两大类:基于PC架构的PC式DV R和脱离PC架构的嵌入式DVR。 数字硬盘录像机的设计从根本上取代了原来质量低下,高维修率的CCTV录像机,例如视频监控模拟录像机。DVR不仅仅**性地扩展了CCTV视频监控系统的功能,并且所增加的功能使其远远优于以前使用的模拟录像机。 首先,最重要的是,DVR把高质量的图像资料记录在硬盘中,免除了不停地更换录像带的麻烦。其次,DVR的内置的多路复用器可以多路同时记录CCTV录像机的视频资料,降低了视频监控系统中所需的设备,显示出了强大的功能。这样,通过把安防摄像机的视频信息数字化并且基于MPEG-4进行压缩,DVR可以高效率地记录多路高质量的视频流。DVR也可能用其他方格式备份视频信息,如CD-RW/DVD -RW。USB驱动器,记忆卡或者其他存储卡等等。 因此,DVR不仅仅在普遍意义上增加了监控系统的部件和功能,而且,DVR软件已经极大地扩展了视频监控系统的设计,功能和效益。通过把数字报警信号输入和输出到硬盘录像机,几乎所有类型的安全系统组合都允许DVR作为主要的监测和控制设备嵌入。

显卡的工作原理与作用

显卡的工作原理与作用 1.显卡在电脑系统中的作用 显卡在电脑中的主要作用就是在程序运行时根据CPU提供的指令和有关数据,将程序运行过程和结果进行相应的处理并转换成显示器能够接受的文字和图形显示信号后通过屏幕显示出来,以便为用户提供继续或中止程序运行的判断依据。换句话说,显示器必须依靠显卡提供的显示信号才能显示出各种字符和图像。 2.什么是2D和3D图形卡 电脑中显示的图形实际上分为2D(2维/Two Dimensional)和3D(3维)两种,其中2D图形只涉及所显示景物的表面形态和其平面(水平和垂直)方向运行情况。如果将物体上任何一点引入直角坐标系,那么只需“X、Y”两个参数就能表示其在水平和上下的具体方位。3D图像景物的描述与2D相比增加了“纵深”或“远近”的描述。如果同样引入直角坐标系来描述景物上某一点在空间的位置时,就必须使用“X、Y、Z”三个参数来表示,其中“Z”就是代表该点与图像观察者之间的“距离”或“远近”。 电脑平常显示的Windows窗口中各种菜单(包括运行的Word等Ofiice软件)和部分游戏如《仙剑奇侠》或《帝国时代》等都是2D图形显示,而3D Studio MAX的图形制作和游戏《雷神之槌》、《极品飞车》等显示的则都是3D画面。由于早期显示芯片技术性能的限制,电脑显示2D/3D图形时所须处理的数据全部由CPU承担,所以对CPU规格要求较高,图形显示速度也很慢。随着图形芯片技术的逐步发展,显卡开始承担了所有2D图形的显示处理,因此大大减轻了CPU的负担,自然也提高了图形显示速度,也因此有了2D图形加速卡一说。但由于显示3D图形时所须处理的数据量和各种计算远远超过2D图形显示,所以在3D图形处理芯片出现前显卡还无法承担3D图形显示数据的处理,因此为完成3D图形显示的数据计算和处理仍须由CPU完成。1997年美国S3公司开发出S3 Virge/DX芯片,开创了由显卡图形处理芯片完成(部分)3D显示数据的处理的先河,从此人们也开始将具有3D图形显示处理芯片的显卡称为3D图形(加速)卡。当然随着图形芯片技术的不断发展,当今市场上几乎所有显卡所使用的图形芯片全部都算3D芯片了,特别是nVidia公司的GeForce芯片几乎能完成所有的3D图形处理(包括原来必须由电脑CPU所承担的几何转换和光线渲染处理),因此被冠以GPU的桂冠。 3.常用显卡分类 虽然目前各种品牌的通用3D显卡规格、型号较多,但按其主要应用范围则基本上可分为三类:一类是以nVidia公司的TNT2和Matrox公司的G400为代表的通用型,主要用于办公处理和一般娱乐(游戏);第二类侧重娱乐,其代表芯片当仁不让的是3dfx公司的Voodoo 系列;第三类侧重专业应用,主要用于2D或3D图形的CAD(电脑辅助设计)或图片专业处理等,这类显卡中使用较多的是3Dlabs公司生产的Permedia系列芯片。 4.显示“子卡” 在3D显卡发展初期,3dfx公司生产了使用Voodoo 和Voodoo2图形芯片的3D显卡,这

相关文档
最新文档