齿轮和轴的介绍英语翻译

齿轮和轴的介绍英语翻译
齿轮和轴的介绍英语翻译

原文:

GEAR AND SHAFT INTRODUCTION

Abstract

The important position of the wheel gear and shaft can't falter in traditional machine and modern machines. The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box. The passing to process to make them can is divided into many model numbers, useding for many situations respectively. So we must be the multilayers to the understanding of the wheel gear and shaft in many ways.

Key words: Wheel gear;Shaft

In the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn.

Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid.

The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one

tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load.

Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is on difference between a crossed helical gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is ,a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should be used as the driver if both gears have the same hand.

Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears.

Worm gearing are either single or double enveloping. A single-enveloping

gearing is one in which the gear wraps around or partially encloses the worm.. A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double-enveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 90-deg. Shaft angle.

When gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered.

Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squr gears, however, they become noisy at higher values of the pitch-line velocity. In these cases it is often good design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered.

It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gears.

A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elementsas gears, pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or torsional loads, acting singly or in combination with one another. When they are combined, one may expect to find both static and fatigue strength to be important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time.

The word “shaft” covers numerous variations, such as axles and spindles. Anaxle is a shaft, wither stationary or rotating, nor subjected to torsion load. A shirt rotating shaft is often called a spindle.

When either the lateral or the torsional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe; it is almost always necessary to calculate them so that he knows they are within acceptable limits. Whenever possible, the power-transmission elements, such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress.

Although the von Mises-Hencky-Goodman method is difficult to use in design of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot peening is necessary in order to achieve the required life and reliability.

Because of the similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake, two inertias I1 and I2 traveling at the respective angular velocities W1 and W2, one of

which may be zero in the case of brake, are to be brought to the same speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall be interested in the actuating force, the torque transmitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for eath geometric configuration. However, temperature rise is related to energy loss and can be studied without regard to the type of brake or clutch because the geometry of interest is the heat-dissipating surfaces. The various types of clutches and brakes may be classified as fllows:

1.Rim type with internally expanding shoes

2.Rim type with externally contracting shoes

3.Band type

4.Disk or axial type

5.Cone type

6.Miscellaneous type

The analysis of all type of friction clutches and brakes use the same general procedure. The following step are necessary:

1.Assume or determine the distribution of pressure on the frictional

surfaces.

2.Find a relation between the maximum pressure and the pressure at any

point

3.Apply the condition of statical equilibrium to find (a) the actuating force,

(b) the torque, and (c) the support reactions.

Miscellaneous clutches include several types, such as the positive-contact clutches, overload-release clutches, overrunning clutches, magnetic fluid clutches, and others.

A positive-contact clutch consists of a shift lever and two jaws. The greatest differences between the various types of positive clutches are concerned with

the design of the jaws. To provide a longer period of time for shift action during engagement, the jaws may be ratchet-shaped, or gear-tooth-shaped. Sometimes a great many teeth or jaws are used, and they may be cut either circumferentially, so that they engage by cylindrical mating, or on the faces of the mating elements.

Although positive clutches are not used to the extent of the frictional-contact type, they do have important applications where synchronous operation is required.

Devices such as linear drives or motor-operated screw drivers must run to definite limit and then come to a stop. An overload-release type of clutch is required for these applications. These clutches are usually spring-loaded so as to release at a predetermined toque. The clicking sound which is heard when the overload point is reached is considered to be a desirable signal.

An overrunning clutch or coupling permits the driven member of a machine to “freewheel” or “overrun” because the driver is stopped or because another source of power increase the speed of the driven. This type of clutch usually uses rollers or balls mounted between an outer sleeve and an inner member having flats machined around the periphery. Driving action is obtained by wedging the rollers between the sleeve and the flats. The clutch is therefore equivalent to a pawl and ratchet with an infinite number of teeth.

Magnetic fluid clutch or brake is a relatively new development which has two parallel magnetic plates. Between these plates is a lubricated magnetic powder mixture. An electromagnetic coil is inserted somewhere in the magnetic circuit. By varying the excitation to this coil, the shearing strength of the magnetic fluid mixture may be accurately controlled. Thus any condition from a full slip to a frozen lockup may be obtained.

译文:

齿轮和轴的介绍

摘要

在传统机械和现代机械中齿轮和轴的重要地位是不可动摇的。齿轮和轴主要安装在主轴箱来传递力的方向。通过加工制造它们可以分为许多的型号,分别用于许多的场合。所以我们对齿轮和轴的了解和认识必须是多层次多方位的。

关键词:齿轮;轴

在直齿圆柱齿轮的受力分析中,是假定各力作用在单一平面的。我们将研究作用力具有三维坐标的齿轮。因此,在斜齿轮的情况下,其齿向是不平行于回转轴线的。而在锥齿轮的情况中各回转轴线互相不平行。像我们要讨论的那样,尚有其他道理需要学习,掌握。

斜齿轮用于传递平行轴之间的运动。倾斜角度每个齿轮都一样,但一个必须右旋斜齿,而另一个必须是左旋斜齿。齿的形状是一溅开线螺旋面。如果一张被剪成平行四边形(矩形)的纸张包围在齿轮圆柱体上,纸上印出齿的角刃边就变成斜线。如果我展开这张纸,在血角刃边上的每一个点就发生一渐开线曲线。

直齿圆柱齿轮轮齿的初始接触处是跨过整个齿面而伸展开来的线。斜齿轮轮齿的初始接触是一点,当齿进入更多的啮合时,它就变成线。在直齿圆柱齿轮中,接触是平行于回转轴线的。在斜齿轮中,该先是跨过齿面的对角线。它是齿轮逐渐进行啮合并平稳的从一个齿到另一个齿传递运动,那样就使斜齿轮具有高速重载下平稳传递运动的能力。斜齿轮使轴的轴承承受径向和轴向力。当轴向推力变的大了或由于别的原因而产生某些影响时,那就可以使用人字齿轮。双斜齿轮(人字齿轮)是与反向的并排地装在同一轴上的两个斜齿轮等效。他们产生相反的轴向推力作用,这样就消除了轴向推力。当两个或更多个单向齿斜齿轮被在同一轴上时,齿轮的齿向应作选择,以便产生最小的轴向推力。

交错轴斜齿轮或螺旋齿轮,他们是轴中心线既不相交也不平行。交错轴斜齿

轮的齿彼此之间发生点接触,它随着齿轮的磨合而变成线接触。因此他们只能传递小的载荷和主要用于仪器设备中,而且肯定不能推荐在动力传动中使用。交错轴斜齿轮与斜齿轮之间在被安装后互相捏合之前是没有任何区别的。它们是以同样的方法进行制造。一对相啮合的交错轴斜齿轮通常具有同样的齿向,即左旋主动齿轮跟右旋从动齿轮相啮合。在交错轴斜齿设计中,当该齿的斜角相等时所产生滑移速度最小。然而当该齿的斜角不相等时,如果两个齿轮具有相同齿向的话,大斜角齿轮应用作主动齿轮。

蜗轮与交错轴斜齿轮相似。小齿轮即蜗杆具有较小的齿数,通常是一到四齿,由于它们完全缠绕在节圆柱上,因此它们被称为螺纹齿。与其相配的齿轮叫做蜗轮,蜗轮不是真正的斜齿轮。蜗杆和蜗轮通常是用于向垂直相交轴之间的传动提供大的角速度减速比。蜗轮不是斜齿轮,因为其齿顶面做成中凹形状以适配蜗杆曲率,目的是要形成线接触而不是点接触。然而蜗杆蜗轮传动机构中存在齿间有较大滑移速度的缺点,正像交错轴斜齿轮那样。

蜗杆蜗轮机构有单包围和双包围机构。单包围机构就是蜗轮包裹着蜗杆的一种机构。当然,如果每个构件各自局部地包围着对方的蜗轮机构就是双包围蜗轮蜗杆机构。着两者之间的重要区别是,在双包围蜗轮组的轮齿间有面接触,而在单包围的蜗轮组的轮齿间有线接触。一个装置中的蜗杆和蜗轮正像交错轴斜齿轮那样具有相同的齿向,但是其斜齿齿角的角度是极不相同的。蜗杆上的齿斜角度通常很大,而蜗轮上的则极小,因此习惯常规定蜗杆的导角,那就是蜗杆齿斜角的余角;也规定了蜗轮上的齿斜角,该两角之和就等于90度的轴线交角。

当齿轮要用来传递相交轴之间的运动时,就需要某种形式的锥齿轮。虽然锥齿轮通常制造成能构成90度轴交角,但它们也可产生任何角度的轴交角。轮齿可以铸出,铣制或滚切加工。仅就滚齿而言就可达一级精度。在典型的锥齿轮安装中,其中一个锥齿轮常常装于支承的外侧。这意味着轴的挠曲情况更加明显而使在轮齿接触上具有更大的影响。

另外一个难题,发生在难于预示锥齿轮轮齿上的应力,实际上是由于齿轮被加工成锥状造成的。

直齿锥齿轮易于设计且制造简单,如果他们安装的精密而确定,在运转中会产生良好效果。然而在直齿圆柱齿轮情况下,在节线速度较高时,他们将发出噪

音。在这些情况下,螺旋锥齿轮比直齿轮能产生平稳的多的啮合作用,因此碰到高速运转的场合那是很有用的。当在汽车的各种不同用途中,有一个带偏心轴的类似锥齿轮的机构,那是常常所希望的。这样的齿轮机构叫做准双曲面齿轮机构,因为它们的节面是双曲回转面。这种齿轮之间的轮齿作用是沿着一根直线上产生滚动与滑动相结合的运动并和蜗轮蜗杆的轮齿作用有着更多的共同之处。

轴是一种转动或静止的杆件。通常有圆形横截面。在轴上安装像齿轮,皮带轮,飞轮,曲柄,链轮和其他动力传递零件。轴能够承受弯曲,拉伸,压缩或扭转载荷,这些力相结合时,人们期望找到静强度和疲劳强度作为设计的重要依据。因为单根轴可以承受静压力,变应力和交变应力,所有的应力作用都是同时发生的。

“轴”这个词包含着多种含义,例如心轴和主轴。心轴也是轴,既可以旋转也可以静止的轴,但不承受扭转载荷。短的转动轴常常被称为主轴。

当轴的弯曲或扭转变形必需被限制于很小的范围内时,其尺寸应根据变形来确定,然后进行应力分析。因此,如若轴要做得有足够的刚度以致挠曲不太大,那么合应力符合安全要求那是完全可能的。但决不意味着设计者要保证;它们是安全的,轴几乎总是要进行计算的,知道它们是处在可以接受的允许的极限以内。因之,设计者无论何时,动力传递零件,如齿轮或皮带轮都应该设置在靠近支持轴承附近。这就减低了弯矩,因而减小变形和弯曲应力。

虽然来自M.H.G方法在设计轴中难于应用,但它可能用来准确预示实际失效。这样,它是一个检验已经设计好了的轴的或者发现具体轴在运转中发生损坏原因的好方法。进而有着大量的关于设计的问题,其中由于别的考虑例如刚度考虑,尺寸已得到较好的限制。

设计者去查找关于圆角尺寸、热处理、表面光洁度和是否要进行喷丸处理等资料,那真正的唯一的需要是实现所要求的寿命和可靠性。

由于他们的功能相似,将离合器和制动器一起处理。简化摩擦离合器或制动器的动力学表达式中,各自以角速度w1和w2运动的两个转动惯量I1和I2,在制动器情况下其中之一可能是零,由于接上离合器或制动器而最终要导致同样的速度。因为两个构件开始以不同速度运转而使打滑发生了,并且在作用过程中能量散失,结果导致温升。在分析这些装置的性能时,我们应注意到作用力,传递

的扭矩,散失的能量和温升。所传递的扭矩关系到作用力,摩擦系数和离合器或制动器的几何状况。这是一个静力学问题。这个问题将必须对每个几何机构形状分别进行研究。然而温升与能量损失有关,研究温升可能与制动器或离合器的类型无关。因为几何形状的重要性是散热表面。各种各样的离合器和制动器可作如下分类:

1. 轮缘式内膨胀制冻块;

2.轮缘式外接触制动块;

3.条带式;

4.盘型或轴向式;

5.圆锥型;

6.混合式。

分析摩擦离合器和制动器的各种形式都应用一般的同样的程序,下面的步骤是必需的:

1.假定或确定摩擦表面上压力分布;

2.找出最大压力和任一点处压力之间的关系;

3.应用静平衡条件去找寻(a)作用力;(b)扭矩;(c)支反力。

混合式离合器包括几个类型,例如强制接触离合器、超载释放保护离合器、超越离合器、磁液离合器等等。

强制接触离合器由一个变位杆和两个夹爪组成。各种强制接触离合器之间最大的区别与夹爪的设计有关。为了在结合过程中给变换作用予较长时间周期,夹爪可以是棘轮式的,螺旋型或齿型的。有时使用许多齿或夹爪。他们可能在圆周面上加工齿,以便他们以圆柱周向配合来结合或者在配合元件的端面上加工齿来结合。

虽然强制离合器不像摩擦接触离合器用的那么广泛,但它们确实有很重要的运用。离合器需要同步操作。

有些装置例如线性驱动装置或电机操作螺杆驱动器必须运行到一定的限度然后停顿下来。为着这些用途就需要超载释放保护离合器。这些离合器通常用弹簧加载,以使得在达到预定的力矩时释放。当到达超载点时听到的“喀嚓”声就被认定为是所希望的信号声。

超越离合器或连轴器允许机器的被动构件“空转”或“超越”,因为主动驱动件停顿了或者因为另一个动力源使被动构件增加了速度。这种离合器通常使用装在外套筒和内轴件之间的滚子或滚珠。该内轴件,在它的周边加工了数个平面。驱动作用是靠在套筒和平面之间契入的滚子来获得。因此该离合器与具有一定数量齿的棘轮棘爪机构等效。

磁液离合器或制动器相对来说是一个新的发展,它们具有两平行的磁极板。这些磁极板之间有磁粉混合物润滑。电磁线圈被装入磁路中的某处。借助激励该线圈,磁液混合物的剪切强度可被精确的控制。这样从充分滑移到完全锁住的任何状态都可以获得。

机械设计、齿轮与轴综合的介绍

机械设计、齿轮与轴综合介绍-----------------------作者:

-----------------------日期:

机械设计和齿轮与轴的介绍 摘要:机器是由机械装置和其它组件组成的。它是一种用来转换或传递能量的装置,例如:发动机、涡轮机、车辆、起重机、印刷机、洗衣机、照相机和摄影机等。许多原则和设计方法不但适用于机器的设计,也适用于非机器的设计。术语中的“机械装置设计”的含义要比“机械设计”的含义更为广泛一些,机械装置设计包括机械设计。在分析运动及设计结构时,要把产品外型以及以后的保养也要考虑在机械设计中。在机械工程领域中,以及其它工程领域中,所有这些都需要机械设备,比如:开关、凸轮、阀门、船舶以及搅拌机等。在传统机械和现代机械中齿轮和轴的重要地位是不可动摇的。齿轮和轴主要安装在主轴箱来传递力的方向。通过加工制造它们可以分为许多的型号,分别用于许多的场合。所以我们对齿轮和轴的了解和认识必须是多层次多方位的。 关键词:设计流程设计规则机械设计齿轮轴

设计流程 设计开始之前就要想到机器的实际性,现存的机器需要在耐用性、效率、重量、速度,或者成本上得到改善。新的机器必需具有以前机器所能执行的功能。 在设计的初始阶段,应该允许设计人员充分发挥创造性,不要受到任何约束。即使产生了许多不切实际的想法,也会在设计的早期,即在绘制图纸之前被改正掉。只有这样,才不致于阻断创新的思路。通常,还要提出几套设计方案,然后加以比较。很有可能在这个计划最后决定中,使用了某些不在计划之内的一些设想。 一般的当外型特点和组件部分的尺寸特点分析得透彻时,就可以全面的设计和分析。接着还要客观的分析机器性能的优越性,以及它的安全、重量、耐用性,并且竞争力的成本也要考虑在分析结果之内。每一个至关重要的部分要优化它的比例和尺寸,同时也要保持与其它组成部分相协调。 也要选择原材料和处理原材料的方法。通过力学原理来分析和实现这些重要的特性,如那些静态反应的能量和摩擦力的最佳利用,像动力惯性、加速动力和能量;包括弹性材料的强度、应力和刚度等材料的物理特性,以及流体润滑和驱动器的流体力学。设计的过程是重复和合作的过程,无论是正式或非正式的进行,对设计者来说每个阶段都很重要。 最后,以图样为设计的标准,并建立将来的模型。如果它的测试是符合事先要求的,则再将对初步设计进行某些修改,使它能够在制造成本上有所降低。产品的设计需要不断探索和发展。许多方案必须被研究、试验、完善,然

英语翻译概论

翻译概论 Warming-up exercises: Translate the followings 1 You are what you think 2 Your abilities count, but the belief that yo u can succeed affects whether or not you will. 3 It’s a pattern of thinking learned at your mother’s knee. I翻译的定义 1.Translation is the replacement of textual material in one language by equivalent textual material in another language. 即“将一种语言的篇章材料替换为与之对等的另一种语言的篇章材料”。翻译是运用一种语言把用另一种语言文字所表达的思想内容准确而完整地重新表达出来的语言活动。它是一门科学,具有描述性;同时它也是一门艺术,因为它具有创造性。

II翻译原则或标准:严复理论 1 信(truthfulness/faithfulness):忠实原文(对原文的思想不歪曲也不要任意增减;对原文的风格不随意改动,即粗糙的不译成高雅,口语体不译成书面体) 2 达(expressiveness):语言通顺畅达(译文应该按照译语的语法和习惯来遣词造句;译文避免生搬硬套,应该通顺流畅) Eg . John can be relied on. He eats no fish and plays the game. 约翰值得信赖。他忠诚而正直(守规矩)。 3 雅(elegance):文字古雅/ 切(closeness) 总之,做英译汉时,按中国人的说话思维方式,把内容用通俗的汉语顺畅地表达出来;反之亦然。 1. It therefore becomes more and more important that, if students are not to waste their opportunities, there will have to have much more detailed information about courses and more advice.

模具专业英文术语大全

模具英语专业术语 模具述语 一、入水:gate 进入位: gate location 水口形式:gate type 大水口:edge gate 细水口: pin-point gate 水口大小:gate size 转水口: switching runner/gate 唧嘴口径: sprue diameter 二、流道: runner 热流道: hot runner,hot manifold 热嘴冷流道: hot sprue/cold runner 唧嘴直流: direct sprue gate 圆形流道:round(full/half runner 流道电脑分析:mold flow analysis 流道平衡:runner balance 热嘴: hot sprue 热流道板:hot manifold 发热管:cartridge heater 探针: thermocouples 插头: connector plug 插座: connector socket 密封/封料: seal 三、运水:water line 喉塞:line lpug 喉管:tube 塑胶管:plastic tube 快速接头:jiffy quick connector plug/socker 四、模具零件: mold components 三板模:3-plate mold 二板模:2-plate mold 边钉/导边:leader pin/guide pin 边司/导套:bushing/guide bushing 中托司:shoulder guide bushing 中托边L:guide pin 顶针板:ejector retainner plate 托板: support plate 螺丝: screw 管钉:dowel pin 开模槽:ply bar scot 内模管位:core/cavity inter-lock 顶针: ejector pin 司筒:ejector sleeve 司筒针:ejector pin 推板:stripper plate 缩呵:movable core,return core core puller 扣机(尼龙拉勾):nylon latch lock 斜顶:lifter 模胚(架): mold base 上内模:cavity insert 下内模:core insert 行位(滑块): slide 镶件:insert 压座/斜鸡:wedge 耐磨板/油板:wedge wear plate 压条:plate 撑头: support pillar 唧嘴: sprue bushing 挡板:stop plate 定位圈:locating ring 锁扣:latch 扣鸡:parting lock set 推杆:push bar 栓打螺丝:S.H.S.B 顶板:eracuretun 活动臂:lever arm 分流锥:spure sperader 水口司:bush 垃圾钉:stop pin 隔片:buffle 弹弓柱:spring rod 弹弓:die spring 中托司:ejector guide bush 中托边:ejector guide pin 镶针:pin 销子:dowel pin 波子弹弓:ball catch 喉塞: pipe plug

齿轮的主要术语图解及英文翻译汇总

?齿轮的主要术语 轮齿(齿)——齿轮上的每一个用于啮合的凸起部分。一般说来,这些凸起部分呈辐射状排列。配对齿轮上轮齿互相接触,导致齿轮的持续啮合运转。 齿槽——齿轮上两相邻轮齿之间的空间。 端面——在圆柱齿轮或圆柱蜗杆上垂直于齿轮或蜗杆轴线的平面。 法面——在齿轮上,法面指的是垂直于轮齿齿线的平面。 齿顶圆——齿顶端所在的圆。齿根圆——槽底所在的圆。 基圆——形成渐开线的发生线在其上作纯滚动的圆。 分度圆——在端面内计算齿轮几何尺寸的基准圆,对于直齿轮,在分度圆上模数和压力角均为标准值。 齿面——轮齿上位于齿顶圆柱面和齿根圆柱面之间的侧表面。 齿廓——齿面被一指定曲面(对圆柱齿轮是平面)所截的截线。 齿线——齿面与分度圆柱面的交线。 端面齿距——相邻两同侧端面齿廓之间的分度圆弧长。 模数m——齿距除以圆周率π所得到的商,以毫米计。 径节p——模数的倒数,以英寸计。 齿厚s ——在端面上一个轮齿两侧齿廓之间的分度圆弧长。 槽宽e——在端面上一个齿槽的两侧齿廓之间的分度圆弧长。 齿顶高hɑ──齿顶圆与分度圆之间的径向距离。 齿根高hf──分度圆与齿根圆之间的径向距离。 全齿高h──齿顶圆与齿根圆之间的径向距离。 齿宽b──轮齿沿轴向的尺寸。 端面压力角ɑt──过端面齿廓与分度圆的交点的径向线与过该点的齿廓切线所夹的锐角。 基准齿条(Standard Rack) ——只基圆之尺寸,齿形,全齿高,齿冠高及齿厚等尺寸均合乎标准正齿轮规格之齿条,依其标准齿轮规格所切削出来之齿条称为基准齿条. 基准节圆(Standard Pitch Circle) ——用来决定齿轮各部尺寸基准圆.为齿数x模数

【机械类文献翻译】齿轮和轴的介绍2

附件1:外文资料翻译译文 齿轮和轴的介绍 在直齿圆柱齿轮的受力分析中,是假定各力作用在单一平面的。我们将研究作用力具有三维坐标的齿轮。因此,在斜齿轮的情况下,其齿向是不平行于回转轴线的。而在锥齿轮的情况中各回转轴线互相不平行。 斜齿轮用于传递平行轴之间的运动。倾斜角度每个齿轮都一样,但一个必须是右旋斜齿,而另一个必须是左旋斜齿。齿的形状是一渐开线螺旋面。如果一张被剪成平行四边形(矩形)的纸张包围在齿轮圆柱体上,纸上印出齿的角刃边就变成斜线。如果我展开这张纸,在角刃边上的每一个点就连接成一渐开线曲线。 直齿圆柱齿轮轮齿的初始接触处是跨过整个齿面而伸展开来的线。斜齿轮轮齿的初始接触是一点,当齿进行更多的啮合时,它就变成线。在直齿圆柱齿轮中,接触是平行于回转轴线的。在斜齿轮中,该线是跨过齿面的对角线。它使齿轮逐渐进行啮合并平稳的从一个齿到另一个齿传递运动,那样就使斜齿轮具有高速重载下平稳传递运动的能力。斜齿轮使轴的轴承承受径向和轴向力。当轴向推力变的大了或由于别的原因而产生某些影响时,那就可以使用人字齿轮。双斜齿轮(人字齿轮)与反向的并排地装在同一轴上的两个斜齿轮等效。它们产生相反的轴向推力作用,这样就消除了轴向推力。当两个或更多个单向双斜齿轮被安装在同一轴上时,齿轮的齿向应作选择,以便产生最小的轴向推力。 交错轴斜齿轮或螺旋齿轮,它们是轴中心线既不相交也不平行的齿轮。交错轴斜齿轮的齿彼此之间发生点接触,它随着齿轮的啮合而变成线接触。因此它们只能传递小的载荷和主要用于仪器设备中,而且肯定不能在动力传动中使用。交错轴斜齿轮与螺旋齿轮在被安装后互相啮合之前是没有任何区别的。一对相啮合的交错轴斜齿轮通常具有同样的齿向,即左旋主动齿轮跟右旋从动齿轮相啮合。在交错轴斜齿设计中,当该齿的斜角相等时所产生滑移速度最小。然而当该齿的斜角不相等时,如果两个齿轮具有相同齿向的话,大斜角齿轮应用作主动齿轮。 蜗轮与交错轴斜齿轮相似。小齿轮即蜗杆具有较小的齿数,通常是一到四个齿,由于它们完全缠绕在节圆柱上,因此它们被称为螺纹齿。与其相配的齿轮叫做蜗轮,蜗轮不是真正的斜齿轮。蜗杆和蜗轮通常是用于向垂直相交轴之间的传动提供大的角速度和减速比。蜗轮不是斜齿轮,因为其齿顶面通常做成中凹形状以适配蜗杆曲

英语翻译——笔记整理及单词概述

考研翻译重点词汇 Abstract n.摘要,概要,抽象 adj.抽象的,深奥的,理论的 Accelerate vt.&vi.(使)加快,(使)增速, n.接受速成教育的学生 Account (1)看法,认识 (2)解释,说明 Account for 占…(多大)比重; 解释, 说明 Achievement n.成就;成绩;功绩,达到;完成 Acquire vt.得到,养成,vt 获得;招致,学得(知识等),求得,养成(习惯等),捕获, Action n.作用,动[操]作,行动,机械装置[作用],(小说等中的)情节 Activity n.活动,活动的事物,活动性,机能,功能 Actually adv.现实的,实际的;目前的;明确的,有效的 Additional adj.增加的,额外的,另外的 Advance vt.&vi.(使)前进,(使)发展;促进, vt.提出 Advantage n.利益,便利,有利方面,有利条件;优点;优势, (网球等)打成平手(deuce )而延长比赛后一方先得的一分(攻方所得称 advantage in ,守方所得则称 advantage out ) Agree vi.一致;相合同意,赞成约定,允诺,答应,相宜,调和,符合,和睦相处 Almost adv.几乎,差不多,差一点;将近 Amount n.量,数量,数额,总额,总数 vi.合计,共计 An immense amount of … 大量 An amount of … 一些 A certain amount of … 某些 Analogous 与…类似, 与…相似 And 而, 然而 Apply … to … ≈ lie with 存在于,发生于 Approach vt.&vi.接近,走近,靠近; vt.接洽,交涉;着手处理; n.靠近,接近,临近 Appropriate adj.适当的,恰当的; vt.挪用;占用;盗用 Argue vt.&vi.争吵,辩论; vt.坚决主张,提出理由证明,说服,劝说 Arise vi.&link v.呈现;出现;发生; vi.起身,起来,起立 As 译为 (1) 像, 如 ; (2) 作为 As … as (比较的两者要一致) = not so … as 译成:“… 和 … 一样 ” As is mentioned above 如上所述, (如上所示,如图所示---作文可以写) Aspect n.方面,方位,朝向 Assert vt.声称,断言,维护,坚持 Assume vt.假设,认定, 臆断,猜想,假装,担,担任,就职 Attempt n.尝试,企图vt.尝试,企图 Augment vt.增加,提高,扩大; n.增加,提高,扩大 Availability n.可用性,有效性,实用性 Base n.基础,底座,基地,根据地 vt.把…建立在,以…为基础 Behavioral adj.动作的,行为方面的 Big bang 大爆炸理论 Branch n.树枝,枝条,支,分科,分系; vi.出枝,树叉 Breakthrough : 突破 Break prison (监狱)越狱 Break out v. 爆发 Out break: n. 爆发

机械术语英文翻译

机械术语英文翻译 阿基米德蜗杆Archimedes worm 安全系数safety factor; factor of safety安全载荷safe load 凹面、凹度concavity扳手wrench 板簧flat leaf spring 半圆键woodruff key 变形deformation摆杆oscillating bar 摆动从动件oscillating follower 摆动从动件凸轮机构cam with oscillating follower 摆动导杆机构oscillating guide-bar mechanism 摆线齿轮cycloidal gear摆线齿形cycloidal tooth profile 摆线运动规律cycloidal motion 摆线针轮cycloidal-pin wheel包角angle of contact 保持架cage背对背安装丨back-to-back arrangement 背锥back cone ;normal cone 背锥角back angle背锥距back cone distance比例尺scale 热容specific heat capacity 闭式链closed kinematic chain闭链机构closed chain mechanism 臂部arm 变频器frequency converters变频调速frequency control of motor speed 变速speed change 变速齿轮change gear ; change wheel变位齿轮modified gear变位系数modification coefficient 标准齿轮standard gear标准直齿轮standard spur gear 表面质量系数superficial mass factor 表面传热系数surface coefficient of heat transfer 表面粗糙度surface roughness 并联式组合combination in parallel并联机构parallel mechanism 并联组合机构parallel combined mechanism并行工程concurrent engineering 并行设计concurred design, CD不平衡相位phase angle of unbalance 不平衡imbalance (or unbalance)不平衡量amount of unbalance 不完全齿轮机构intermittent gearing波发生器wave generator 波数number of waves补偿compensation 参数化设计parameterization design, PD残余应力residual stress 操纵及控制装置operation control device槽轮Geneva wheel 槽轮机构Geneva mechanism ;Maltese cross槽数Geneva numerate 槽凸轮groove cam侧隙backlash 差动轮系differential gear train差动螺旋机构differential screw mechanism 差速器differential常用机构conventional mechanism; mechanism in common use 车床lathe承载量系数bearing capacity factor 承载能力bearing capacity成对安装paired mounting 尺寸系列dimension series齿槽tooth space 齿槽宽spacewidth齿侧间隙backlash 齿顶高addendum齿顶圆addendum circle 齿根高dedendum齿根圆dedendum circle 齿厚tooth thickness齿距circular pitch 齿宽face width齿廓tooth profile 齿廓曲线tooth curve齿轮gear 齿轮变速箱speed-changing gear boxes齿轮齿条机构pinion and rack 齿轮插刀pinion cutter; pinion-shaped shaper cutter齿轮滚刀hob ,hobbing cutter 齿轮机构gear齿轮轮坯blank 齿轮传动系pinion unit齿轮联轴器gear coupling 齿条传动rack gear齿数tooth number 齿数比gear ratio齿条rack 齿条插刀rack cutter; rack-shaped shaper cutter齿形链、无声链silent chain 齿形系数form factor齿式棘轮机构tooth ratchet mechanism 插齿机gear shaper重合点coincident points 重合度contact ratio冲床punch

中英文文献翻译-齿轮和轴的介绍

GEAR AND SHAFT INTRODUCTION Abstract: The important position of the wheel gear and shaft can't falter in traditional machine and modern machines.The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box.The passing to process to make them can is divided into many model numbers, using for many situations respectively.So we must be they to the understanding of the wheel gear and shaft in many ways . Key words: Wheel gear;Shaft In the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn. Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid. The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load. Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is on difference between a crossed helical gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is ,a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained

第1 课绪论--翻译概述(1)

第1 课绪论--翻译概述(1) 一、学科特点 翻译是一种跨越时空的语言活动,是"把一种语言已经表达出来的东西用另 一种语言准确而完整地重新表达出来"(范存忠:"漫谈翻译"《翻译理论与技巧》 中国对外翻译出版公司,1985,p.80), 是"从语义到文体在译入语中用最切近而 又最自然的对等语再现原语的信息"(谭载喜:《奈达论翻译》中国对外翻译出版 公司,1984,p.10)。翻译虽为个体所承作,却是一种社会活动,一门综合性很 强的学科。它既有很强的理论性又有丰富的实践内涵。就前者而言,翻译经过千 百年来各国翻译家的共同努力,已经在语言学、文学、文化、心理学、人类学、 哲学和教育学等学科的基础上初步建立了一套理论体系,并在具体实践中总结出 了一套行之有效的跨文化和语言转换模式。随着科学的日益进步,这种体系和模 式正处在不断地完善之中。就后者而言,翻译是人类社会活动的产物,具有很强

的实践性。翻译理论与实践的关系是辨证的;翻译理论产生于翻译实践,反过来 又指导实践,实践转过来又丰富翻译理论。可以说,没有社会实践就不会有翻译 理论的产生;没有翻译理论作为指导,翻译实践就会难免走弯路。因此,学好翻 译既要重视翻译理论的学习,又要加强翻译实践;理论联系实际,这是我们学好 翻译的必由之路。 二、为什么可能有翻译 翻译是人类社会发展和进步的需要,因为人类社会要发展进步就需要在不同 文化的民族之间进行沟通,而这一全过程都离不开翻译。正如Steiner 和张培基 所说的那样:Translating it is that openeth the window, to let in the light; that breaketh the shell, that we may eat the kernel. (Steiner) 翻译是沟通各族人民的思 想,促进政治、经济、文化、科学、技术交流的重要手段,也是进行国际斗争的 必要武器。翻译是学习好外语的重要手段之一,也是探讨两种语言对应关系的一 门学科。(张培基等)

模具术语英文翻译知识讲解

模具术语英文翻译

模具术语英文翻译 根据国家标准,以下为部分塑料模具成形术语的标准翻译。 动模 Movable Mould Moving Half 定模座板 Fixed Clamp Plate Top Clamping Plate Top Plate 动模座板 Moving Clamp Plate Bottom Clamping Plate Bottom Plate 上模座板 Upper Clamping Plate 下模座板 Lower Clamping Plate 凹模固定板 Cavity-retainer Plate 型芯固定板 Mould Core-retainer Plate 凸模固定板 Punch-retainer Plate 模套 Die Body Die Sleeve Die Blank 支承板 Backing Plate Support Plate 垫块 Spacer Parallel 支架 Ejector Housing Mould Base Leg 模头 Die Head 根据国家标准,以下为部分压铸模具术语的标准翻译。 压力铸造模具 Die-Casting Die 压铸模零部件 定模 Fixed Die Cover Die 定模座板 Fixed Clamping Plate 定模套板 Bolster Fixed Die 动模 Moving Die Ejector Die 动模座板 Moving Clamping Plate 直流道 Sprue 横流道 Runner 内浇口 Gate 模具分类 Injection Mold 注塑模 Plastic Rubber Mould 塑胶模 Rubber Molding 橡胶成形 Hot Chamber Die Casting 热室压铸 Sand Mold Casting 砂模铸造 Extrusion Mold 挤出模 Multi-Cavity Mold 多模穴模具 Stack Mold, Stack Injection Mould 叠层模

齿轮术语中英文对照表

中间齿轮intermediate gear(counter gear) 副轴齿轮counter shaft gear 副轴counter shaft 变速器输入轴transmission imput shaft 变速器输出轴transmission output shaft 变速器主动齿轮轴transmission drive gear shaft 变速器主轴transmission main shaft 变速器中间轴transmission countershaft 变速器轴的刚度rigidity of shaft 变速齿轮比(变速比)transmission gear ratio 传动比gear ratio 主压力line pressure 调制压力modulated pressure 真空调制压力vacuum modulator pressure 速控压力governor pressure 缓冲压力compensator or trimmer pressure 限档压力hold presure 前油泵front pump (input pump ) 液力传动装置充油压力hydrodynamic unit change pressure 后油泵gear pump (output pump ) 回油泵scavenge oil pump 阿基米德蜗杆Archimedes worm 安全系数safety factor; factor of safety 安全载荷safe load 变形deformation 摆线齿轮cycloidal gear 摆线齿形cycloidal tooth profile 背锥角back angle 背锥距back cone distance 比例尺scale 变速speed change 变速齿轮change gear ; change wheel 变位齿轮modified gear 变位系数modification coefficient 标准齿轮standard gear 标准直齿轮standard spur gear 表面粗糙度surface roughness 不完全齿轮机构intermittent gearing 补偿compensation 参数化设计parameterization design, PD 残余应力residual stress 操纵及控制装置operation control device 槽数Geneva numerate 侧隙backlash 差动轮系differential gear train 差动螺旋机构differential screw mechanism 差速器differential 常用机构conventional mechanism; mechanism in common use 承载量系数bearing capacity factor 承载能力bearing capacity 成对安装paired mounting 尺寸系列dimension series 齿槽tooth space 齿槽宽spacewidth 齿侧间隙backlash 齿顶高addendum 齿顶圆addendum circle 齿根高dedendum 齿根圆dedendum circle 齿厚tooth thickness 齿距circular pitch 齿宽face width 齿廓tooth profile 齿廓曲线tooth curve 齿轮gear 齿轮变速箱speed-changing gear boxes 齿轮齿条机构pinion and rack 齿轮插刀pinion cutter; pinion-shaped

翻译概述

翻译教程:翻译概述(1) | 发布时间: 2010年6月26日 翻译概述(1) 一、学科特点 翻译是一种跨越时空的语言活动,是"把一种语言已经表达出来的东西用另一种语言准确而完整地重新表达出来"(范存忠:"漫谈翻译"《翻译理论与技巧》中国对外翻译出版公司,1985,p.80), 是"从语义到文体在译入语中用最切近而又最自然的对等语再现原语的信息"(谭载喜:《奈达论翻译》中国对外翻译出版公司,1984,p.10)。翻译虽为个体所承作,却是一种社会活动,一门综合性很强的学科。它既有很强的理论性又有丰富的实践内涵。就前者而言,翻译经过千百年来各国翻译家的共同努力,已经在语言学、文学、文化、心理学、人类学、哲学和教育学等学科的基础上初步建立了一套理论体系,并在具体实践中总结出了一套行之有效的跨文化和语言转换模式。随着科学的日益进步,这种体系和模式正处在不断地完善之中。 就后者而言,翻译是人类社会活动的产物,具有很强的实践性。翻译理论与实践的关系是辨证的;翻译理论产生于翻译实践,反过来又指导实践,实践转过来又丰富翻译理论。可以说,没有社会实践就不会有翻译理论的产生;没有翻译理论作为指导,翻译实践就会难免走弯路。因此,学好翻译既要重视翻译理论的学习,又要加强翻译实践;理论联系实际,这是我们学好翻译的必由之路。 二、为什么可能有翻译 翻译是人类社会发展和进步的需要,因为人类社会要发展进步就需要在不同文化的民族之间进行沟通,而这一全过程都离不开翻译。正如Steiner和张培基所说的那样:Translating it is that openeth the window, to let in the light; that breaketh

常用模具零件中英文对照表

常用模具零件中英文对照表 2005-12-19 14:51:17???中国注塑网 入水:gate 进入位:gate location 水口形式:gate type 大水口:edge gate 细水口: pin-point gate 水口大小:gate size 转水口:switching runner/gate 唧嘴口径:sprue diameter 二、流道: runner 热流道:hot runner,hot manifold 热嘴冷流道: hot sprue/cold runner 唧嘴直流: direct sprue gate 圆形流道:round(full/half runner 流道电脑分析:mold flow analysis :?[??n?l?s?s] 流道平衡:runner balance 热嘴:hot sprue 热流道板:hot manifold 发热管:cartridge heater 探针: thermocouples 插头:connector plug 插座: connector socket 密封/封料: seal 三、运水:water line 喉塞:line lpug 喉管:tube 塑胶管:plastic tube 快速接头:jiffy quick connector plug/socker 四、模具零件:mold components 三板模:3-plate mold 二板模:2-plate mold 边钉/导边:leader pin/guide pin 边司/导套:bushing/guide bushing 中托司:shoulder guide bushing 中托边:guide pin 顶针板:ejector retainer plate 托板:support plate

机械专业术语英文翻译

机械专业英语词汇 陶瓷ceramics 合成纤维synthetic fibre 电化学腐蚀electrochemical corrosion 车架automotive chassis 悬架suspension 转向器redirector 变速器speed changer 板料冲压sheet metal parts 孔加工spot facing machining 车间workshop 工程技术人员engineer 气动夹紧pneuma lock 数学模型mathematical model 画法几何descriptive geometry 机械制图Mechanical drawing 投影projection 视图view 剖视图profile chart 标准件standard component 零件图part drawing 装配图assembly drawing 尺寸标注size marking 技术要求technical requirements 刚度rigidity 内力internal force 位移displacement 截面section 疲劳极限fatigue limit 断裂fracture 塑性变形plastic distortion 脆性材料brittleness material 刚度准则rigidity criterion 垫圈washer 垫片spacer 直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical-spur gear 直齿锥齿轮straight bevel gear 运动简图kinematic sketch 齿轮齿条pinion and rack 蜗杆蜗轮worm and worm gear 虚约束passive constraint 曲柄crank 摇杆racker

翻译概述

第一单元翻译概论

巴别塔典故 5据《圣经·创世纪》,创世之初,普天之下人类同操一种语言。出于骄傲,人们想建一座通天之塔。耶和华对人类的骄傲感到恼怒,于是使人们的语言变得互不相通,从而在造塔的人们中间造成了巨大的混乱,只好放弃了造通天塔的狂妄打算。而那个建通天塔(Babel)的地方后来就被称为巴比伦城(Babylon)。 5巴别,希伯来文是“变乱”的意思,巴比伦文则是“神的门”的意思。由于“巴别塔”故事本身所蕴含的内涵,使人们常常以此作为某种解释性的典故来利用。一方面作为试图通往天堂的路径,逼近上帝,因此可以用来表示一种对权威的挑战,无所畏惧的勇气;另外,由于故事中上帝对人类语言的变乱,则可用以体现人类语言之间的理解偏差,以及人类为寻求共同理解而不断追求的路途,许多人就把翻译比喻为一种建造巴别塔般的英雄事业。 摘自https://www.360docs.net/doc/f66850823.html,/asiapan/archives/2005/10/post_208.html

1.1 翻译的目的 5从上述巴别塔的故事我们也可以得出翻译的最初目的就是为了交流信息。 5在高度信息化的后现代社会中,各种高科技手段使世界变得越来越小,世界各国在政治、经济、文化、科技等各个领域的交流在规模、频率和速度上都得到了前所未有的发展,全球化的概念日渐清晰。在这个过程中,翻译的重要性得到了越来越多的体现,社会对翻译人才的需求也在不断增加。在这种形势下,翻译在理论和实践两个方面都出现了空前活跃和繁荣的景象。

5到底什么是翻译?这是翻译理论家和翻译实践者都无法回避的问题。其实,人们对翻译并不陌生,因为它时刻都会发生。比如,一个不懂粤语的东北人和一个广东人交谈时出现了语言交流的障碍,这时有一个既懂东北话又懂粤语的人帮助他们进行解释和沟通,那么这个(既懂东北话又懂粤语的)人所做的工作其实就是翻译。翻译的涵盖面很广,除了方言之间转换,还有将古汉语用白话文来解释,将汉语意思用少数民族的语言来表达等都属于广义的翻译范畴。由此可见,你我在日常生活中经常扮演翻译的角色。

相关文档
最新文档