漫反射带隙能计算方法

漫反射带隙能计算方法

漫反射吸光度A 与漫反射率R∞ 之间关系为:A=log(1/ R∞)

由此可计算出

R=1/10A

求出:F(R ) = (1- R )2/ 2R

E g=1240/λ λ(nm)

以E g为横坐标,[F(R )* E g]1/2为纵坐标作图,再做切线。

同步带计算公式

带长的计算公式 圆弧齿同步带轮轮齿 Arc tooth Timing tooth 槽 型 节距 pb 齿槽深 hg 齿槽圆弧半 径 R 齿顶圆半角 r1 齿槽宽 s 两倍节顶距 2δ 齿形角3M 3 1.28 0.91 0.26~0.35 1.90 0.762 ≈14°5M 5 2.16 1.56 0.48~0.52 3.25 1.144 ≈14°8M 8 3.54 2.57 0.78~0.84 5.35 1.372 ≈14°14M 14 6.20 4.65 1.36~1.50 9.80 2.794 ≈14°20M 20 8.60 6.84 1.95~2.25 14.80 4.320 ≈14°直边齿廓尺寸 Dimension of linear type pulley

型号MXL XXL XL L H XH XXH 齿槽底宽 bw 0.84±0.051.14±0.051.32±0.053.05±0.104.19±0.137.90±0.1512.17±0.18齿槽深 hg 0.69 0.84 1.65 2.67 3.05 7.14 10.31 0 -0.05 -0.05 -0.08 -0.10 -0.13 -0.13 -0.13 齿槽半角 Φ+1.5° 20 25 25 20 20 20 20 齿根圆角 半径 rb 0.35 0.35 0.41 1.19 1.60 1.98 3.96 齿顶圆角 半径 rt 0.13 +0.05 0.30 +0.05 0.64 +0.05 1.17 +0.13 1.60 +0.13 2.39 +0.13 3.18 +0.13 0 0 0 0 0 0 0 两倍节顶 距2β 0.508 0.508 0.508 0.762 1.372 2.794 3.048

半导体材料能带测试及计算

半导体材料能带测试及计算 对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。 图1. 半导体的带隙结构示意图。 在研究中,结构决定性能,对半导体的能带结构测试十分关键。通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2): 1.紫外可见漫反射测试及计算带隙E g; 2.VB XPS测得价带位置(E v); 3.SRPES测得E f、E v以及缺陷态位置; 4.通过测试Mott-Schottky曲线得到平带电势; 5.通过电负性计算得到能带位置. 图2. 半导体的带隙结构常见测试方式。 1.紫外可见漫反射测试及计算带隙 紫外可见漫反射测试 2.制样:

背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。 样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。 图3. 紫外可见漫反射测试中的制样过程图。 1.测试: 用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。测试完一个样品后,重新制样,继续进行测试。 ?测试数据处理 数据的处理主要有两种方法:截线法和Tauc plot法。截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。两者之间存在E g(eV)=hc/λg=1240/λg(nm)的数量关系,可以通过求取λg来得到E g。由于目前很少用到这种方法,故不做详细介绍,以下主要来介绍Tauc plot法。 具体操作: 1、一般通过UV-Vis DRS测试可以得到样品在不同波长下的吸收,如图4所示; 图4. 紫外可见漫反射图。

通过透射率求光学带隙

已知透射光谱及相关数据,求吸收光谱和禁带宽度Eg 首先,根据相应样品的透射光谱,求出吸收系数α。其次,我们用2)(ναh 对光子能量(νh )做图,然后经过线形拟合,将线性区外推到横轴上的截距就得到禁带宽度 Eg 。 具体操作过程如下: (1)根据透射光谱(T )和相应薄膜厚度(d ) 计算得到吸收系数 计算公式如下: ()d T //1ln =α;其中,如果透射光谱中纵坐标以100为完全透过率,则上式中数值1改为100;d 为相应薄膜厚度,单位为nm 。 (2)求出光子能量ν h 。公式如下:)()(1240eV nm c h h λλν== (3)求出2)(ναh (4)以2)(ναh 为纵坐标,以νh 为横坐标作图,得到的相应 图一: (5)选择预线性拟合的范围,点击(注意,只适用Origin75)Tools ,Liear fit ,settings ,在Points 中填入数字2;在Range 中填入数字范围(0~200);点击Operation ,点击Fit 按键;在Find Y 中输入数字0,点击Find X 按键,得到横坐标交点数值E g 。

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0.000 0.005 0.0100.0150.0200.025 (a h υ)2 (e V 2n m -2)Photon energy (eV) C 图 一 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0.000 0.005 0.0100.0150.0200.025 (a h υ)2 (e V 2n m -2)Photon energy (eV) 图 二

根据紫外-可见光谱计算半导体能带Eg

根据紫外-可见光谱计算半导体能带Eg 光学吸收系数满足方程:α=(A/hν)(hν-Eg)1/2,其中 A 是比例常数,hν是光子能量,Eg 是ZnO的能隙。Eg可以通过画(αhν)2与hν的曲线,然后把线性部分延长到α=0得出。这些数据先用excel计算出来,再导入origin画出曲线图,然后做切线,切线与和横坐标的交点数值就是禁带宽度 在origin中做曲线的切线的话~那个切点是怎么确定的 下一个画切线的插件targent,它会自动画,切点选一个最陡峭的点 1.薄膜:需要的数据:薄膜厚度d,透过谱T%,并且还要知道半导体是直接还是间接型。首先需要求吸收系数(absorption coefficiency, a) a=-ln(T%)/d A α= d hv的计算在origin里进行,大概可以使用hv=1240/(wavelength(nm))得到 间接半导体:纵坐标为(ahv)^2,横坐标为hv 直接半导体:纵坐标为(ahv)^(1/2),横坐标为hv 最后,做出曲线的切线(这方面我是自己拉一条直线),与横轴的交点就是Eg。 2.粉体:需要的数据:粉体的漫反射谱Rx。同样也需要换算成吸收系数,使用a=(1-Rx)2/2Rx (这个就是Kubelka-Munk Function)。其他的就是按照薄膜同样的方法进行了。 当然,这些方法都是近似的,其中还会存在粉体颗粒对光的散射,薄膜岛状结构对光的散射而对最后结果产生的误差,所以,在研究化学和材料方面可以作为一定知道的数据。 方法1:利用紫外可见漫反射测量中的吸光度与波长数据作图,利用截线法做出吸收波长阈值λg(nm), 利用公式Eg=1240/λg (eV) 计算禁带宽度。 方法2:利用(Ahν)2 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用(Ahν)0.5 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为直 接半导体禁带宽度值。A (Absorbance) 即为紫外可见漫反射中的吸光度。 方法3:利用(αhν)2 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用(αhν)0.5 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为 直接半导体禁带宽度值。α(Absorption Coefficient ) 即为紫外可见漫反射中的吸收系数。α与A成正比。 方法4:利用[F(R∞)hν]2 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用 [F(R∞)hν]0.5 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度

半导体材料能带测试及计算

半导体材料能带测试及计算对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。 图1. 半导体的带隙结构示意图。 在研究中,结构决定性能,对半导体的能带结构测试十分关键。通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2): 1.紫外可见漫反射测试及计算带隙E g; 2.VB XPS测得价带位置(E v); 3.SRPES测得E f、E v以及缺陷态位置; 4.通过测试Mott-Schottky曲线得到平带电势; 5.通过电负性计算得到能带位置.

图2. 半导体的带隙结构常见测试方式。 1.紫外可见漫反射测试及计算带隙 紫外可见漫反射测试 2.制样: 背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。 样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。 图3. 紫外可见漫反射测试中的制样过程图。 1.测试:

用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。测试完一个样品后,重新制样,继续进行测试。 ?测试数据处理 数据的处理主要有两种方法:截线法和Tauc plot法。截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。两者之间存在E g(eV)=hc/λg=1240/λg(nm)的数量关系,可以通过求取λg来得到E g。由于目前很少用到这种方法,故不做详细介绍,以下主要来介绍Tauc plot法。 具体操作: 1、一般通过UV-Vis DRS测试可以得到样品在不同波长下的吸收,如图4所示; 图4. 紫外可见漫反射图。 2. 根据(αhv)1/n = A(hv – Eg),其中α为吸光指数,h为普朗克常数,v为频率,Eg为半导体禁带宽度,A为常数。其中,n与半导体类型相关,直接带隙半导体的n取1/2,间接带隙半导体的n为2。

详解PFC电感的计算

详解PFC电感的计算 时间:2011-10-11 来源:作者: 关键字:PFC详解电感计算 中心议题: Boost功率电路的PFC连续工作模式的基本关系 临界连续Boost电感设计 通常Boost功率电路的PFC有三种工作模式:连续、临界连续和断续模式。控制方式是输入电流跟踪输入电压。连续模式有峰值电流控制,平均电流控制和滞环控制等。本文介绍Boost功率电路的PFC连续工作模式的基本关系及临界连续Boost电感设计。 连续模式的基本关系 1. 确定输出电压Uo 输入电网电压一般都有一定的变化范围(Uin±Δ%),为了输入电流很好地跟踪输入电压,Boost级的输出电压应当高于输入最高电压的峰值,但因为功率耐压由输出电压决定,输出电压一般是输入最高峰值电压的1.05~1.1倍。例如,输入电压220V,50Hz交流电,变化范围是额定值的20%(Δ=20),最高峰值电压是220×1.2× 1.414=373.45V。输出电压可以选择390~410V。 2. 决定最大输入电流 电感应当在最大电流时避免饱和。最大交流输入电流发生在输入电压最低,同时输出功率最大时

其中:Uimin -最低输入电压;η-Boost级效率,通常在95%以上。 3. 决定工作频率 由功率器件,效率和功率等级等因素决定。例如输出功率1.5kW,功率管为MOSFET,开关频率70~100kHz。 4. 决定最低输入电压峰值时最大占空度 因为连续模式Boost变换器输出Uo与输入Uin关系为,所以 从上式可见,如果Uo选取较低,在最高输入电压峰值时对应的占空度非常小,由于功率开关的开关时间限制(否则降低开关频率),可能输入电流不能跟踪输入电压,造成输入电流的THD加大。 5. 求需要的电感量 为保证电流连续,Boost电感应当大于 其中:,k=0.15~0.2。 6. 利用AP法选择磁芯尺寸 根据电磁感应定律,磁芯有效截面积

半导体材料光学带隙的计算

半导体材料光学带隙的计算 禁带宽度就是半导体的一个重要特征参量,其大小主要决定于半导体的能带结构,即与晶体结构与原子的结合性质等有关。禁带宽度的大小实际上就是反映了价电子被束缚强弱程度的一个物理量,也就就是产生本征激发所需要的最小能量。 禁带宽度可以通过电导率法与光谱测试法测得,为了区别用电导率法测得禁带宽度值,用光谱测试法测得的禁带宽度值又叫作光学带隙。 下面以光谱测试法为例介绍半导体材料光学带隙的计算方法: 对于半导体材料,其光学带隙与吸收系数之间的关系式为[1]: αhν=B(hν-Eg)m ( 1) 其中α为摩尔吸收系数,h为普朗克常数,ν为入射光子频率, B 为比例常数, Eg为半导体材料的光学带隙,m的值与半导体材料以及跃迁类型相关: (1)当m=1/2 时,对应直接带隙半导体允许的偶极跃迁; ( 2)当m=3/2 时,对应直接带隙半导体禁戒的偶极跃迁; ( 3)当m=2 时,对应间接带隙半导体允许的跃迁; ( 4)当m=3 时,对应间接带隙半导体禁戒的跃迁。 下面介绍两种禁带宽度计算公式的推导方法: 推导1:根据朗伯比尔定律可知: A=αb c (2) 其中 A 为样品吸光度,b 为样品厚度,c 为浓度,其中bc 为一常数,若B1=(B/bc)1/m,则公式(1)可为: (Ahν)1/m=B1(hν-Eg) (3) 根据公式(3),若以hν 值为x 轴,以(Ahν)1/m 值为y 轴作图,当y=0 时,反向延伸曲线切线与x 轴相交,即可得半导体材料的光学带隙值Eg。 推导2:根据K-M 公式可知: F(R∞)=(1- R∞)2/2 R∞=K/S (4)

同步带轮计算公式

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 各种同步带轮的计算公式 同步带轮的节圆直径计算: Dp=p×Z/∏ Dp:节径 Z :齿数 ∏:圆周率 同步带轮实际外圆直径计算: De= Dp-2δ Dp:节径 δ:节顶距 同步带轮中心距及同步带节线长计算

L’ :近似皮带节线长 C :两轴的中心距 Dp :大带轮的节径 dp :小带轮节径 中心距的确定 B= L – 1.57 (Dp + dp) L:皮带节线长 单位(mm) 规格齿数节径 d外径 do 档边直径 df 档边内径 db 档边厚度 h 22-8M2256.0254.656145 1.5 23-8M2358.5757.26448 1.5 24-8M2461.1259.756852 1.5 25-8M2563.6662.297555 1.5 26-8M2666.2164.847555 1.5 27-8M2768.7567.387555 1.5 28-8M2871.369.938060 1.5 30-8M3076.3975.028264 1.5 32-8M3281.4980.129070 1.5 34-8M3486.5885.219878 1.5 36-8M3691.6790.39878 1.5 38-8M3896.7795.410688 1.5 40-8M40101.86100.49108.590 1.5 42-8M42106.95105.5811595 1.5 44-8M44112.05110.68123103 1.5 46-8M46117.14115.77123103 1.5 48-8M48122.23120.86131111 1.5

同步带及带轮选型计算

一,竖直同步带及带轮选型计算: 竖直方向设计要求:托盘及商品自重20kg (196N ),滑块运动1250mm 所需时间6s 。 1,设计功率P K P A ?=d w w s m kg N kg kw Fv P 4.45)(9 .0625.1/8.920)(103=÷??=?=-η A K 根据工作情况查表取1.5 w w P K P A 1.684.455.1d =?=?= 2,带型选择 根据w P 1.68d =和带轮转速r/min 100=n 查询表格选择5M 圆弧带 3,带轮齿数z 及节圆直径1d 根据带速,和安装尺寸允许,z 尽可能选择较大值,通过查表选择 5M 带,齿数z=26,节圆直径m m 38.411=d ,外圆直径m m 24.400=d 4,带速v m a x 1/22.0100060v s m n d v <=?=π 5,传动比 主动从动带轮一致,传动比i=1,主动轮与从动轮同一个型号 6,初定中心距0a mm 1644a 0= 7,初定带的节线长度p 0L 及其齿数p z

mm a d d d d a L p 34184)()(2202 212100=-+++≈π 8,实际中心距a mm L L op 16452a a p 0≈-+= 9,基准额定功率0P 可查表得w 50P 0= 10,带宽S b mm 06.10b 14.10 0S =≥P K K P b Z L d S (基准带宽9b S0=时) 11,挡圈的设置 5M 带轮,挡圈最小高度K=2.5~3.5 R=1.5 挡圈厚度t=1.5~2 挡圈弯曲处直径mm R d 24.432d 0w =+= 挡圈外径m m 24.482d f =+=K d w 竖直方向同步带轮: 带轮型5M 圆弧齿,节径41.38mm ,齿数26,外径40.24mm ,带轮总宽13.3mm ,挡圈外径48.24mm ,带轮孔10mm ,固定方式紧定螺钉(侧边紧定螺钉固定台宽7mm ,螺纹孔m3,两个成90度) 竖直方向同步带: 带型5M 圆弧带,带宽10.3mm ,节线长度约3418mm 二,电机输出同步带轮选型计算: 功率,转速,带轮选择与竖直方向相同

(完整版)半导体材料光学带隙的计算

半导体材料光学带隙的计算 禁带宽度是半导体的一个重要特征参量,其大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关。禁带宽度的大小实际上是反映了价电子被束缚强弱程度的一个物理量,也就是产生本征激发所需要的最小能量。 禁带宽度可以通过电导率法和光谱测试法测得,为了区别用电导率法测得禁带宽度值,用光谱测试法测得的禁带宽度值又叫作光学带隙。 下面以光谱测试法为例介绍半导体材料光学带隙的计算方法: 对于半导体材料,其光学带隙和吸收系数之间的关系式为[1]: αhν=B(hν-Eg)m (1) 其中α为摩尔吸收系数,h为普朗克常数,ν为入射光子频率, B 为比例常数,Eg为半导体材料的光学带隙,m的值与半导体材料以及跃迁类型相关: (1)当m=1/2 时,对应直接带隙半导体允许的偶极跃迁; (2)当m=3/2 时,对应直接带隙半导体禁戒的偶极跃迁; (3)当m=2 时,对应间接带隙半导体允许的跃迁; (4)当m=3 时,对应间接带隙半导体禁戒的跃迁。 下面介绍两种禁带宽度计算公式的推导方法: 推导1:根据朗伯比尔定律可知: A=αb c (2) 其中 A 为样品吸光度,b 为样品厚度,c 为浓度,其中bc 为一常数,若B1=(B/bc)1/m,则公式(1)可为: (Ahν)1/m=B1(hν-Eg) (3) 根据公式(3),若以hν 值为x 轴,以(Ahν)1/m 值为y 轴作图,当y=0 时,反向延伸曲线切线与x 轴相交,即可得半导体材料的光学带隙值Eg。 推导2:根据K-M 公式可知: F(R∞)=(1- R∞)2/2 R∞=K/S (4)

其中R∞为绝对反射率(在日常测试中可以用以硫酸钡做参比测得的样品相对反射率代替[2]),K 为吸收系数,S 为散射系数。若假设半导体材料分散完全或者将样品置于600入射光持续光照下可认为K=2α[3]。因在一定温度下样品散射系数为一常数,假设比例常数为B2,,我们可通过公式(4)和公式(1)可得:(F(R∞) hν)1/m=B2(hν-Eg) (5) 根据公式(5),若以hν 值为x 轴,以(F(R∞) hν)1/m值为y 轴作图,当y=0 时,反向延伸曲线切线与x 轴相交,即可得半导体材料的光学带隙值Eg。 推导方法1和推导方法2分别为通过测量样品吸收光谱和反射光谱值来计算半导体材料的光学带隙。下面介绍以直接光学带隙半导体材料(m=1/2)S1 和S2 为例,通过推导方法 1 计算半导体材料的光学带隙值。首先测得S1 和S2 的紫外吸收光谱,如图1 所示。然后通过吸收光谱做(Ahν)2-hν 线性关系图,如图2 所示。沿曲线做反向切线至y=0 相交,所得值为光学带隙值,由图 2 即可得Eg s1=3.0ev;Eg s2=3.1ev。

光催化剂禁带宽度值计算方法

光催化剂光催化剂禁带宽度值禁带宽度值Eg 计算计算方法方法方法 方法1:利用紫外可见漫反射测量中的吸光度与波长数据作图,利用截线法做出吸收波长阈值λg(nm),利用公式 Eg=1240/λg (eV) 计算禁带宽度。 方法2: 利用 (Ah ν)2 对 h ν 做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用 (Ah ν)0.5 对h ν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为直接半导体禁带宽度值。A (Absorbance) 即为紫外可见漫反射中的吸光度吸光度 吸光度。 方法3:利用 (αh ν)2 对h ν 做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用 (αh ν)0.5 对 h ν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为直接半导体禁带宽度值。α (Absorption Coefficient ) 即为紫外可见漫反射中的吸收系数吸收系数 吸收系数。α与A 成正比。 方法4:利用 [F(R ∞)h ν]2 对 h ν 做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用 [F(R ∞)h ν]0.5 对h ν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为直接半导体禁带宽度值。 F(R ∞) 即为Kubelka-Munk 函数函数,,简写为K-M 函数函数,∞∞∞?=R R R F 2/)1() (2 R ∞ 即为相对漫反射率即为相对漫反射率,,简称漫反射率简称漫反射率,)(/)(''参比样品∞∞∞=R R R R ‘∞ 即为绝对漫反射率绝对漫反射率,,常用参比样品为BaSO 4,其绝对漫反射率R ‘∞约等于1。 漫反射吸光度A 与漫反射率R ∞ 之间关系为之间关系为::A=log(1/ R ∞)

同步带的计算

同步带轮一般由铝合金, 45#钢, 铜,尼龙等材料加工而成,其中铝合金和45#钢最为常见。广泛用于自动化设备、机床、医疗、激光、纺织、印刷、食品包装等机械带传动中。 下表附同步带轮的基本信息: 同步带轮分为标准同步带轮和非标同步带轮。 标准同步带轮是按照国际统一标准,其齿数、适应皮带宽度、带轮形状、轴孔规格、轴孔径等各参数是固定值。 非标品,是工程师在标准品的基础上改动某些数值,或是完全根据需求做出的新设计.

同步带轮规格型号 同步带轮规格型号众多,按齿形大致可以分为:方型齿同步带轮、圆弧齿同步带轮、梯形齿同步带轮。 一、方型齿同步带轮规格型号 MXL、 XL、L、H、XH、 XXH 方型齿同步带轮是目前市场是运用范围最广的。 二、半圆弧齿同步带轮规格型号 S2M、S3M、S4.5M、S5M、S8M、S14M、8YU 半圆弧齿同步带轮是高扭矩同步还是高精度同步,生产精度要求高。 三、全圆弧齿同步带轮规格型号 HTD3M、 HTD5M、 HTD8M、 HTD14M、 HTD20M 全圆弧齿同步带轮传动精度高,噪音小。 四、精确圆弧齿同步带轮规格型号 1.5GT、 2GT、 3GT、 5GT 该齿型同步带轮一般用于高精传动,一般运用在自动化控制设备上。 五、修正圆弧齿同步带轮规格型号 P2M、P3M、 P5M、 P8M 修正圆弧齿同步带轮齿型为兔牙型,转弯效果好,适合高速传动。一般用于机械手设备。 六、梯形齿同步带轮规格型号 T2.5、T5、T10、T20 T型为全梯型齿,较适合轻载传动。 AT5、AT10、AT20 AT型的齿型跟T型的差别底部为圆弧齿,传动会更精密一点,传动间隙小,当然噪音也会小些。适合重载传动。 七、同步带轮计算公式

升压电感的计算方法

基于L6562的高功率因数boost电路的设计 0 引言 Boost是一种升压电路,这种电路的优点是可以使输入电流连续,并且在整个输入电压的正弦周期都可以调制,因此可获得很高的功率因数;该电路的电感电流即为输入电流,因而容易调节;同时开关管门极驱动信号地与输出共地,故驱动简单;此外,由于输入电流连续,开关管的电流峰值较小,因此,对输入电压变化适应性强。 储能电感在Boost电路起着关键的作用。一般而言,其感量较大,匝数较多,阻抗较大,容易引起电感饱和,发热量增加,严重威胁产品的性能和寿命。因此,对于储能电感的设计,是Boost电路的重点和难点之一。本文基于ST公司的L6562设计了一种Boost电路,并详细分析了磁性元器件的设计方法。 1 Boost电路的基本原理 Boost电路拓扑如图1所示。图中,当开关管T导通时,电流,IL流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容Cout 放电为负载提供能量;而当开关管T关断时,由于线圈中的磁能将改变线圈L两端的电压VL卡及性,以保持其电流IL不突变。这样,线圈L转化的电压VL与电源Vin串联,并以高于输出的电压向电容和负载供电,如图2所示是其电压和电流的关系图。图中,Vcont 为功率开关MOSFET的控制信号,VI为MOFET两端的电压,ID为流过二极管D的电流。以电流,IL作为区分,Boost电路的工作模式可分为连续模式、断续模式和临界模式三种。 分析图2,可得: 式(2)即为Boost电路工作于连续模式和临界模式下的基本公式。

式(2)即为Boost电路工作于连续模式和临界模式下的基本公式。 2 临界状态下的Boost-APFC电路设计 基于L6562的临界工作模式下的Boost-APFC电路的典型拓扑结构如图3所示,图4所示是其APFC工作原理波形图。 利用Boost电路实现高功率因数的原理是使输入电流跟随输入电压,并获得期望的输出电压。因此,控制电路所需的参量包括即时输入电压、输入电流及输出电压。乘法器连接输入电流控制部分和输出电压控制部分,输出正弦信号。当输出电压偏离期望值,如输出电压跌落时,电压控制环节的输出电压增加,使乘法器的输出也相应增加,从而使输入电流有效值也相应增加,以提供足够的能量。在此类控制模型中,输入电流的有效值由输出电压控制环节实现调制,而输入电流控制环节使输入电流保持正弦规律变化,从而跟踪输入电压。本文在基于此类控制模型下,采用ST公司的L6562作为控制芯片,给出了Boost-APFC电路的设计方法。 L6562的引脚功能如下: INV:该引脚为电压误差放大器的反相输入端和输出电压过压保护输入端; COMP:该引脚同时为电压误差放大器的输出端和芯片内部乘法器的一个输人端。反馈补偿网络接在该引脚与引脚INV之间; MULT:该引脚为芯片内部乘法器的另一输入端; CS:该脚为芯片内部PWM比较器的反相输入端,可通过电阻R6来检测MOS管电流; ZCD:该脚为电感电流过零检测端,可通过一限流电阻接于Boost电感的副边绕组。R7的选取应保证流入ZCD引脚的电流不超过3 mA;

N掺杂TiO2光催化剂的紫外-可见漫反射光谱分析

N掺杂TiO2光催化剂的微结构与吸光特性研究 唐玉朝1,2*,黄显怀1,李卫华1 (1. 安徽建筑工业学院环境科学与工程系, 合肥230022 ; 2. 中国科学技术大学化学 与材料科学学院,合肥230026) 摘要:以紫外可见漫反射光谱(UV-VIS-DRS)和X射线光电子能谱(XPS)分析和研究了四种方法制备的N掺杂TiO2光催化剂的结构,即水解法(N/TiO2-H)、氨热还原法(N/TiO2-A)、机械化学法(N/TiO2-M)和尿素热处理法(N/TiO2-T)等。结果表明,N/TiO2-H和N/TiO2-T两种催化剂在490nm处有吸收带边,可见光激发途径是掺杂的N 以填隙方式形成的杂质能级吸收电子发生的跃迁引起的;而N/TiO2-A和N/TiO2-M两种催化剂在整个可见光区域内具有可见光吸收,其对可见光的激发途径是掺杂N和氧空缺共同作用的结果。理论计算的N杂质能级位于价带上0.75eV,与实验观察到的吸收带边结果十分吻合。XPS结果表明,几种催化剂的N1s结合能位置都在399eV 附近,显示为填隙掺杂的N原子。填隙掺杂的N/TiO2,其Ti原子的2p结合能与未掺杂的TiO2相比增加了+0.3-+0.6eV, 而O1s电子的结合能增加了+0.2-+0.5eV, 这是因为填隙的N原子夺取Ti和O的电子,Ti和O原子周围的电子密度降低了。电子能谱和吸光特性的研究都表明,掺杂的机理是在TiO2晶格内形成N原子的填隙。 关键词:TiO2;光催化;N掺杂;填隙;UV-VIS-DRS;XPS;杂质能级 Studies on the structures and light absorbance of nitrogen-doped titanium dioxides photocatalyst Yu-chao Tang1,2*, Xian-huai Huang1, Wei-hua Li1 (1.Department of Environmental Science and Engineering, Anhui University of Architecture, Hefei 230022, P R China;2. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P R China) Abstract:Nitrogen doped dioxide titanium photocatalysts (N/TiO2) had been prepared by various methods: hydrolysis of tetrabutyl titanate (N/TiO2-H), ammonia thermal treatment of titanium dioxide (N/TiO2-A), mechanochemica1 treatment of titanium 资助项目:国家自然科学基金(50908001),安徽省优秀青年科技基金(10040606Y29)。 作者简介:唐玉朝,男,博士,副教授,1975年生。*通讯联系人,tangyc@https://www.360docs.net/doc/f69170597.html,

复旦固体物理讲义-18能带计算方法简介

上讲回顾 ?金属、绝缘体和半导体 *电子如何填充能带→可用原胞内电子填充判断? *满带、空带、禁带。满带不导电! ?结构因子与布里渊边界能级简并的分裂*物理原因同X射线衍射的消光现象→原胞内等价原 子波函数在布里渊区边界反射相干 ?三维空晶格模型的能带结构 *为何发生能带重叠?能带简约图如何得到?由于3D 布里渊区的复杂结构,与1D不同,高布里渊区能带 E(k+K)并不一定比低布里渊区能带高,例子 *如何给出能带结构?沿B区边界高对称轴,因为能 带在布里渊区边界上简并被打开,发生畸变。可反 映能带特征。特别对金属,除此外与自由电子类似http://10.107.0.68/~jgche/能带计算方法简介1

本讲要解决的问题及所涉及的相关概念?如何从3D空晶格模型过渡到典型的金属能带? *布里渊区边界简并是否打开? ?典型的半导体能带结构? *半导体能带特征 *直接带隙、间接带隙、直接跃迁、带间跃迁 ?能带结构如何得到?→计算→如何计算能带? #对相互作用的合理地截断与近似 #对基函数的合理地取舍与近似 ?两种主要的能带结构计算方法物理思想*赝势方法 *紧束缚方法 http://10.107.0.68/~jgche/能带计算方法简介2

第18讲、能带计算方法简介 1.空晶格能带过渡到典型的金属能带 2.半导体能带结构 3.能带计算方法的物理思想 4.近自由电子近似——平面波方法 5.举例——只取两个平面波 6.平面波方法评论 7.赝势 http://10.107.0.68/~jgche/能带计算方法简介3

1、空晶格能带过渡到金属能带http://10.107.0.68/~jgche/能带计算方法简介4

磁路及电感计算

磁路及电感计算

————————————————————————————————作者:————————————————————————————————日期:

第三章 磁路和电感计算 不管是一个空心螺管线圈,还是带气隙的磁芯线圈,通电流后磁力线分布在它周围的整个空间。对于静止或低频电磁场问题,可以根据电磁理论应用有限元分析软件进行求解,获得精确的结果,但是不能提供简单的、指导性的和直观的物理概念。在开关电源中,为了用较小的磁化电流产生足够大的磁通(或磁通密度),或在较小的体积中存储较多的能量,经常采用一定形状规格的软磁材料磁芯作为磁通的通路。因磁芯的磁导率比周围空气或其他非磁性物质磁导率大得多,把磁场限制在结构磁系统之内,即磁结构内磁场很强,外面很弱,磁通的绝大部分经过磁芯而形成一个固定的通路。在这种情况下,工程上常常忽略次要因素,只考虑导磁体内磁场或同时考虑较强的外部磁场,使得分析计算简化。通常引入磁路的概念,就可以将复杂的场的分析简化为我们熟知的路的计算。 3.1 磁路的概念 从磁场基本原理知道,磁力线或磁通总是闭合的。磁通和电路中电流一样,总是在低磁阻的通路流通,高磁阻通路磁通较少。 所谓磁路指凡是磁通(或磁力线)经过的闭合路径称为磁路。 3.2 磁路的欧姆定律 以图3.1(a)为例,在一环形磁芯磁导率为μ的磁芯上,环的截面积A ,平均磁路长度为l ,绕有N 匝线圈。在线圈中通入电流I ,在磁芯建立磁通,同时假定环的内径与外径相差很小,环的截面上磁通是均匀的。根据式(1.7),考虑到式(1.1)和(1.3)有 F NI Hl Bl A l R m =====μφμφ (3.1) 或 φ=F /R m (3.2) 式中F =NI 是磁动势;而 R m =l A μ (3.3) R m —称为磁路的磁阻,与电阻的表达式相似,正比于路 的长度l ,反比于截面积A 和材料的磁导率μ;其倒数称为磁导 G m m R A l == 1 μ (3.3a) 式(3.1)即为磁路的欧姆定律。在形式上与电路欧姆定律相似,两者对应关系如表3.1所示。 磁阻的单位在SI 制中为安/韦,或1/亨;在CGS 制中为安/麦。磁导的单位是磁阻单位的倒数。同理,在磁阻两端的磁位差称为磁压降U m ,即 U m =φR m =BA ×l S μ=Hl (安匝) (3.4) 引入磁路以后,磁路的计算服从于电路的克希荷夫两个基本定律。根据磁路克希菏夫 表3.1 磁电模拟对应关系 磁 路 电 路 磁动势F 电动势 E 磁通φ 电流I 磁通密度B 电流密度J 磁阻R m =l /μA 电阻R =l/γA 磁导G m =μA/l 电导G =γA/l 磁压降U m =Hl 电压U=IR

紫外光漫反射测带隙

REVISTA MEXICANA DE F′ISICA S53(5)18–22SEPTIEMBRE2007 Use of diffuse re?ectance spectroscopy for optical characterization of un-supported nanostructures A.Escobedo Morales,E.S′a nchez Mora,and U.Pal Instituto de F′?sica,Benem′e rita Universidad Aut′o noma de Puebla, Apartado Postal J-48,72570,Puebla,Pue.,M′e xico, e-mail:aescobe@sirio.ifuap.buap.mx,esanchez@sirio.ifuap.buap.mx, upal@sirio.ifuap.buap.mx Recibido el7de julio de2006;aceptado el7de diciembre de2006 Optical properties of un-supported or powdered nanostructures are frequently determined through UV-Vis absorption spectroscopy of their dispersed solutions in liquid media.Though the peak position of the absorption band of semiconductor nanostructures could be de?ned well from such measurements,precise determination of their band gap energies(E g)is dif?cult.However,using the Kubelka-Munk treatment on the diffuse re?ectance spectra of such powdered semiconductor nanostructures,it is possible to extract their E g unambiguously.We discussed the advantages of using Diffuse Re?ectance Spectroscopy(DRS)over UV-Vis absorption spectroscopy in powdered nanostructured materials. Un-doped and In-doped ZnO nanostructures of needle-like morphology,grown by a low-temperature hydrothermal technique are used for the optical studies.Possible sources of mistake in estimating E g from UV-Vis absorption spectra of dispersed samples are discussed. Keywords:Diffuse re?ectance spectroscopy;nanostructures;zinc oxide. Frecuentemente las propiedades′o pticas de nanoestructuras en forma de polvo o no soportadas son determinadas dispersando el material en medios l′?quidos y efectuando espectroscopia de absorci′o n UV-Vis.Aunque la posici′o n de la banda de absorci′o n para estos semiconductores nanoestructurados puede estar bien de?nida,la determinaci′o n precisa del valor de la energ′?a de la banda prohibida(E g)es dif′?cil.Sin embargo,usando el formalismo de Kubelka-Munk en los espectros de re?ectancia difusa obtenidos de las muestras,es posible conocer E g sin ambig¨u edad.Aqu′?se discuten las ventajas de usar la espectroscopia de re?ectancia difusa(DRS)sobre la espectroscopia de absorci′o n UV-Vis en semiconductores nanoestructurados en forma de polvo.Nanoestructuras de ZnO con morfolog′?a tipo aguja,dopadas y no-dopadas con indio crecidas por una t′e cnica hidrot′e rmica a baja temperatura son usadas para los estudios′o pticos.Posibles fuentes de error en la estimaci′o n de E g usando los espectros de absorci′o n UV-Vis de muestras dispersadas son discutidas. Descriptores:Espectroscopia de re?ectancia difusa;nanoestructuras;oxido de zinc. PACS:78.40.-q;78.67.Bf;78.67.-n 1.Introduction The energy gap(E g)is an important feature of semicon-ductors which determines their applications in optoelectron-ics[1-4].The UV-Vis absorption spectroscopy is frequently used to characterize semiconductors thin?lms[5].Due to low scattering in solid?lms,it is easy to extract the E g values from their absorption spectra knowing their thickness.How-ever,in colloidal samples,the scattering effect is enhanced since more super?cial area is exposed to the light beam.In normal incidence mode,dispersed light is counted as ab-sorbed light and the technique(optical absorption)does not distinguish between the two phenomena.On the other hand, it is common to obtain powdered samples instead of thin?lms or colloids,and frequently UV-Vis absorption spectroscopy is carried out dispersing the sample in liquid media like water, ethanol or methanol.If the particle size of the sample is not small enough,it precipitates and the absorption spectrum is even more dif?cult to interpret.In order to avoid these com-plications,it is desirable to use DRS,which enables to obtain E g of un-supported materials[6]. The theory which makes possible to use DR spectra was proposed by Kubelka and Munk[7].Originally they pro-posed a model to describe the behavior of light traveling in-side a light-scattering specimen,which is based on the fol-lowing differential equations: ?di=?(S+K)idx+Sjdx dj=?(S+K)jdx+Sidx(1) where i and j are the intensities of light traveling inside the sample towards its un-illuminated and illuminated surfaces, respectively;dx is the differential segment along the light path;S and K are the so called K-M scattering and absorp-tion coef?cients,respectively.These last two quantities have no direct physical meaning on their own,even thought they appear to represent portions of light scattered and absorbed, respectively,per unit vertical length[8].This model holds when the particle size is comparable to,or smaller than the wavelength of the incident light,and the diffuse re?ection no longer allows to separate the contributions of the re?ection, refraction,and diffraction(i.e.scattering occurs). In the limiting case of an in?nitely thick sample,thick-ness and sample holder have no in?uence on the value of re-?ectance(R).In this case,the Kubelka-Munk equation at any wavelength becomes: K S = (1?R∞)2 2R∞ ≡F(R∞);(2)

相关文档
最新文档