频压变换器LM2907

频压变换器LM2907
频压变换器LM2907

LM2907频率/电压转换器原理及应用(图)

1引言

在测量转速(频率)时,目前多采用数字电路,但有些场合则需要转速(频率)的变化与模拟信号输出相对应,这样便可在自动控制系统实验中用频/压转换器件代替测速发电机,从而使实验设备简化。美国国家半导体公司推出的速度(频率)/电压转换芯片

LM2907/LM2917只需接少量的外围元件即可构成模拟式转速表,可用于测量电机转速,实现汽车超速报警等。

2LM2907芯片介绍

LM2907为集成式频率/电压转换器,芯片中包含了比较器、充电泵、高增益运算放大器,能将频率信号转换为直流电压信号。LM2917与LM2907基本相同,区别是:LM2917

内部有一只稳压管,用于提高电源的稳定性。

2.1主要特点

LM2917进行频率倍增时只需使用一个RC网络;以地为参考点的转速计(频率)输入可直接从输入管脚接入;运算放大器/比较器采用浮动三极管输出;最大50mA的输出电流可驱动开关管、发光二极管等;内含的转速计使用充电泵技术,对低纹波有频率倍增功能;比较器的滞后电压为30mV利用这个特性可以抑制外界干扰;输出电压与输入频率成正比,线性度典型值为±0.3%;具有保护电路,不会受高于Vcc值或低于地参考点输入信号的损伤;在零频率输入时,LM2907的输出电压可根据外围电路自行调节;当输入频率达到或超过某一给定值时,可将输出用于驱动继电器、指示灯等负载。

2.2电性能参数

LM2907的主要电性能参数如表1所列:

表1 LM2907的主要电性能参数(Vcc=12VDC,TA=25)

2.3引脚排列及内部结构

LM2907/LM2917有DIP8和DIP14两种封装形式。LM2907的DIP14的内部结构如图1所示,DIP8的内部结构及各引脚功能可参考图2。各引脚功能如下:

●1脚(F)和11脚(IN-)为运算放大器/比较器的输入端;

●2脚接充电泵的定时电容(C1);

●3脚接充电泵的输出电阻和积分电容(R1/C2);

●4脚(IN+)和10脚(UF1)为运算放大器的输入端;

●5脚为输出晶体管的发射极(U0);

●8脚为输出晶体管的集电极,一般接电源(UC);

●9脚为正电源端(VCC);

●12脚为接地端(GND);

●6,7,13,14脚未用。

2.4工作原理

当充电泵把从输入级输入来的频率转换成为直流电压时,需外接定时电容C1、输出电阻R1以及积分电容或滤波电容C2,当第一级输出的状态发生改变时(这种情况可能发生在输入端上有合适的过零电压或差分输入电压时),定时电容在电压差Vcc/2的两电压值之间被线性地充电或放电,在输入频率信号的半周期中,定时电容上的电荷变化量为C1Vcc/2,泵入电容中的平均电流或流出电容中的平均电流为:

△Q/T=ic(AVG)=fINC1VCC

输出电路把这一电流准确地送到负载电阻(输出电阻)R1中,R1电阻的另一端接地,这样滤波后的电流被滤波电容积分后得到输出电压:

Vo=VccfINC1R1K其中K为增益常数,典型值为1。电容C2的值取决于纹波电压的大小和实际应用中所需要的响应时间。

3应用电路

LM2907的典型应用电路如图2所示,在应用中需注意电阻R1和电容C1的选取。定时电容C1可为充电泵提供内部补偿,为了获得准确的转换结果,其值应大于500pF,太小的电容值会在R1上产生误差电流,特别在低温应用时更是如此。LM2907引脚3的输出电流是内部固定的,因此V0/R1值必须小于或等于此固定值。如果R1太大,将会影响引脚3的输出阻抗,频率/电压转换的线性度也会变差。此外,还要考虑输出纹波电压以及R1对R2值的影响,引脚3的纹波(VRIPPLE)可用下式计算:

VRIPPLE=(Vcc/2)(C1/C2)[1-(VccfINC1/I2)]

R1的选择与纹波无关,但响应时间,即输出Vout稳定在一个新值上需要的时间会随着纹波值的增加而增加,因此必须在纹波、响应时间和线性度之间仔细地进行权衡。另外,器件所允许的输入信号的最大频率由Vcc、C1和I2决定。

DIP14封装LM2907芯片的电路连接可参照图3,只需将管脚3、4,管脚11、12连接在一起即可。图中C1=1000pF,R1=100kΩ,C2=0.47μF。用示波器观察波形,可以发现电路输出的线性度、灵敏度、准确度都比较好。实际应用中的输入频率信号可以是三角波、方波、正弦波信号。在保证零穿越的情况下都能比较理想的实现频率/电压转换,输入信号的幅值最好在1V以上但不要超过电源电压。参考电压可以很好地调整输出的最小电压和带负载能力。

单片机-串并转换

功能实现 /*************************************************** 本例主要演示串行转换成并行的功能实现:通过LED灯的闪亮显示(附带电路图)。 ***************************************************/ //C语言格式 #include #define uchar unsigned char #define uint unsigned int uint i,j; uint date[] = {1,2,4,8,16,32,64,128}; //延时 void Delay(uint n){ for(i = 0; i

if(TI == 1){ TI = 0; Delay(5); } } } } //asm格式 ORG 0000H AJMP START ORG 0030H START: MOV SCON,#0H MOV 30H,#01H MOV 31H,#02H MOV 32H,#04H MOV 33H,#08H MOV 34H,#16 MOV 35H,#32 MOV 36H,#64 MOV 37H,#128 MOV R0,#30H MOV R2,#8 LOOP: MOV A,@R0 MOV SBUF,A L0: JNB TI,L0 CLR TI ACALL DELAY INC R0 DJNZ R2,LOOP SJMP START

基于单片机的数模转换设计

目录 1、系统方案.......................................... - 3 - 1.1、方案比较与选择............................... - 3 - 1.1.1、单片机选择与论证........................ - 3 - 1.1.2、显示器件选择与论证...................... - 3 - 1.1.3、键盘形式选择与论证...................... - 4 - 1.1.4排阻形式选择与论证........................ - 4 - 2理论分析与计算 ..................................... - 8 - 2.1、D/A转换器的主要技术指标......................... - 8 - 1.分辨率......................................... - 8 - 2.转换精度....................................... - 8 - 3.输出电压(或电流)的建立时间(转换速度) ...... - 8 - 4. 温度系数 2.2 数模转换器 2.2.1权电阻网络DAC的原理分析..................... - 9 - 3、电路与程序设计.................................. - 11 - 3.1.1、总体框图设计........................... - 11 - 3.1.2、显示电路............................... - 11 - 3.1.3、权电路................................. - 12 - 3.1.4、按键电路............................... - 13 - 3.1.5、驱动电路............................... - 14 -

串转并转换器1

一、题意分析及解决方案 1、课程设计名称及内容 应用STAR ES598PCI单板开发机系列接口芯片设计一个串转并转换器,熟悉串转并转换原理,掌握使用串并转换芯片扩展I/O口的实现方法。设计编写程序,循环点亮8个指示灯瞬间只有一个灯亮。观察实验结果,验证串并转换数据的正确性。 2、题意需求分析 根据题目给定的内容与要求可得:本实验需要用到的主要是控制数据输入的芯片、实现串并转换的芯片和用于显示的发光管。 本实验的核心部分是8位移位寄存器74HC164,它可以实现数据的串行输入和并行输出,达到数据从串行转换为并行的目的。为了方便控制74HC164的输入,考虑运用可编程接口芯片8255连接CPU和74HC164,实现数据的串行输入和CP脉冲的变化。同时,为了方便观察实验结果,使用74HC164移位寄存器输出接口连接8位发光二极管,显示并行输出结果。 3、解决问题的思路与方法 (1)硬件部分 程序用到的硬件芯片有8255、74HC164、发光二极管: 使用8255作为CPU和移位寄存器之间的接口电路来控制8位串行数据的输入,其本身的接口就可以支持输出的操作。而且8255的可编程并行接口,具有传输速度快效率高等优点,不需要附加外部电路便可和大多数并行传输数据的外部设备相连,数据的各位同时传送,使用十分方便。 74HC164是8位移位寄存器,当其中一个(或二个)选通串行输入端的低电平禁止进入新数据,并把第一个触发器在下一个时钟脉冲来后复位到低电平时,门控串行输入端(A 和B) 可完全控制输入数据。一个高电平输入后就使另一个输入端赋能,这个输入就决定了第一个触发器的状态。虽然不管时钟处于高电平或低电平时,串行输入端的数据都可以被改变,但只有满足建立条件的信息才能被输入。时钟控制发生在时钟输入由低电平到高电平的跃变上。为了减小传输线效应,所有输入端均采用二极管钳位。时钟 (CP) 每次由低变高时,数据右移一位,输入到 Q0, Q0 是两个数据输入端(DSA 和 DSB)的逻辑与,它将上升时钟沿之前保持一个建立时间的长度。主复位 (MR) 输入端上的一个低电平将使其它所有输入端都无效,同时非同步地清除寄存器,强制所有的

数模与模数转换器 习题与参考答案

第11章 数模与模数转换器 习题与参考答案 【题11-1】 反相运算放大器如图题11-1所示,其输入电压为10mV ,试计算其输出电压V O 。 图题11-1 解:输出电压为: mV mV V R R V IN F O 10010101 =?=-= 【题11-2】 同相运算放大器如图题11-2所示,其输入电压为10 mV ,试计算其输出电压V O 。 图题11-2 解:mV mV V R R V IN F O 110101111 =?=+=)( 【题11-3】 图题11-3所示的是权电阻D/A 转换器与其输入数字信号列表,若数字1代表5V ,数字0代表0V ,试计算D/A 转换器输出电压V O 。 11-3 【题11-4】 试计算图题11-4所示电路的输出电压V O 。 图题11-4 解:由图可知,D 3~D 0=0101 因此输出电压为:V V V V O 5625.151650101254 === )( 【题11-5】 8位输出电压型R/2R 电阻网络D/A 转换器的参考电压为5V ,若数字输入为,该转换器输出电压V O 是多少?

解:V V V V O 988.21532565100110012 58≈== )( 【题11-6】 试计算图题11-6所示电路的输出电压V O 。 图题11-6 解:V V V D D V V n n REF O 5625.1516501012 5~240==-=-=)()( 【题11-7】 试分析图题11-7所示电路的工作原理。若是输入电压V IN =,D 3~D 0是多少? 图题11-7 解:D3=1时,V V V O 6221234== ,D3=0时,V O =0。 D2=1时,V V V O 3221224== ,D2=0时,V O =0。 D1=1时,V V V O 5.1221214== ,D1=0时,V O =0。 D0=1时,V V V O 75.0221204 ==,D0=0时,V O =0 由此可知:输入电压为,D3~D0=1101,这时V O =6V++=,大于输入电压V IN =,比较器输出低电平,使与非门74LS00封锁时钟脉冲CLK ,74LS293停止计数。 【题11-8】 满度电压为5V 的8位D/A 转换器,其台阶电压是多少?分辨率是多少? 解:台阶电压为mV mV V STEP 5.192/50008== 分辨率为:%39.00039.05000/5.195000/===mV V STEP

基于升降压电路的双向DC_DC变换电路

基于Buck-Booost电路的双向DC-DC变换电路

目录 1系统方案 (4) 1.1 DC-DC双向变换器模块的论证与选择 (4) 1.2 测控电路系统的论证与选择 (4) 2 系统理论分析与计算 (4) 2.1 双向Buck-BOOST主拓电路的分析 (4) 2.2 电感电流连续工作原理和基本关系 (5) 2.3 控制方法与参数计算 (6) 3 电路与程序设计 (7) 3.1 电路的设计 (7) 3.1.1 系统总体框图 (7) 3.1.2 给电池组充电Buck电路模块 (7) 3.1.3 电池放电Boost升压模块 (8) 3.1.4 测控模块电路原理图 (8) 3.1.5 电源 (9) 3.2 程序设计 (9) 4 测试方案与测试结果 (15) 4.1 测试方案 (15) 4.2 测试条件与仪器 (15) 4.3 测试结果及分析 (15) 4.3.1 测试结果(数据) (15) 4.3.2 测试分析与结论 (16)

摘要 双向DC/DC变换器(Bi-directional DC-DC Converter,BDC)是一种可在双象限运行的直流变换器,能够实现能量的双向传输。随着开关电源技术的不断发展,双向DC/DC变换器已经大量应用到电动汽车、太阳能电池阵、不间断电源和分布式电站等领域,其作为DC/DC变换器的一种新的形式,势必会在开关电源领域上占据越来越重要的地位。由于在需要使用双向DC/DC变换器的场合很大程度上减轻系统的体积重量及成本,所以具有重要研究价值。既然题目要求是作用于可充电锂电池的双向的DC-DC变换器,肯定包括降压、升压、电压可调、恒流、等要求。考虑到题目对效率的要求,我们选择降压Buck电路,升压Boost电路,并用反馈电路和运放电路来实现电压可调和恒流等要求,通过一系列的测试和实验几大量的计算,基本上能完成题目的大部分要求。 关键词:双向DC/DC变换器;双向Buck-Boost变换器;效率;恒流稳压 1系统方案 本系统主要由DC-DC双向变换器模块、测控电路模块及辅助电源模块构成,分别论证这几个模块的选择。 1.1 DC-DC双向变换器模块的论证与选择 方案一:采用大功率的线性稳压芯片搭建稳压电路,使充电压恒定,在输入电压高于充电合适电压时,实现对输入电压的降压,为电池组充电。该电路外围简单,稳压充电不需要软件控制,简单方便,但转换效率低。同时采用采用基于NE555的普通升压电路,这种电路设计简单,成本低,但转换效率较低、电池电压利用率低、输出功率小,更不能不易与基

升降压电路原理分析

BUCK BOOST电路原理分析 电源网讯 Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。 Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式 Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。 Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。 LDO的特点:

① 非常低的输入输出电压差 ② 非常小的内部损耗 ③ 很小的温度漂移 ④ 很高的输出电压稳定度 ⑤ 很好的负载和线性调整率 ⑥ 很宽的工作温度范围 ⑦ 较宽的输入电压范围 ⑧ 外围电路非常简单,使用起来极为方便 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类: (1)Buck电路——降压斩波器,其输出平均电压 U0小于输入电压Ui,极性相同。 (2)Boost电路——升压斩波器,其输出平均电压 U0大于输入电压Ui,极性相同。 (3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。 DC-DC分为BUCK、BUOOST、BUCK-BOOST三类DC-DC。其中BUCK型DC-DC只能降压,降压公式:Vo=Vi*D BOOST型DC-DC只能升压,升压公式:Vo= Vi/(1-D) BUCK-BOOST型DC-DC,即可升压也可降压,公式:Vo=(-Vi)* D/(1-D) D为充电占空比,既MOSFET导通时间。0

verilog串并转换并串转换

1. 设计名称:38译码器带使能端的 主要功能: 实现38译码功能,并且在使能段处于低电平是输出为00000000 设计框图: 设计代码: module decoder3_8(a,b,ena); input [2:0] a; input ena; output [7:0] b; reg [7:0] b; always @ (ena,a) if(!ena) begin b=8'b00000000; end else begin case(a) 3'b000: b=8'b00000001; 3'b001: b=8'b00000010; 3'b010: b=8'b00000100;

3'b011: b=8'b00001000; 3'b100: b=8'b00010000; 3'b101: b=8'b00100000; 3'b110: b=8'b01000000; 3'b111: b=8'b10000000; default: b=8'b00000000; endcase end endmodule 仿真代码: `timescale 1ns/1ns module tb; reg [2:0] a; reg ena; wire [7:0] b; initial begin a = 3'b000; ena = 1'b0; #50; ena = 1'b1; #50; a=3'b001; #50; a=3'b010; #50; a=3'b011; #50; a=3'b100; #50; a=3'b101; #50; a=3'b110; #50; a=3'b111; #50; $ stop; end decoder3_8 udecoder3_8( .a(a), .ena(ena), .b(b) ); endmodule 仿真结果:

基本模数转换器(ADC)的设计

《数字逻辑电路分析与设计》课程 项目 实施报告 题目(A):基本模数转换器(ADC)的设计 组号: 8 任课教师:。。。 组长:。。。。 成员:。。。。 成员:。。。 成员:。。。 成员:。。。 联系方式:。。。 二零一四年十月二十五日

基本模数转换器(ADC )的设计 一.设计要求 (1) 设计一个每单次按下按钮,就能够实现数模转换的电路,并用LED 显示对应输入模拟电压(0—3V )的等级,当输入电压>3V 后,有“溢出”显示。 (2) 功能模块如图: (3) 图中的“模数转换”为本教材第六章的并行ADC 转换电路。在此基础上自行设计按键、LED 显示、模拟电压调节等模块,实现单次模数转换的功能。 模拟电压 调节模数转换LED 显示 按键 5V 电源

自行设计溢出标记的显示。 (4) 本电路的测试方法是,通过一个电位器对电源电压连续分压,作为ADC 的输入电压,每按下一次按键时,ADC 电路进行一次ADC 转换,并将转换的结果用数码管显示出来。注意不要求显示实际的电压值,仅显示模拟电压的量化等级。 二.电路原理图 LED 显示

三.设计思路 根据题目要求,我们的电路本应分五个个模块,但实验室缺少8-3编码器不能实现转化,所以只能有四个一下模块:模拟电压调节;比较电路;记忆模块;LED显示。模拟电压的调节可以用划变电阻来调节电压,理想中数模转化模块应由比较器,D触发器和编码器来实现,在我们的实际电路中我们只用了前两者。最终我们用LED的亮灭来显示结果。 具体原理叙述如下: 在比较电压时,将参考电压V ref经电阻分压器产生一组不同的量化电平V i:v1=1/16V ref,v2=3/16V ref,v3=5/16V ref ,v4=7/16V ref ,v5=9/16V ref ,v6=11/16V ref ,v7=13/16V ref ,v8=15/16V ref ,这些量化电平分别送到相应lm339比较器的反相输入端,而输入电压V同时作用于lm339比较器的同相输入端。 当V大于V i时,第i个比较器输出状态1,即高电平;反之,比较器输出状态0,即低电平。比较器的输出加到D触发器的输入端,在时钟脉冲CP的作用下,把比较器的输出存入触发器,得到稳定的状态输出Q,再由LED的亮暗状态显示,高电平则亮,低电平就暗。 当V≥15/16 V ref的时候,即V超过该转换器的最大允许的输入电压的时候产生“溢出”,我们使用了一个红色的报警LED亮作为显示。 此外,鉴于会因为按键时间的长短不一而造成的脉冲不整齐的问题,需要

串并联电路图与实物图转换

周末提高《串并联电路图专题练习》 一、了解串并联电路: 1.串并联概念: 串联电路:①概念:把电路元件_连接起来。②特点:(1)通过一个元件的电流_另一个元件,电流只有_条路径;(2)电路中只需个开关,且开关的位置对电路影响。 并联电路:①概念:把电路元件_ _连接起来(并列元件两端才有公共端)。②特点:干路电流在分支处,分成_ 条支路;(2)各元件可以_工作,互不干扰;(3)干路开关控制_ __,支路开关只控制_ __。 2. 电流流向法:电流流向法是识别串并联电路最常用的方法。在识别电路时,让电流从电源的正极出发经过各用电器回到电源的负极,途中不分流,始终是一条路径者,为串联;如果电流在某处分为几条支路,若每条支路上只有一个用电器,最终电流又重新汇合到一起,像这样的电路为并联。并联电路中各用电器互不影响。 3. 拆除法:它的原理就是串联电路中各用电器互相影响,拆除任何一个用电器,其他用电器中就没有电流了;而并联电路中,各用电器独立工作,互不影响,拆除任何一个或几个用电器,都不会影响其他用电器。 4. 节点法:所谓“节点法”就是在识别不规范电路的过程中,不论导线有多长,只要中间没有电源、用电器等其他电路元件,则导线两端点均可以看成同一个点,从而找出各用电器两端的公共点,它的最大特点是通过任意拉长和缩短导线达到简化电路的目的。 5. 等效电路法:对于题目中给定的电路可能画法不规则,我们可综合上述方法通过移动、拉长、缩短导线,把它画成规则的电路,即画出它的等效图来进行识别。 练习: 1、将下图中的元件连接起来,形成串联电路并标出电流的方向。 2、将下图中的元件连接起来,形成并联电路并标出电流的方向。(要求每个开关控制一个灯泡) 3、如图所示,当S1,S2断开时,能亮的灯是______,它们是_______联的。当S1,S2闭合时,能亮的灯是______,它们是______联的。当S1闭合、S2断开时,能亮的灯是______。 题1 题2 题3 题3附加4、下列电路图,哪是串联电路?哪是并联电路?请把画出它们的等效电路图。

升压-降压式变换器的仿真(DOC)

目录 摘要........................................................................................................ - 1 -设计目的................................................................................................ - 1 -设计原理................................................................................................ - 2 - 一、降压斩波电路 ....................................................................... - 2 - 二、升压斩波电路 ....................................................................... - 3 - 三、升降压斩波电路 ................................................................... - 4 -设计过程................................................................................................ - 5 - 一、仿真原理图 ........................................................................... - 5 - 二、仿真设计的详细过程 ........................................................... - 6 -结果........................................................................................................ - 6 -总结........................................................................................................ - 9 -心得体会.............................................................................................. - 10 -参考文献.............................................................................................. - 11 -

第三讲电阻串、并联连接的等效变换

《电工基础》教案 课 题: 第三讲 电阻串、并联连接的等效变换 教学目的: 1、了解电阻串联、并联和混联电路及其应用 2、掌握混联电路的等效变换和计算 教学重点: 电阻串联、并联和混联电路及其应用;混联电路的等效变换和计算 教学难点: 电阻的等效变换 教学方法: 讲授法 举例法 教学课时: 2课时 教学过程 时间分配 I 、新课导入: 什么是电阻?其常用的连接方式有哪几种?引入新课 4 II 、新授内容 一、电阻的串联 1. 定义:将两个或多个电阻一个一个地首尾相接,中间没有分支的连接方式叫做电阻的串联。 2. 特点: (1)等效电阻:R=R 1+R 2+…+R n (2)通过各电阻的电流相等 (3)分压关系:U 1/R 1=U 2/R 2=……=U n /R n =I (4)功率分配:P 1/R 1=P 2/R 2=……=P n /R n =I 2 分压公式:u k =R k i=R k /r ·u 因此两个电阻串联时: 80’ i R 1+u -R 2R n R i +u - +u 1 - + u 2 -+u n - u R R R u 2 11 1+=u R R R u 2 12 2+=

二、电阻的并联 1、定义:电路中两个或两个电阻联接在两个公共的节点之间,则这样的联接法称为电阻的并联。 2.特点: (1)各个电阻两端的电压相等,都等于端口电压,这是并联的主要 特征。 (2)电阻的并联端电流等于各电阻电流之和。 (3)电阻的并联等效电阻的倒数等于各电阻倒数之和。 (4)并联电路具有分流作用,且各电阻的电流与它们的电导成正 比,与它们的电阻成反比。 (5)并联电路中总功率等于各支路电阻消耗功率之和。各支路电阻 所消耗的功率与各支路电阻的阻值成反比,与它们的电导成正比。 分流公式: 两个电阻并联时: 二、电阻的混联 1、定义:电路中包含既有串联又有并联,电阻的这种连接方式称为电阻的混联。 2、应用: A 等电位分析法 等电位分析法等电位分析法等电位分析法 关键:将串、并联关系复杂的电路通过一步步地等效变换,按电阻串联、并联关系,逐一将电路化简。 等电位分析法步骤: ( 1)、确定等电位点、标出相应的符号。 导线的电阻和理想电流 i 1 i 2 i n R 1 i +u - R 2 R n R i +u - i R R R u i k k k == i R R R i 2 12 1+= i R R R i 2 11 2+=

模数转换器原理

模数(A/D)转换器工作原理A/D转换器(Analog-to-Digital Converter)又叫模/数转换器,即是将模拟信号(电压或是电流的形式)转换成数字信号。这种数字信号可让仪表,计算机外设接口或是微处理机来加以操作或胜作使用。 A/D 转换器 (ADC)的型式有很多种,方式的不同会影响测量后的精准度。 A/D 转换器的功能是把模拟量变换成数字量。由于实现这种转换的工作原理和采用工艺技术不同,因此生产出种类繁多的A/D 转换芯片。 A/D 转换器按分辨率分为4 位、6 位、8 位、10 位、14 位、16 位和BCD码的31/2 位、51/2 位等。按照转换速度可分为超高速(转换时间=330ns),次超高速(330~3.3μS),高速(转换时间3.3~333μS),低速(转换时间>330μS)等。 A/D 转换器按照转换原理可分为直接A/D 转换器和间接A/D 转换器。所谓直接A/D 转换器,是把模拟信号直接转换成数字信号,如逐次逼近型,并联比较型等。其中逐次逼近型A/D 转换器,易于用集成工艺实现,且能达到较高的分辨率和速度,故目前集成化A/D 芯片采用逐次逼近型者多;间接A/D 转换器是先把模拟量转换成中间量,然后再转换成数字量,如电压/时间转换型(积分型),电压/频率转换型,电压/脉宽转换型等。其中积分型A/D 转换器电路简单,抗干扰能力强,切能作到高分辨率,但转换速度较慢。有些转换器还将多路开关、基准电压源、时钟电路、译码器和转换电路集成在一个芯片内,已超出了单纯A/D 转换功能,使用十分方便。 ADC 经常用于通讯、数字相机、仪器和测量以及计算机系统中,可方便数字讯号处理和信息的储存。大多数情况下,ADC 的功能会与数字电路整合在同一芯片上,但部份设备仍需使用独立的ADC。行动电话是数字芯片中整合ADC 功能的例子,而具有更高要求的蜂巢式基地台则需依赖独立的ADC 以提供最佳性能。 ADC 具备一些特性,包括: 1. 模拟输入,可以是单信道或多信道模拟输入; 2. 参考输入电压,该电压可由外部提供,也可以在ADC 内部产生; 3. 频率输入,通常由外部提供,用于确定ADC 的转换速率; 4. 电源输入,通常有模拟和数字电源接脚; 5. 数字输出,ADC 可以提供平行或串行的数字输出。在输出位数越多(分辨率越好)以及转换时间越快的要求下,其制造成本与单价就越贵。 一个完整的A/D转换过程中,必须包括取样、保持、量化与编码等几部分电路。 AD转换器需注意的项目: 取样与保持 量化与编码

升降压双向直流变换器

双向直流-直流变换器的设计与仿真 姓名:张羽 学号:109081183 指导教师:李磊 院系:动力工程学院

摘要:本文选取了一种以Buck-Boost变换器为基础的双向DC-DC变换器进行了研究,设计了一种隔离型Buck-Boost双向DC-DC变换器。并根据设计指标,对变压器、输出滤波器、功率开关等进行参数设计,并使用saber仿真软件完成了这种带高频电气隔离的拓扑的仿真。 关键字:双向DC-DC变换器Buck-Boost变换器saber仿真软件uc3842 0 引言 所谓双向DC-DC变换器就是实现了能量的双向传输,在功能上相当于两个单向DC-DC。它的输入、输出电压极性不变,但输入、输出电流的方向可以改变。是典型的“一机两用”设备。在需要双向能量流动的应用场合可以大幅度减轻系统的体积重量及成本。 近年来,双向DC/DC变换器在电动汽车、航天电源系统、燃料电池系统以及分布式发电系统等方面得到了广泛应用。 1 基本电路的选取 DC-DC功率变换器的种类很多。按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。非隔离型的DC-DC变换器又可分为降压式、升压式、极性反转式等几种;隔离型的DC-DC变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。下面主要讨论非隔离型升压式DC-DC变换器的工作原理。 本文选取Buck-Boost双向DC-DC变换器进行了仿真实验。 2 Buck-Boost双向DC-DC变换器 2.1 Buck-Boost变换器 将Buck变换器与Boost变换器二者的拓扑组合在一起,除去Buck中的无源开关,除去Boost中的有源开关,如图所示,称为升降压变换器。它是由电压源、电流转换器、电压负载组成的一种拓扑,中间部分含有一级电感储能电流转换器。它是一种输出电压既可以高于也可以低于输入电压的单管非隔离直流变换器。Buck-Boost变换器和Buck变换器与Boost变换器最大的不同就是输出电压的极性和输入电压的极性相反,输入电流和输出电流都是脉动的,但是由于滤波电容的作用,负载电流应该是连续的。

模数转换器ADC应用原理

AD0809应用原理--很全面的资料 1. 0809的芯片说明: ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的C MOS组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。 (1)ADC0809的内部逻辑结构 由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。 (2).引脚结构 IN0-IN7:8条模拟量输入通道

ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。 地址输入和控制线:4条 ALE为地址锁存允许输入线,高电平有效。当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。通道选择表如下表所示。 C B A 选择的通道 000IN0 001IN1 010IN2 011IN3 100IN4 101IN5 110IN6 111IN7 数字量输出及控制线:11条 ST为转换启动信号。当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A /D转换;在转换期间,ST应保持低电平。EOC为转换结束信号。当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。OE=1,输出转换得到的数据;OE =0,输出数据线呈高阻状态。D7-D0为数字量输出线。 CLK为时钟输入信号线。因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ, VREF(+),VREF(-)为参考电压输入。 2.ADC0809应用说明 (1).ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。(2).初始化时,使ST和OE信号全为低电平。 (3).送要转换的哪一通道的地址到A,B,C端口上。 (4).在ST端给出一个至少有100ns宽的正脉冲信号。 (5).是否转换完毕,我们根据EOC信号来判断。 (6).当EOC变为高电平时,这时给OE为高电平,转换的数据就输出给单片机了。 3.实验任务

第二十讲 升降压变换电路

1.升降压斩波电路的结构和工作原理 1)电路的结构 升降压变换电路(又称Buck-boost 电路)的输出电压平均值可以大于或小于输入直流电压,输出电压与输入电压极性相反,其电路原理图如图4-21(a)所示。它主要用于要求输出与输入电压反相,其值可大于或小于输入电压的直流稳压电源。 2)电路的工作原理 (1)输出电压U o 。 ①t on 期间,二极管D 反偏而关断,电感储能,滤波电容C 向负载提供能量。 on L on d t I L t I I L U ?=-=12 ②t off 期间,当感应电动势大小超过输出电压U 0时,二极管D 导通,电感经D 向C 和R L 反向放电,使输出电压的极性与输入电压相反。 o f f L t I L U ?=-0 在t on 期间电感电流的增加量等于t off 期间的减少量,得 off on d t L U t L U 0 -= 由 S on DT t =,S off T D t )1(-=的关系,求出输出电压的平均值为 d U D D U -=10- 式中,D 为占空比,负号表示输出与输入电压反相;当D =0.5时,U 0=U d ;当0.5U d ,为升压变换;当0≤D <0.5时,U 0

基于ARM的模数转换器的毕业设计

学生毕业论文(设计)题目基于ARM的模数转换器的设计 姓名 XX 学号 XX 系部 XXXX系 专业 XXXXXXX技术 指导教师 XXXX 职称 XXXX(XXXX) XXXX年 1 月 XX 日 XXXXXXXXXXX教务处制

目录 摘要 (3) 关键词 (3) Abstract (3) Keywords (3) 1 绪论 (4) 1.1 技术背景 (4) 1.2 选题意义 (4) 2 A/D转换器基本原理 (4) 2.1 A/D转换器的基本原理 (4) 2.2 A/D转换器的基本功能 (5) 2.3 A/D转换模块 (5) 2.3.1 A/D转换模块概述 (5) 2.3.2 A/D转换的技术特性 (5) 2.3.3 A/D转换的功能寄存器框图 (5) 2.3.4 A/D转换初始化 (6) 2.3.5 A/D转换的操作 (6) 3 A/D转换器的设计 (7) 3.1 A/D转换器的工作原理 (7) 3.2 A/D转换电路 (8) 3.3 A/D转换器的原理图 (8) 4 A/D转换仿真结果 (9) 4.1 仿真设备 (9) 4.2 仿真设备简介 (9) 4.2.1 ADS1.2仿真软件 (9) 4.2.2 MagicARM2200 实验箱 (9) 4.3 仿真步骤 (12) 4.4 ADS1.2软件仿真 (12) 4.4.1 仿真软件 (12) 4.4.2 仿真硬件 (14) 4.5 仿真结果 (15) 结束语 (16) 致谢 (16) 参考文献 (16) 附录参考源程序 (16)

基于ARM的模数转换器的设计 XXXXXXX技术专业学生 XX 指导老师 XXXX 摘要:随着数字技术,特别是信息技术的飞速发展及普及,在现代控制通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别,处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析,处理后输出的数字量也往往需要将其转换为相应模拟信号才能执行机构所接受。这样就需要一种能在模拟信号与数字信号之间起桥梁作用的电路——模数转换器。A/D转换器已成为信息系统中不可缺少的接口电路。为确保系统处理结果的精度,A/D转换器必须具有足够的转换精度,如果要实现快速变化信号的实时控制与检测,A/D转换器还要求具有较高的转换速度。转换精度与转换速度是衡量A/D的重要指标。随着集成技术的发展,现已研制和生产出许多单片和混合集成型的A/D转换器,它们具有愈来愈先进的技术指标。本文主要介绍了在ARM系统下,通过对A/D转换模块的设计。学习A/D接口原理及硬件电路,了解ARM的A/D 相关寄存器,利用外部模拟信号编程,实现ARM系统的A/D功能,掌握带有A/D的ARM编程实现A/D 功能的主要方法。 关键词:模数转换器;ADC模块;系统设计;仿真 ARM-based analog-to-digital converter design Student majoring in Computer-controlled technology professional XXX Ting Tutor XXX Abstract:The advent of digital technology, especially the rapid development of the information technology and the popularity of the field of modern control communication and detection, in order to improve system performance, signal processing widespread adoption of digital computer technology. Since the actual object of the system are often some analog quantity (such as temperature, pressure, displacement, image, etc.), make the computer or digital instrument can recognize, process these signals, you must first convert these analog signals into digital signals; while via computer analysis, the digital output after the processing is also often need to be converted to the corresponding analog signals in order to perform bodies accepted. Need a between the analog and digital signals from the bridge circuit - ADC .A / D converter the interface circuit has become indispensable in the information system. To ensure the accuracy of the system processing the results of the A / D converter must have a sufficient accuracy of the conversion, A / D converter is also required to have a higher conversion speed; if you want to achieve the real-time control and detection of rapidly changing signal. Conversion accuracy and conversion speed is an important indicator to measure the A / D. With the development of integration technology, has been developed and produced many monolithic and hybrid integration of A / D converter, they have more and more state-of-the-art technical indicators. This paper describes the ARM system, through the design of the A / D converter module. Learning A / D interface principle and the hardware circuit, ARM's A / D register, the use of external analog signals programmed to achieve a the ARM system of A / D function, master ARM programming with an A / D A / D function method. Keywords: analog-to-digital converter; ADC module; system design;simulation