802.11帧结构解析总结.doc

802.11帧结构解析总结.doc
802.11帧结构解析总结.doc

单晶结构解析步骤

shelxtl open new name xp fmol kill $q proj select the good direction exit telp 0 -30 plotfile enter file name draw file name select file(ps file) black and white cell fmol kill $q matr 1=a 2=b 3=c pbox 5 15 pack select (space=keep, enter=del) fmol telp cell enter file name draw file name select file type(a=psfile) black and white(enter) plane xp read file name fmol mpln atom1 atom 2..... enter angle xp read file name fmol

mpla n(atom number) atom1 atom 2..... mpla n(atom number) atom1 atom 2..... mpla n(atom number) atom1 atom 2..... enter fmol kill link matr pbox pack undo c**? C**? telp cell xl 计算方法 在ins中任何地方插入 mpla 虚拟平面的原子个数(例如六个原子只有四个可能共平面,即输入4),后面连续输入可能共平面的4个原子,后面在输入其他两个平面外的原子。 例如c1 c2 c3 c4 c5 n1中,c1 c2 c4 c5 共平面 mpla 4 c1 c2 c4 c5 c3 n1 txt 运行xcif 选择t 两次回车 输入文件名.txt 选择def 回车直到选择q 理论加氢 在ins中输入 HFIX 要加氢的原子 保存ins 运行XL 打开RES 拷贝相应的数据到ins中即可。 CHEMICAL DRAW 选中画笔 点出两个点 按ESC 点选择键 选中画笔 鼠标移动至出现小手

2.6 数据链路层数据帧协议分析

实验数据链路层的帧分析 一、实验目的 分析 TCP、UDP的数据链路层帧结构、 二、准备工作 虚拟机XP,虚拟网卡设置,NAT模式,TCP/IP参数设置自动获取。本实验需安装抓包工具软件IPTool。 三、实验内容及步骤 1.运行ipconfig命令 在Windows的命令提示符界面中输入命令:ipconfig /all,会显示本机的网络配置信息。 2.运行抓包工具软件 双击抓把工具软件图标,输入所需参数,和抓包过滤参数,点击捕捉。 3.进行网络访问 进行网络访问,下载文件/搜索资料/www访问/登录邮件系统等均可。 4.从抓包工具中选择典型数据帧 5.保存捕获的数据帧 6.捕获数据帧并分析 1、启动网络抓包工具软件在网络内进行捕获,获得若干以太网帧。 2、对其中的5-10个帧的以太网首部进行观察和分析,分析的内容为:源物理地址、目的物理地址、上层协议类型。 实验过程: 1.TCP协议数据包、数据帧分析 启动IPTool,IE访问https://www.360docs.net/doc/f710779534.html,站点,使用iptool进行数据报的捕获。 TCP报文如下图:

根据所抓的数据帧进行分析: (1)MAC header 目的物理地址:00:D0:F8:BC:E7:06 源物理地址:00:16:EC:B2:BC:68 Type是0x800:意思是封装了ip数据报(2)ip数据报

由以上信息可以得出: ①版本:占4位,所以此ip是ipv4 ②首部长度:占4 位,可表示的最大十进制数值是15。此ip数据报没有选项,故它的最大十进制为5。 ③服务:占8 位,用来获得更好的服务。这里是0x00 ④总长度:总长度指首都及数据之和的长度,单位为字节。因为总长度字段为16位,所以数据报的最大长度为216-1=65 535字节。 此数据报的总长度为40字节,数据上表示为0x0028。 ⑤标识(Identification):占16位。IP软件在存储器中维持一个计数器,每产生一个数据报,计数器就加1,并将此值赋给标识字段。但这个“标识”并不是序号,因为IP是无连接的服务,数据报不存在按序接收的问题。当数据报由于长度超过网络的MTU 而必须分片时,这个标识字段的值就被复制到所有的数据报的标识字段中。相同的标识字段的值使分片后的各数据报片最后能正确地重装成为原来的数据报。 在这个数据报中标识为18358,对应报文16位为47b6 ⑥标志(Flag):占3 位,但目前只有2位有意义。标志字段中的最低位记为MF (More Fragment)。MF=1即表示后面“还有分片”的数据报。MF=0表示这已是若干数据报片中的最后一个。标志字段中间的一位记为DF(Don't Fragment),意思是“不能分片”。只有当DF=0时才允许分片。这个报文的标志是010,故表示为不分片!对应报文16位为0x40。 ⑦片偏移:因为不分片,故此数据报为0。对应报文16位为0x00。 ⑧生存时间:占8位,生存时间字段常用的英文缩写是TTL (Time To Live),其表明数据报在网络中的寿命。每经过一个路由器时,就把TTL减去数据报在路由器消耗掉的一段时间。若数据报在路由器消耗的时间小于1 秒,就把TTL值减1。当TTL值为0时,就丢弃这个数据报。经分析,这个数据报的的TTL为64跳!对应报文16位为0x40。 ⑨协议:占8 位,协议字段指出此数据报携带的数据是使用何种协议,以便使目的主机的IP层知道应将数据部分上交给哪个处理过程。这个ip数据报显示使用得是TCP协议对应报文16位为0x06。

802.11帧结构分析

802.11帧结构分析 1. 80 2.11介绍 1.1 80 2.11概述 802.11协议组是国际电工电子工程学会(IEEE)为无线局域网络制定的标准。IEEE 最初制定的一个无线局域网标准,主要用于解决办公室局域网和校园网中用户与用户终端的无线接入,业务主要限于数据存取,速率最高只能达到2Mbps。 虽然WI-FI使用了802.11的媒体访问控制层(MAC)和物理层(PHY),但是两者并不完全一致。在以下标准中,使用最多的应该是802.11n标准,工作在2.4GHz频段,可达600Mbps(理论值)。 IEEE 802.11是一个协议簇,主要包含以下规范: a.物理层规范:802.11b,802.11a,802.11g; b.增强型MAC层规范:802.11i,802.11r,802.11h等; c.高层协议规范:802.11f,802.11n,802.11p,802.11s等。 802.11中定义了三种物理层规范,分别是:频率跳变扩展频谱(FHSS)PHY规范、直接序列扩展频谱(DSSS)PHY规范和红外线(IR)PHY规范,由于物理层的规范与无线信息安全体系关系不大,故本文不对物理层做过多阐述。 802.11同802.3一样,主要定义了OSI模型中物理层和数据链路层的相关规范,其中数据链路层又可分为MAC子层和LLC子层,802.11与802.3的LLC子层统一由802.2描述。 1.2 80 2.11拓扑结构及服务类型 WLAN有以下三种网络拓扑结构: a.独立基本服务集(Independent BSS, IBSS)网络(也叫ad-hoc网络),如图1所示。 b.基本服务集(Basic Service Set, BSS)网络,如图2所示。 c.扩展服务集(Extent Service Set, ESS)网络,如图2所示。 STA1 STA2 图1

单晶结构解析常见问题问答

1.为什么要提高空间群的对称性? 有时候在对称性较高的空间群内不容易解得初结构,在这种情况下可以降低对称性来解,但是解完以后还要把空间群转换回去。 1.1 先安装Platon 从其主页上下载https://www.360docs.net/doc/f710779534.html,/~louis/software/platon/ https://www.360docs.net/doc/f710779534.html,/~louis/software/platon/pwt_setup.zip https://www.360docs.net/doc/f710779534.html,/~louis/software/platon/platon.zip Download the PLA TON for Windows Taskbar 和Download the PLA TON executable. 然后解压安装,首先安装pwt,安装时需设定系统环境变量,安装后再将platon解压后复制到pwt的安装目录内即可。 1.2 运行pwt.exe 点击File--Select Data File,选择要升高对称性的结构文件*.res或者*.ins。 再点击Publish-addsym 系统显示检查画面,如提示有更高对称性的空间群,则原先空间群有误,需要进行转化。 再点击Publish-addsym shelx,可以生成一个新的同名*.res文件,此res文件会将原先的res文件覆盖,在此文件的基础上继续精修即可。 应该没有任何问题,已经试过很多次了! 最好用xp打开此res文件,然后再file一次,再作经修 2. 在xp中, 用mpln定义平面,仔细看那个方程(大家用xp操作时不要太快,因为那个方程第一个出来,一块就找不到了),方程的等号右边有一个常数,你算第一个平面时将它记下,不过最好将望着的方程记下,然后再算第二个平面,又有一个方程,记下常数项,然后二者一减就是二者的距离,不过平面越是完全平行这个值越接近他俩的真实距离,平行与否可以看大家都能看到的那个夹角,另外也可以看刚才的方程的系数,系数相同或者成线形比例,就平行. 3.我的CIF文件里的对称代码2_556 1_545 请问这些对称代码是如何算出来的?? 在考虑对称单元的时候,在ShelxTl里面考虑x,y,z均为9个单胞的范围,并且把N_555规定为最初的单胞,即此单胞内的原子坐标均小于1,如果一个对称单元出现的下(x+1,y,z)的那个那个单胞内,则相应的堆成码就变成了N_655,其他的如此类推,比如在(x-2,y+1,z+2)的单胞内,对称码就为N_367,总之都是以N_555为最中心做相应的加减,这应该比较好理解。在那么大的范围内,我们希望长出来的对称单元应该都可以长出来了。我们常见的对称码都在N_555附近,很少有大于N_777的和小于N_333的。 下面再来说前面的N_555中的“N”的含义,它表示对称操作(symmetry operators)的类型,它可以在XP界面下由SYMM命令得到,第几个对称操作,N就相应是几了。N在不同空间群内代表的对称操作是不一样的。 欢迎大家继续讨论。

Ethernet帧结构解析..

实验一Ethernet帧结构解析 一.需求分析 实验目的:(1)掌握Ethernet帧各个字段的含义与帧接收过程; (2)掌握Ethernet帧解析软件设计与编程方法; (3)掌握Ethernet帧CRC校验算法原理与软件实现方法。 实验任务:(1)捕捉任何主机发出的Ethernet 802.3格式的帧和DIX Ethernet V2(即Ethernet II)格式的帧并进行分析。 (2)捕捉并分析局域网上的所有ethernet broadcast帧进行分析。 (3)捕捉局域网上的所有ethernet multicast帧进行分析。 实验环境:安装好Windows 2000 Server操作系统+Ethereal的计算机 实验时间; 2节课 二.概要设计 1.原理概述: 以太网这个术语通常是指由DEC,Intel和Xerox公司在1982年联合公布的一个标准,它是当今TCP/IP采用的主要的局域网技术,它采用一种称作CSMA/CD的媒体接入方法。几年后,IEEE802委员会公布了一个稍有不同的标准集,其中802.3针对整个CSMA/CD网络,802.4针对令牌总线网络,802.5针对令牌环网络;此三种帧的通用部分由802.2标准来定义,也就是我们熟悉的802网络共有的逻辑链路控制(LLC)。以太网帧是OSI参考模型数据链路层的封装,网络层的数据包被加上帧头和帧尾,构成可由数据链路层识别的数据帧。虽然帧头和帧尾所用的字节数是固定不变的,但根据被封装数据包大小的不同,以太网帧的长度也随之变化,变化的范围是64-1518字节(不包括8字节的前导字)。 帧格式Ethernet II和IEEE802.3的帧格式分别如下。 EthernetrII帧格式: ---------------------------------------------------------------------------------------------- | 前序| 目的地址| 源地址| 类型| 数据 | FCS | ---------------------------------------------------------------------------------------------- | 8 byte | 6 byte | 6 byte | 2 byte | 46~1500 byte | 4 byte| IEEE802.3一般帧格式 ----------------------------------------------------------------------------------------------------------- | 前序| 帧起始定界符| 目的地址| 源地址| 长度| 数据| FCS | ----------------------------------------------------------------------------------------------------------- | 7 byte | 1 byte | 2/6 byte | 2/6 byte| 2 byte| 46~1500 byte | 4 byte | Ethernet II和IEEE802.3的帧格式比较类似,主要的不同点在于前者定义的2字节的类型,而后者定义的是2字节的长度;所幸的是,后者定义的有效长度值与前者定义的有效类型值无一相同,这样就容易区分两种帧格式 2程序流程图:

802.11帧结构分析

帧结构分析 1. 介绍 概述 协议组是国际电工电子工程学会(IEEE)为无线局域网络制定的标准。IEEE最初制定的一个无线局域网标准,主要用于解决办公室局域网和校园网中用户与用户终端的无线接入,业务主要限于数据存取,速率最高只能达到2Mbps。 虽然WI-FI使用了的媒体访问控制层(MAC)和物理层(PHY),但是两者并不完全一致。在以下标准中,使用最多的应该是标准,工作在频段,可达600Mbps(理论值)。 IEEE 是一个协议簇,主要包含以下规范: a.物理层规范:,,; b.增强型MAC层规范:,,等; c.高层协议规范:,,,等。 中定义了三种物理层规范,分别是:频率跳变扩展频谱(FHSS)PHY规范、直接序列扩展频谱(DSSS)PHY规范和红外线(IR)PHY规范,由于物理层的规范与无线信息安全体系关系不大,故本文不对物理层做过多阐述。 同一样,主要定义了OSI模型中物理层和数据链路层的相关规范,其中数据链路层又可分为MAC子层和LLC子层,与的LLC子层统一由描述。 拓扑结构及服务类型 WLAN有以下三种网络拓扑结构: a.独立基本服务集(Independent BSS, IBSS)网络(也叫ad-hoc网络),如图1所 示。 b.基本服务集(Basic Service Set, BSS)网络,如图2所示。 c.扩展服务集(Extent Service Set, ESS)网络,如图2所示。 STA1STA2 图1

其中,ESS中的DS(分布式系统)是一个抽象系统,用来连接不同BSS的通信信道(通过路由服务),这样就可以消除BSS中STA与STA之间直接传输距离受到物理设备的限制。 根据拓扑结构可以得出的两类服务: 站点服务SS(每个STA都要有的服务):认证(Authentication)、解除认证(Deauthentication)、加密(Privacy)、MSDU传递(MSDU delivery); 分布式系统服务DSS(DS特有服务):关联(Association)、解除关联(Deassociation)、分布(Distribution)、集成(Integration)、重关联(Ressociation)。 2. 帧结构分析 帧格式概述 无线中的数据传播有如表格1所示的格式: preamble是一个前导标识,用于接收设备识别。 PLCP域中包含一些物理层的协议参数,显然Preamble及PLCP是物理层的一些细节。 AP STA1STA2 图2 图3

单晶结构解析XP作图

单晶结构解析XP作图: 1、画结构图 打开Shelxtl软件→导入res文件→打开XP程序→输入fmol→kill $q→kill $h→envi (中心对称原子)→回车后寻找不同于1555对称操作的代码如2555→sgen 2555→proj(查看结构)→利用操作按钮转动结构找出最佳摆放位置(高度不能大于宽度)→labl 2 500(2 500是默认的大小) →telp 0 -30 0.05 0(后面四个数据分别确定结构的模型和一些参数) →回车回车直到出现Plotfile:(在这里输入名字,这里画结构图,可以统一命名为jiegou) 后回车将会出现命名所有原子的图(根据鼠标位置提醒依次在原子周围左键点击)→draw jiegou→回车后会出现SLPT device[L]:(输入a或者h)再回车输入jiegou,然后回车直到光标不闪位置→出现了xp《图标说明结构图已经画好→quit 注:红色字体为结构需要对称操作才能显示一个完整的分子结构所进行的操作。 图片操作解析 在这里找到res 文件的位置

2导入res 文件后,打开XP 操作系统输入fmol 后回车 3输入kill $h $q 4 proj 后出现下图所示

5 按步骤画图 命名所有原子

二、作堆积图 Fmol→matr 1(代表a方向堆积) →pbox 15 15→pack 然后点 击按钮sgen/fmol保存(倒数第二个)→proj cell→telp cell →命名duiji 后出现一个命名原子的图框,标出O a b c→draw duiji→a或h→duiji→→quit 1、 当出现这个时表 明图已经画好

单晶结构解析加氢,绘图问题解答

1.通常,H原子的处理方法作者要给出 (1)一般通过理论加H,其温度因子为固定值,可通过INS等文件查看 (2) 水分子上H原子可通过Fourier syntheses得到 (3)检查理论加上的H原子是否正确,主要看H原子的方向。若不正确则删去再通过Fourier syntheses 合成得到 (4) 检查H原子的键长、键角、温度因子等参数是否正常。通过检查分子间或分子内的H键是否合理 最易看出H键的合理性 (5) 技巧:有时通过Fourier syntheses得到的H原子是正确的,可一计算其温度因子等参就变得不正常, 则可以固定其参数后再精修(如在INS中的该H原子前用afix 1,其后加afix 0) (6)各位来说说方法与心得? 2.胡老师,下面的问题怎么解决啊?谢谢您。 220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.70 Ratio 222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.97 Ratio 342_ALERT_3_B Low Bond Precision on C-C bonds (x 1000) Ang (49) B 级提示当然得重视了。建议你先把H撤消,精修到C的热椭球不太变形和键长趋正常。如做不到就要看空间群?衍射点变量比太小?以至追查到原始数据的录取参数和处理等。这些粗略意见仅供参考,如何? 3.在XP中画图时,只有一部分,想长出另外的对称部分。我是envi完了,然后sgen长出 来的,可是和symm显示的对称信息不一样。比如:我根据envi的结果用sgen O1 4555得到的是O1A而不是O1D,这跟文献中标注的不一样啊,怎么统一呢?很困扰,忘达人指教。 xp里是按顺序编号的,第一个sgen出的的统一为A,依次标号。你如果想一开始就统一D的话,重新name一下 4.高氯酸根怎么精修呀?我用的SHETXL6.1版的,最好告诉我怎么用其中的XSHELL来做,我觉得他 好用! Method 1 DFIX Dfix 1.42 0.02 Cl1 O1 Cl1 O2 Cl1 O3 Cl1 O4 Dfix 1.42 0.02 O1 O2 O1 O3 O1 O4 O2 O3O2 O4O3 O4 Method 2 SADI Sadi 0.01 Cl1 O1 Cl1 O2 Cl1 O3 Cl1 O4 Sadi 0.01 O1 O2 O1 O3 O1 O4 O2 O3 O2 O4 O3 O4 5. 晶体的无序是怎么造成的呀,是晶体培养的问题吗? 如果无序太多,在解单晶的时候怎么办?我指的是很多的点,没有结构,他们的峰值都大于了0.5 大于0.5没什么的,解完后都在1以下就可以了。特殊的比较大的在重原子附近也没有关系5.比较确切的定义是单胞中你测定的或你设想的“化学式”的数目。 在分子晶体中,Z是分子数,在其它各类晶体中则为化学式个数。 例如有机物一般是分子数目,离子晶体像NaCL只好说化学式为4。 晶体结构常有无序和缺位等,但给出非化学计量式后Z都是确定的。 Z 的数字决定于你的化学式。三斜晶系的P-1空间群的Z多为2。由于双聚等原因如将双聚体写成你的化学式,那么Z就变为1了。但是就拿这个三斜晶系来说,出现Z为4或6的情况也是可能的。 这时分子形成双聚或者三聚,而你指定的分子式只是个单体罢了。测定结构初期得到单胞以后,往往希望知道单胞中有几个"分子",如你知道了或提出了化学式,从我们介绍的范氏半径或原字体积即可毛

分析数据链路层帧结构

南华大学计算机学院 实验报告 课程名称计算机网络原理 姓名杨国峰 学号20144360205 专业网络2班 任课教师谭邦 日期 2016年4月4日 成绩 南华大学

实验报告正文: 一、实验名称分析数据链路层帧结构 二、实验目的: 1. 掌握使用Wireshark分析俘获的踪迹文件的基本技能; 2. 深刻理解Ethernet帧结构。 3. 深刻理解IEEE 802.11帧结构。 三、实验内容和要求 1. 分析俘获的踪迹文件的Ethernet帧结构; 2. 分析IEEE 802.11帧结构。 四、实验环境

五、操作方法与实验步骤 1.Ethernet帧结构(本地连接与无线连接)

2.IEEE 802.11帧结构

六、实验数据记录和结果分析 1.Ethernet帧结构(本地连接为例) Ethernet II, Src: Tp-LinkT_95:c6:20 (fc:d7:33:95:c6:20), Dst: Clevo_00:a1:18 (80:fa:5b:00:a1:18) 以太网协议版本II,源地址:厂名_序号(网卡地址),目的:厂名_序号(网卡地址) Destination: Clevo_00:a1:18 (80:fa:5b:00:a1:18)目的:厂名_序号(网卡地址) Source: Tp-LinkT_95:c6:20 (fc:d7:33:95:c6:20) 源:厂名_序号(网卡地址) Type: IP (0x0800) 帧内封装的上层协议类型为IP Padding: 000000000000 所有内边距属性 2.分析IEEE 802.11帧结构 Protocol version:表明版本类型,现在所有帧里面这个字段都是0x00。 *Type:指明数据帧类型,是管理帧,数据帧还是控制帧。 Subtype:指明数据帧的子类型,因为就算是控制帧,控制帧还分RTS帧,CTS帧,ACK 帧等等,通过这个域判断出该数据帧的具体类型。 To DS/From DS:这两个数据帧表明数据包的发送方向,分四种可能情况讨论: **若数据包To DS为0,From DS为0,表明该数据包在网络主机间传输。 **若数据包To DS 为0,From DS为1,表明该数据帧来自AP。 **若数据包To DS为1,From DS为0,表明该数据帧发送往AP。若数据包To DS为1,From DS为1,表明该数据帧是从AP发送自AP的,也就是说这个是个WDS(Wireless Distribution System)数据帧。 Moreflag:分片标志,若数据帧被分片了,那么这个标志为1,否则为0。 *Retry:表明是否是重发的帧,若是为1,不是为0。 PowerManage:当网络主机处于省电模式时,该标志为1,否则为0。 Moredata:当AP缓存了处于省电模式下的网络主机的数据包时,AP给该省电模式下的网络主机的数据帧中该位为1,否则为0。 Wep:加密标志,若为1表示数据内容加密,否则为0。 *Order 这个表示用于PCF模式下。 Duration/ID(持续时间/标识):表明该帧和它的确认帧将会占用信道多长时间;对于帧控制域子类型为:Power Save-Poll的帧,该域表示了STA的连接身份(AID, Association Indentification)。

几种常见晶体结构分析.

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话::: 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞) 中,处于不同位置的微粒在该单元中所占的份额也有 所不同,一般的规律是:顶点上的微粒属于该单元中 所占的份额为18 ,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12 ,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的 Cl -围成的空间构型为正八面体。每个N a +周围与其最近且距离相等的Na + 有12个。见图1。 晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14 = 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。 2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与 一个Cs +距离最近且相等的Cs +有6个。晶胞中平均Cs +个数:1;晶胞中平 均Cl -个数:8×18 = 1。 因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4 个C 原子紧邻,因而整个晶体中无单个分子存在。由共价键构成的最小 环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环 共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6× 112 = 12 ,平均C —C 键数为6×16 = 1。 C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。 2.二氧化硅晶体结构与金刚石相似,C 被Si 代替,C 与C 之间插氧,即为SiO 2晶体,则SiO 2晶体中最小环为12环(6个Si ,6个O ), 最小环的平均Si 原子个数:6×112 = 12;平均O 原子个数:6×16 = 1。 即Si : O = 1 : 2,用SiO 2表示。 在SiO 2晶体中每个Si 原子周围有4个氧原子,同时每个氧原子结合2个硅原子。一个Si 原子可形 图 1 图 2 NaCl 晶体 图3 CsCl 晶体 图4 金刚石晶体

实验3分析mac帧格式

实验3 分析MAC帧格式 实验目的 1.了解MAC帧首部的格式; 2.理解MAC帧固定部分的各字段含义; 3.根据MAC帧的内容确定是单播,广播。 实验设备 Winpcap、Wireshark等软件工具 相关背景 1.据包捕获的原理:为了进行数据包,网卡必须被设置为混杂模式。在现实的网络环境中,存在着许多共享式的以太网络。这些以太网是通过Hub 连接起来的总线网络。在这种拓扑结构的网络中,任何两台计算机进行通信的时候,它们之间交换的报文全部会通过Hub进行转发,而Hub以广播的方式进行转发,网络中所有的计算机都会收到这个报文,不过只有目的机器会进行后续处理,而其它机器简单的将报文丢弃。目的机器是指自身MAC 地址与消息中指定的目的MAC 地址相匹配的计算机。网络监听的主要原理就是利用这些原本要被丢弃的报文,对它们进行全面的分析,这样就可以得到整个网络中信息的现状。 2.Tcpdump的简单介绍:Tcpdump是Unix平台下的捕获数据包的一个架构。Tcpdump最初有美国加利福尼亚大学的伯克利分校洛仑兹实验室的Van Jcaobson、Craig Leres和 Steve McCanne共同开发完成,它可以收集网上的IP数据包文,并用来分析网络可能存在的问题。现在,Tcpdump已被移植到几乎所有的UNIX系统上,如:HP-UX、SCO UNIX、SGI Irix、SunOS、Mach、Linux 和FreeBSD等等。更为重要的是Tcpdump是一个公开源代码和输出文件格式的软件,我们可以在Tcpdunp的基础上进行改进,加入辅助分析的功能,增强其网络分析能力。(详细信息可以参看相关的资料)。 3.Winpcap的简单介绍:WinPcap是由意大利Fulvio Risso和Loris Degioanni等人提出并实现的应用于Win32 平台的数据包捕获与分析的一种软件包,包括内核级的数据包监听设备驱动程序、低级动态链接库和高级系统无关库,其基本结构如图3-1所示:

实验3 分析MAC帧格式分析

实验3 分析MAC帧格式 3.1 实验目的 1.了解MAC帧首部的格式; 2.理解MAC帧固定部分的各字段含义; 3.根据MAC帧的内容确定是单播,广播。 3.2 实验设备 Winpcap、Wireshark等软件工具 3.3 相关背景 1.据包捕获的原理:为了进行数据包,网卡必须被设置为混杂模式。在现实的网络环境中,存在着许多共享式的以太网络。这些以太网是通过Hub 连接起来的总线网络。在这种拓扑结构的网络中,任何两台计算机进行通信的时候,它们之间交换的报文全部会通过Hub进行转发,而Hub以广播的方式进行转发,网络中所有的计算机都会收到这个报文,不过只有目的机器会进行后续处理,而其它机器简单的将报文丢弃。目的机器是指自身MAC 地址与消息中指定的目的MAC 地址相匹配的计算机。网络监听的主要原理就是利用这些原本要被丢弃的报文,对它们进行全面的分析,这样就可以得到整个网络中信息的现状。 2.Tcpdump的简单介绍:Tcpdump是Unix平台下的捕获数据包的一个架构。Tcpdump最初有美国加利福尼亚大学的伯克利分校洛仑兹实验室的Van Jcaobson、Craig Leres和Steve McCanne共同开发完成,它可以收集网上的IP数据包文,并用来分析网络可能存在的问题。现在,Tcpdump已被移植到几乎所有的UNIX系统上,如:HP-UX、SCO UNIX、SGI Irix、SunOS、Mach、Linux和FreeBSD等等。更为重要的是Tcpdump是一个公开源代码和输出文件格式的软件,我们可以在Tcpdunp的基础上进行改进,加入辅助分析的功能,增强其网络分析能力。(详细信息可以参看相关的资料)。 3.Winpcap的简单介绍:WinPcap是由意大利Fulvio Risso和Loris Degioanni等人提出并实现的应用于Win32 平台的数据包捕获与分析的一种软件包,包括内核级的数据包监听设备驱动程序、低级动态链接库(Packet.dll)和高级系统无关库(Winpcap.dll),其基本结构如图3-1所示:

单晶结构解析技巧

单晶结构解析技巧 1. 通常,H原子的处理方法作者要给出: (1)一般通过理论加H,其温度因子为固定值,可通过INS等文件查看 (2) 水分子上H原子可通过Fourier syntheses得到 (3)检查理论加上的H原子是否正确,主要看H原子的方向。若不正确则删去再通过Fourier syntheses合成得到 (4) 检查H原子的键长、键角、温度因子等参数是否正常。通过检查分子间或分子内的H键是否合理最易看出H键 的合理性 (5) 技巧:有时通过Fourier syntheses得到的H原子是正确的,可一计算其温度因子等参就变得不正常,则可以固定 其参数后再精修(如在INS中的该H原子前用afix 1,其后加afix 0) (6) 各位来说说方法与心得? 2. 胡老师,下面的问题怎么解决啊?谢谢您。 220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.70 Ratio 222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.97 Ratio 342_ALERT_3_B Low Bond Precision on C-C bonds (x 1000) Ang (49) B 级提示当然得重视了。建议你先把H撤消,精修到C的热椭球不太变形和键长趋正常。 如做不到就要看空间群?衍射点变量比太小?以至追查到原始数据的录取参数和处理等。 这些粗略意见仅供参考,如何? 3. 在XP中画图时,只有一部分,想长出另外的对称部分。我是envi完了,然后sgen长出来的,可是和symm显示的对称信息不一样。比如:我根据envi的结果用sgen O1 4555得到的是O1A而不是O1D,这跟文献中标注的不一样啊,怎么统一呢?很困扰,忘达人指教。 xp里是按顺序编号的,第一个sgen出的的统一为A,依次标号。你如果想一开始就统一D的话,重新name一下 4. 高氯酸根怎么精修呀?我用的SHETXL6.1版的,最好告诉我怎么用其中的XSHELL来做,我觉得他好用!Method 1DFIX Dfix 1.42 0.02 Cl1 O1 Cl1 O2 Cl1 O3 Cl1 O4 Dfix 1.42 0.02 O1 O2 O1 O3 O1 O4 O2 O3O2 O4O3 O4 Method 2SADI Sadi 0.01 Cl1 O1 Cl1 O2 Cl1 O3 Cl1 O4 Sadi 0.01 O1 O2 O1 O3 O1 O4 O2 O3 O2 O4 O3 O4 5. 晶体的无序是怎么造成的呀,是晶体培养的问题吗? 如果无序太多,在解单晶的时候怎么办?我指的是很多的点,没有结构,他们的峰值都大于了0.5 大于0.5没什么的,解完后都在1以下就可以了。特殊的比较大的在重原子附近也没有关系 5. 比较确切的定义是单胞中你测定的或你设想的“化学式”的数目。 在分子晶体中,Z 是分子数,在其它各类晶体中则为化学式个数。 例如有机物一般是分子数目,离子晶体像NaCL只好说化学式为4。

数据链路层协议分析

【里论套习 4、理解MAC '地址的作用; 实验二以太网链路层帧格式分析 一实验目的 1、分析EthernetV2 标准规定的MAC 层帧结构,了解IEEE802.3标准规定 的MAC 层帧结构和TCP/IP 的主要协议和协议的层次结构。 2、掌握网络协议分析软件的基本使用方法。 3、掌握网络协议编辑软件的基本使用方法。 "时]工严11 1 厶-*■ ―鼻八匸 二实验内容 1、 学习网络协议编辑软件的各组成部 ___________ Slepl:设走夹验环墳 2、 学习网络协议分析软件的各组成部分及其功能; — £伽|12:运行ipconfig 命令 3、学会使用网络协议编辑软件编辑以太网数据包;厂 5始閃:娠輻LLC 信息輔并灰洪 Step4:编頤IXC 噩拦巾贞和无 5、理解MAC 酩部中的LLC — PDU 长度/类型字段的功能; 6、学会观察并分析地址本中的 MAC 地址 三实验环境 四实验流程 图 2.1-2( 五实验原理 在物理媒体上传输的数据难免受到各种不可靠因素的影响而产生差错, 为了弥补 物理层上的不足,为上层提供无差错的数据传输,就要能对数据进行检错和纠错。 数据链路的建立、拆除、对数据的检 错,纠错是数据链路层的基本任务。 局域网(LAN)是在一个小的范围内,将分散的独立计算机系统互联起来,实现资 开始

源的共享和数据通信。局域网的技术要素包括了体系结构和标准、传输媒体、拓扑结构、数据编码、媒体访问控制和逻 辑链路控制等,其中主要的技术是传输媒体、拓扑结构和媒体访问控制方法。局域网的主要的特点是:地理分布范围小、数据传输速率高、误码率低和协议简单等。 1、三个主要技术 1)传输媒体:双绞线、同轴电缆、光缆、无线。 2)拓扑结构:总线型拓扑、星型拓扑和环型拓扑。 3)媒体访问控制方法:载波监听多路访问/冲突检测(CSMA/CD)技术。 2、IEEE802标准的局域网参考模型 IEEE802参考模型包括了OSI/RM最低两层(物理层和数据链路层)的功能,OSI/RM 的数据链路层功能,在局域网参考模型中被分成媒体访问控制MAC(MediumAccessCo ntrol) 和逻辑链路控制LLC(LogicalLi nkCon trol)两个 子层。由于局域网采用的媒体有多种,对应的媒体访问控制方法也有多种,为了 使数据帧的传送独立于所采用的物理媒体和媒体访问控制方法,IEEE802标准特意把LLC独立出来形成单独子层,使LLC子层与媒体无关,仅让MAC子层依赖于物理媒体和媒体访问控制方法。LLC子层中规定了无确认无连接、有确认无连接和面向连接三种类型的链路服务。媒体访问控制技术是以太网技术的核心。以太网不提供任何确认收到帧的应答机制,确认必须在高层完成。3、以太网帧结构 以太网中传输的数据包通常被称为“帧”,以太网的“帧”结构如下: 各字段的含义: 目的地址:6个字节的目的物理地址标识帧的接收结点。 源地址:6个字节的源物理地址标识帧的发送结点。

实验二数据链路层协议分析

实验二以太网链路层帧格式分析一实验目的 1、分析EthernetV2标准规定的MAC层帧结构,了解IEEE802.3标准规定的 MAC层帧结构和TCP/IP的主要协议和协议的层次结构。 2、掌握网络协议分析软件的基本使用方法。 3、掌握网络协议编辑软件的基本使用方法。 二实验内容 1、学习网络协议编辑软件的各组成部分及其功能; 2、学习网络协议分析软件的各组成部分及其功能; 3、学会使用网络协议编辑软件编辑以太网数据包; 4、理解MAC地址的作用; 5、理解MAC首部中的LLC—PDU长度/类型字段的功能; 6、学会观察并分析地址本中的MAC地址。 三实验环境 回2.1- L 四实验流程 小亠| /I J ■ v 开始

结束 图21 2| 五实验原理 在物理媒体上传输的数据难免受到各种不可靠因素的影响而产生差错,为了弥补物理层上的不足,为上层提供无差错的数据传输,就要能对数据进行检错和纠错。数据链路的建立、拆除、对数据的检错,纠错是数据链路层的基本任务。 局域网(LAN)是在一个小的范围内,将分散的独立计算机系统互联起来,实现资源的共享和数据通信。局域网的技术要素包括了体系结构和标准、传输媒体、拓扑结构、数据编码、媒体访问控制和逻 辑链路控制等,其中主要的技术是传输媒体、拓扑结构和媒体访问控制方法。局域网的主要的特点是:地理分布范围小、数据传输速率高、误码率低和协议简单等。 1、三个主要技术 1)传输媒体:双绞线、同轴电缆、光缆、无线。 2)拓扑结构:总线型拓扑、星型拓扑和环型拓扑。 3)媒体访问控制方法:载波监听多路访问/冲突检测(CSMA/CD技术 2、IEEE 802标准的局域网参考模型 IEEE 802参考模型包括了OSI/RM最低两层(物理层和数据链路层)的功能,OSI/RM 的数据链路层功能,在局域网参考模型中被分成媒体访问控制 MAC(Medium Access Control) 和逻辑链路控制LLC(Logical Link Control)两个子层。由于局域网采用的媒体有多种,对应的媒体访问控制方法也有多种,为

晶体结构解析基本步骤

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为sss.f2, 并更名为sss.hkl)文件; 对CCD 收录的数据, 检查是否有同名的p4p和hkl(设为sss.hkl)文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从total reflections项中,记下总点数;从R merge项中,记下Rint=?.???? % (IP收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRA V AIS和SYMM项中,记下BRA V AIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. 单击Project New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如sss.hkl), 最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project Open, 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除 8. 用EDIT 打开sss.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长,更正测量温度TEMP ?? (单位已设为 C)。

相关文档
最新文档