LEDMCOB封装与LEDCOB封装的区别

LEDMCOB封装与LEDCOB封装的区别
LEDMCOB封装与LEDCOB封装的区别

LED MCOB 封装与LED COB 封装的区别

深圳卯三郎科技有限公司联系方式:徐佳QQ:2

LED MCOB 封装与 LED COB 封装的区别现在 LED 的 COB 封装,其实大家可以看到大多数的 COB 封装,包括日本的封装 COB 技术,他们都是基于里基板的封装基础,就是在里基板上把 N 个芯片继承集成在一起进行封装,这个就是大家说的 COB 技术,大家知道里基板的衬底下面是铜箔,铜箔只能很好的通电,不能做很好的光学处理.MCOB 和传统的不同,MCOB 技术是芯片直接放在光学的杯子里面的,是根据光学做出来的,不仅是一个杯,要做好多个杯,这也是基于一个简单的原理,LED 芯片光是集中在芯片内部的,要让光能更多的跑出来,需要非常多的角,就是说出光的口越多越好,效率就能提升,MCOB 小功率的封装和大功率的封装.无论如何,小功率的封装效率一定要大于高功率封装的 15%以上,大功率的芯片很大,出光面积只有 4 个,可是小芯片分成 16 个,那出光面积就是 4 乘 16 个,所以出光面积比它大,所以无论如何我们提高 15%的出光效率,更是基于这个理由,MCOB 不是一个杯,MCOB 找多个杯也是目的让它出光效率更高,正是因为多杯 MCOB 的技术,它的出光效率比现在普通的 cob 多的体现在出光效率上。室内照明需求基准室内照明需求基准照明设计须考虑光源强度,和被照物或被照平面所得到的光通量。光源强度的计量单位是流明 (Lumen)。照度的计量单位是 Lux。两者之间的关系是 1 Lux = 1 Lumen/m2 假设我们有一座 10W 的 led 台灯,发出来的总光通量是 600 Lumens。如果这 600 Lumens 全部集中在一平方米的桌面,那桌面的照度就是 600 Lux。 (1) 商用照明 -- 明亮的食物,尤其是面包、汉堡、海鲜、烧烤等可以刺激食欲。所以面包蛋糕店、汉堡速食店、餐馆的橱窗要有 1000 Lux 以上的照度。珠宝、钟表、衣饰店,也必须要有明亮的照度,以刺激购买欲。精密工业、彩色印刷、博物馆、画廊、眼镜店、3C 卖场、书店、打字、制图、诊疗室都要有 1000 Lux 照度。 (2) 一般照明 -- 办公室、教室、量贩店、一般店面、咖啡店、快餐馆、工厂、生产线,则要有 300-800 Lux。 (3) 非工作场合 -- 如车站、机场、医院、大楼大厅、病房、走廊、楼梯间、厕所,则 100-300 Lux 即可。公园、停车场、与街道则可以低到 10-50 Lux。 (4) 非营业时段 -- 商用照明、一般照明在非营业时段,可以降到100-300 Lux。适度的照明,对商店的竞争力,绝对有显着的影响。便利商店、百货公司一楼的重点专柜,包括化妆品、珠宝,照度都超过 2000Lux。照明不足,就不会吸引注意力与购买欲。若照明过度不足,还会增加人员的疲惫感与睡意。各场所照明的基准: mcd(坎德拉坎德拉) lm(流明流明)瓦数) LED 中 mcd(坎德拉)和 lm(流明)及 W(瓦数)的关系 LED 亮度是指发光体(反光体)表面发光(反光)强弱的物理量。人眼从一个方向观察光源,在这个方向上的光强与人眼所“见到”的光源面积之比,定义为该光源单位的亮度,即单位投影面积上的发光强度。亮度的单位是坎德拉/平方米(cd/m)亮度是人对光的强度的感受。它是一个主观的量。与亮度不同的,由物理定义的客观的相应的量是光强。这两个量在一般的日常用语中往往被混淆。亮度(lightness)是颜色的一种性质,或与颜色多明亮有关系的色彩空间的一个维度。在 Lab 色彩空间中,亮度被定义来反映人类的主观明亮感觉。 (Lab 模式的原型是由 CIE 协会在 1931 年制定的一个衡量颜色的标准,在1976 年被重新定义并命名为 CIELab。此模式解决了由于不同的显示器和打印设备所造成的颜色扶植的差异,也就是它不依赖于设备。 Lab 颜色是以一个亮度分量 L 及两个颜色分量 a 和 b 来表示颜色的。其中 L 的取值范围是 0-100,a 分量代表由绿色到红色的光谱变化,而 b 分量代表由蓝色到黄色的光谱变化,a 和 b 的取值范围均为-120-120。Lab 模式所包含的颜色范围最广,能够包含所有的 RGB 和 CMYK 模式中的颜色。CMYK 模式所包含的颜色最少,有些在屏幕上砍刀的颜色在印刷品上却无法实现。) 亮度是指画面的明亮

程度,单位是堪德拉每平米(cd/m)或称 nits,也就是每平方公尺分之烛光。星星的亮度,大约在 2000 多年前,希腊天文学家伊巴谷提出了一种测量恒星的“星等”的方法。他把恒星的亮度分成 6 个等级。每一个星级比下一级亮两倍半,因而 1 等星比 6 等星要亮约100 倍。流明是光通量的单位。即发光强度为 1 坎德拉(cd)的点光源,在单位立体角(1 球面度)内发出的光通量为“1 流明”。而亮度(1cd=1000mcd)是光通量的空间密度,即单位立体角的光通量,叫发光强度,对于各向同性的光(即光源的光线向四面八方以相同的密度发射),则F = 4πI。也就是说,若光源的 I 为 1cd,则总光通量为4π =12.56 lm。简单的说,与力学的单位比较,光通量相当于压力,而发光强度相当于压强。衡量手电筒和 LED 一般用发光强度,但早期的LED“亮度”低,因此都用毫 cd 来衡量, mcd,即后来出来了上千、上万 mcd 的,单位也不改了,因此 10000mcd=10cd。同样管芯的 LED,5mm 的 mcd (亮度)值就没有 10mm(亮度)的 mcd 值大,原因是 10mm 的聚焦好、光点小。实际它们发出的光通量显然是一样的。发光强度的业余测量:找一个照度表(即 lx 表,我就有一个),探头放在地上向上,在暗处把手电或 LED 距离 1m 向其照射,得到的 lx 最大读数就是 cd 值,乘上 1000 就是 mcd 值。 W(瓦数)跟 CD(亮度)没有关系. 亮度是光特性,瓦数是电特性。瓦数是描述 LED 发出的可见不可见光所有电磁波的功率的单位,流明专指可见光的功率单位,所以发光效率是指 LED 发出的可见光的流明数与所有电磁波的瓦数之比。单位立体角内的流明数就是光强,单位堪德拉。一般说 LED 的光强是指光强的最大值,为更好的说明发光特性,还有一个技术参数扩散角。单位面积的堪德拉数就是亮度,单位堪德拉每平方米,也称为尼特。 W 数跟亮度没有关系. 如:大功率白光,国内的是 13--18 流明,而美国的是 25 流明.只不过 1W 看谁的电能转换成光能多一些而已.LED 省电的原因在于它的电能转换于光能高于其它发光材料.因之而节能.LEDaladdin 公司利用 MCOB/COB 芯片制造的 LED 灯泡、 LED 灯管 1W(每瓦)达 110LM(流明)。 LED 的亮度怎么算,1 流明等于多少亮度?流明是光通量的单位。光束(Luminous Flux)从某一光源所发射出来的光之总量,以 F 表之。其单位为流明(Lm)。发光强度为 1 烛光的点光源,在单位立体角(1 球面度)内发出的光通量为“1 流明”。流明即是 Lumen,那么这个 Lumen 到底代表了什么意义呢?Lumen 严肃地讲实际上是代表着光的强度,也就是光通量(Luminous Flux 即指光源在某一单位时间内所发出之光线总数量,一般称作光束)的单位,简而言之,流明就是光束照在物体表面的量。复杂点以技术面的角度讲,流明是辐射通量与发光效率的乘积。而辐射通量(Radiant Flux)是光源每秒发出的辐射能,至于发光效率是指不同的波长的光在人眼看来有不同的亮度感受,玩三枪的朋友对这个肯定有比较深的认识,因为在做三色汇聚时就可以明显地感受到绿色是最醒目的,而蓝色则比较难于辩认,这就是发光效率的表现。那么流明在数学上又是怎样被定义的呢?当一个光源照射在一个立体角度形成的球面积上,这时如果测得光的强度是 1 烛光(Candela),我们就称作 1 流明。既然在流明的解释中提到了烛光,那么就接着说烛光。烛光(Candela),也有按译音叫“坎德拉”的,从它这个拼法来看,就和英文中的“蜡烛” (Candle)很近似,这个烛光的概念最早就是英国人发明的,它是发光强度(Luminous intensity)的单位,那时英国人以一磅的白蜡制造出一尺长的蜡烛所燃放出来的光来定义烛光单位。而现在的定义已有了变化:我们以一立方厘米的黑色发光体加热,一直到该发光体将溶为液体时,所发出的光量的 1/60 就是标准光源,而烛光就是这种标准光源所放射出来的光量单位。 Candela 可以简写为 cd,我们常见到的 cd/m2 就是标示器材亮度的单位。如果您要追问,1cd/m2 代表什么,有多亮呢?它实际代表 1Lumen/Steradian 的光照度,至于这个 Steradian 是指球面度也是立体角的单位,指一个球体的内中心点为顶点,球体半径为底边所形成的球面角锥,而这个角锥的面积等于半径的平方。最精确的说法是:当540X1012Hz 的光以 1/683 瓦的功率照射在一个 Steradian 面积上,如果每平方米面积

上测有 1 Candela,那么我们就称之为 1cd/m2,这个单位经常被用来表示 CRT 电视或等离子这样本身内部发光显示的器材。有关 LED 的“亮度”单位:mcd 描述光的常用物理量有 4 个,它们是: 1、发光强度,为一光源在给定方向上的发光强度,单位 candela,即坎德拉,简称坎、cd。有人瓦数和亮度之间的换算(1W=?mcd) 仍然用烛光来表示发光强度,那太老了,要知道 1940 年(又一说 1948 年)已经采用新烛光了,只不过“烛”=candle 罢了。1968 年以后烛光被废除。 2、光通量,光源在单位时间内发射出的光量称为光源的发光通量,单位流明,lm 3、光照度,1lm(流明)的光通量均匀分布在 1m2 表面上所产生的光照度,单位勒克斯,lx 4、亮度,单位光源面积在法线方向上,单位立体角内所发出的光流,单位尼特,nt COB 光源或成主流目前 LED 封装环节所占成本较高,LED 器件整体成本的降低,除了材料之外,还需要选择一种低成本高效率的的封装结构。COB 光源生产成本相对较低,散热功能明显,并且具有高封装密度和高出光密度的特性,其能否成为封装主流一直是业界所专注的焦点。与传统 LED 封装技术相比,COB 面板光源光线很柔和,具有非常大的市场,是未来的一个发展方向. 据调查,目前市场上做 COB 封装的企业数量在逐渐增多,部分企业已能达到量产。从去年开始,日本厂商的 COB 光源技术有了较大提升,很多企业已经开始转向 COB 封装模式, COB 基板材料也有了改进,也早期的铜基板,发展到铝基板,再到目前部分企业所采用的陶瓷基板,逐渐提高了 COB 光源的可靠性。今年 3 月,日本西铁城推出一款多芯片型产品,以 COB 技术,将复数个蓝色 LED 芯片收纳在封装内,达到了较高的散热性能,将 COB 技术再次推向市场。此外,日本另一大厂夏普的陶瓷板 COB 也已经实现量产,是亚洲少数几个能量产陶瓷 COB 光源的企业之一。反观国内,虽然 COB 光源经历过上一轮的发展阵痛,但还是有不少企业继续研发,并取得一定技术成果。封装上市公司鸿利光电董事长李国平表示,鸿利光电目前已采用陶瓷基板、铝基板等多种材料研制 COB 光源,并早已实现量产,光效也得到较大提升,产品可靠性良好。“陶瓷基板能够很好解决 COB 的可靠性问题,但是其材料成本相对较高,具有一定技术难度”,王锐勋表示。据高工 LED 记者了解,目前国内能量产陶瓷 COB 光源的企业数量在不断增加,产品应用领域也逐渐扩大。其中日明光电的陶瓷 COB 封装已能量产,深圳晶蓝德从去年开始由传统的铝基板也逐步转为使用陶瓷,去年仅 COB 光源销售额就达到2000 万元。此外还有蓝田伟光、光宝等国内一批企业也已经将触角延伸到 COB 光源。“目前 COB 封装的球泡灯已经占据 LED 灯泡的 40%左右的市场,日本及国内很多企业都开始走 COB 封装模式,它是未来发展的必然趋势”,福建万邦光电科技有限公司董事长何文铭强调。此外,COB 光源不仅是材料及其可靠性得到了改进,其光学技术也得到了进一步提升。COB 光源虽然具有较好的散热功能,但是基板底下的铜箔,只能很好的通电,却不能做很好的光学处理,因此目前也有企业提出 MCOB 技术。MCOB 出光效率比 COB 光源要高,有望成为市场主流。 MCOB 技术,即多杯集成式 COB 封装技术,是 LED 集群封装技术英文Muilti Chips On Board 的缩写,COB 技术是在基板上把 N 个芯片集成在一起进行封装,然而基板底下是铜箔,不能很好的进行光学处理,而 MCOB 直接将芯片放在多个光学杯里进行封装,提高光通量,还可以方便实现 LED 面发光的封装,增加单个光源的功率,最大限度避免眩光和斑马纹,提高每瓦光效。成本降低 COB 封装优势凸显近年来,高功率 LED 封装的需求逐渐走向薄型化与低成本化,而 COB 光源以其低成本、应用便利性与设计多样化等优势为市场所看好。根据高工 LED 产业研究所调研报告显示,2010 年日本 LED 灯泡市场的快速扩张成为全球 LED 照明的典型范例。目前日本 LED 球泡灯市场主要转为以COB 多晶封装为主,传统大功率芯片及模块则大多用于 MR16 等指向性 LED 灯源。“与传统 LED SMD 贴片式封装以及大功率封装相比,COB 封装可将多颗芯片直接封装在金属基印刷电路板 MCPCB,通过基板直接散热,不仅能减少支架的制造工艺及其成本,还具有减少热阻的散热优势”,南通恺誉照明科技有限公司董事长谢建表示。除了减少支架的使用,

COB 同时还可以省略一些工艺,而保持产品品质不变。谢建进一步指出,“目前有企业直接用筒灯的灯杯做为散热板,不用加散热器,SMD 封装在进行贴片的时候,需要回流焊,其高温对芯片造成重大伤害。然而 COB 封装不需要回流焊,因此,也不需要购买贴片机和焊接等设备,不仅降低了应用企业的门槛,同时也降低了成本。” COB 封装的节省成本是多方面的。以 25W 的 LED 为例,传统高功率 25W 的 LED 光源,须采用 25 颗 1W 的 LED 芯片封装成 25 颗 LED 组件, COB 封装是将 25 颗 1W 的 LED 芯片封装在单一芯片中,而因此需要的二次光学透镜将从 25 片缩减为 1 片,有助于缩小光源面积、缩减材料、系统成本,进而可简化光源系二次光学设计并节省组装人力成本。成本的降低使 COB 光源的市场价格相对于 SMD 贴片和大功率集成封装也较低,“由于多颗芯片共用一个基板,使得多瓦数的灯珠节约了成本,市场价格也便宜很多”,谢建表示。可靠性堪忧 COB 封装能否成为主流?目前应用企业对 COB 集成封装的需求很少,由于上一轮的投入失败,使很多照明应用企业不敢使用这一封装。“COB 光源除了散热性能好,造价成本低,还能进行个性化设计,是未来封装发展的主导方向之一”,深圳晶蓝德副总经理唐良法表示。然而,目前市场上能量产 COB 光源的封装企业不多,而且大多使用铝基板作为材料。“COB 封装技术的瓶颈在于如何提高光源的可靠性,及其环境的试用度”,李国平谈到。目前市场上使用较多的铝基板 COB,由于其热阻较大,可靠性不高,容易出现光衰和死灯现象。然而,陶瓷基虽然是 COB 的理想材料之一,但是由于成本高,在功率小于 2W 时成本较高,难于被客户接受。“市场上对于 COB 光源还处于观望态度,需求不高。小芯片使用较多,大芯片的 COB 封装还存在热阻和光效等诸多问题”,台湾某封装技术工程师表示。由于COB 在降低一次光学透镜的多次折射而造成的出光损失,因此在出光效率和热能增加方面仍待改善,基板的制作良率也有待提升。“目前 COB 光源还存在着标准化问题,封装厂商与照明成品工厂标准无法对接,所以这也造成了市场上对 COB 光源需求甚少的尴尬局面”,曾在科锐工作多年的某技术工程师对记者表示,为了增强市场需求,有不少企业实行 COB 封装与应用一体化,解决产品标准不一致的问题。据了解,COB 光源主要取决于共晶技术、支架的材料以及倒装芯片技术,但是目前包括台湾厂商在内,能做成高可靠性COB 光源的企业凤毛麟角。 LED 模组分为 COB 光源和垂直光源等多种结构形式,科锐、欧司朗、飞利浦等国际大厂走的是垂直光源模组道路,并且在白光 RGB 上已经实现了突破。LED 技术中 COB 封装流程 LED 技术中 COB 封装流程 LED 板上芯片(Chip On Board,COB)工艺过程(供参考): 首先是正在基底表面用导热环氧树脂(一般用掺银颗粒的环氧树脂)覆盖硅片安放点,然后将硅片间接安放正在基底表面,热处理至硅片牢固地固定正在基底为行,随后再用丝焊的方法正在硅片和基底之间间接建立电气连接。其封拆流程如下:第一步:扩晶采用扩驰机将厂商提供的零驰 LED 晶片薄膜均匀扩驰,使附灭正在薄膜表面紧密陈列的 LED 晶粒拉开,便于刺晶。第二步:背胶将扩好晶的扩晶环放正在未刮好银浆层的背胶机面上,背上银浆。点银浆。适用于散拆 LED 芯片。采用点胶机将适量的银浆点正在 PCB 印刷线路板上。第三步:放入刺晶架将备好银浆的扩晶环放入刺晶架外,由操做员正在显微镜下将 LED 晶片用刺晶笔刺正在 PCB 印刷线路板上。第四步:放入热循环烘箱将刺好晶的 PCB 印刷线路板放入热循环烘箱外恒温静放一段时间,待银浆固化后取出(不可久放,不然 LED 芯片镀层会烤黄,即氧化,给邦定形成困难)。如果无 LED 芯片邦定,则需要以上几个步骤; 如果只要 IC 芯片邦定则取消以上步骤。第五步:粘芯片用点胶机正在 PCB 印刷线路板的 IC 位放上适量的红胶(或黑胶),再用防静电设备(实空吸笔或女) 将 IC 裸片准确放正在红胶或黑胶上。第六步:烘干将粘好裸片放入热循环烘箱外放正在大平面加热板上恒温静放一段时间,也能够天然固化(时间较长)。第七步:邦定(打线) 采用铝丝焊线机将晶片(LED 晶粒或 IC 芯片)取 PCB 板上对当的焊盘铝丝进行桥接,即 COB 的内引线焊接。第八步:前测使用公用检测工具(按不同用途的 COB 无不同的设

备,简单的就是高精密度稳压电流)检测 COB 板,将不合格的板女沉新返修。第九步:点胶采用点胶机将调配好的 AB 胶适量地点到邦定好的 LED 晶粒上,IC 则用黑胶封拆,然后根据客户要求进行外观封拆。第十步:固化将封好胶的 PCB 印刷线路板放入热循环烘箱外恒温静放,根据要求可设定不同的烘干时间。第十一步:后测将封拆好的 PCB 印刷线路板再用公用的检测工具进行电气性能测试,区分好坏劣劣。随着科技的进步,封装有铝基板 COB 封装、 COB 陶瓷 COB 封装、铝基板 MCOB 封装等形式。

常用SMT元件封装

常用SMT贴片元件封装说明 SMT是电子业界一门新兴的工业技术,它的兴起及迅猛发展是电子组装业的一次革命,被誉为电子业的“明日之星”,它使电子组装变得越来越快速和简单,随之而来的是各种电子产品更新换代越来越快,集成度越来越高,价格越来越便宜。为IT(Information Technology)产业的飞速发展作出了巨大贡献。 SMT所涉及的零件种类繁多,样式各异,有许多已经形成了业界通用的标准,这主要是一些芯片电容电阻等等;有许多仍在经历着不断的变化,尤其是IC类零件,其封装形式的变化层出不穷,令人目不暇接,传统的引脚封装正在经受着新一代封装形式(BGA、FLIP CHIP等等)的冲击,在本章里将分标准零件与IC 类零件详细阐述。 标准零件 标准零件是在SMT发展过程中逐步形成的,主要是针对用量比较大的零件,本节只讲述常见的标准零件。目前主要有以下几种:电阻(R)、排阻(RA或RN)、电感(L)、陶瓷电容(C)、排容(CP)、钽质电容(C)、二极管(D)、晶体管(Q)【括号内为PCB(印刷电路板)上之零件代码】,在PCB上可根据代码来判定其零件类型,一般说来,零件代码与实际装着的零件是相对应的。 一、零件规格: 贴片电阻尺寸图

贴片电容尺寸图

含义1206/3216 L:1.2inch(3.2mm) W:0.6inch(1.6mm) 0805/2125 L:0.8inch(2.0mm) W:0.5inch(1.25mm) 0603/1608 L:0.6inch(1.6mm) W:0.3inch(0.8mm) 0402/1005 L:0.4inch(1.0mm) W:0.2inch(0.5mm) 注:a、L(Length):长度; W(Width):宽度; inch:英寸 b、1inch=25.4mm (b)、在(1)中未提及零件的厚度,在这一点上因零件不同而有所差异,在生产时应以实际量测为准。 (c)、以上所讲的主要是针对电子产品中用量最大的电阻(排阻)和电容(排容),其它如电感、二极管、晶体管等等因用量较小,且形状也多种多样,在此不作讨论。 (d)、SMT发展至今,随着电子产品集成度的不断提高,标准零件逐步向微型化发展,如今最小的标准零件已经到了0201。 二、常用元件封装 1)电阻: 最为常见的有0805、0603两类,不同的是,它可以以排阻的身份出现,四位、八位都有,具体封装样式可参照MD16仿真版,也可以到设计所内部PCB库查询。 注:A\B\C\D四类型的封装形式则为其具体尺寸,标注形式为L X S X H 1210具体尺寸与电解电容B类3528类型相同 0805具体尺寸:2.0 X 1.25 X 0.5(公制表示法) 1206具体尺寸:3.0 X 1.5 0X 0.5(公制表示法) 贴片电阻 贴片排阻 2)电阻的命名方法

电子封装的现状及发展趋势

电子封装的现状及发展趋势 现代电子信息技术飞速发展,电子产品向小型化、便携化、多功能化方向发展.电子封装材料和技术使电子器件最终成为有功能的产品.现已研发出多种新型封装材料、技术和工艺.电子封装正在与电子设计和制造一起,共同推动着信息化社会的发展 一.电子封装材料现状 近年来,封装材料的发展一直呈现快速增长的态势.电子封装材料用于承载电子元器件及其连接线路,并具有良好的电绝缘性.封装对芯片具有机械支撑和环境保护作用,对器件和电路的热性能和可靠性起着重要作用.理想的电子封装材料必须满足以下基本要求: 1)高热导率,低介电常数、低介电损耗,有较好的高频、高功率性能; 2)热膨胀系数(CTE)与Si或GaAs芯片匹配,避免芯片的热应力损坏;3)有足够的强度、刚度,对芯片起到支撑和保护的作用;4)成本尽可能低,满足大规模商业化应用的要求;5)密度尽可能小(主要指航空航天和移动通信设备),并具有电磁屏蔽和射频屏蔽的特性。电子封装材料主要包括基板、布线、框架、层间介质和密封材料. 1.1基板 高电阻率、高热导率和低介电常数是集成电路对封装用基片的最基本要求,同时还应与硅片具有良好的热匹配、易成型、高表面平整度、易金属化、易加工、低成本并具有一定的机械性能电子封装基片材料的种类很多,包括:陶瓷、环氧玻璃、金刚石、金属及金属基复合材料等.

1.1.1陶瓷 陶瓷是电子封装中常用的一种基片材料,具有较高的绝缘性能和优异的高频特性,同时线膨胀系数与电子元器件非常相近,化学性能非常稳定且热导率高随着美国、日本等发达国家相继研究并推出叠片多层陶瓷基片,陶瓷基片成为当今世界上广泛应用的几种高技术陶瓷之一目前已投人使用的高导热陶瓷基片材料有A12q,AIN,SIC和B或)等. 1.1.2环氧玻璃 环氧玻璃是进行引脚和塑料封装成本最低的一种,常用于单层、双层或多层印刷板,是一种由环氧树脂和玻璃纤维(基础材料)组成的复合材料.此种材料的力学性能良好,但导热性较差,电性能和线膨胀系数匹配一般.由于其价格低廉,因而在表面安装(SMT)中得到了广泛应用. 1.1.3金刚石 天然金刚石具有作为半导体器件封装所必需的优良的性能,如高热导率(200W八m·K),25oC)、低介电常数(5.5)、高电阻率(1016n·em)和击穿场强(1000kV/mm).从20世纪60年代起,在微电子界利用金刚石作为半导体器件封装基片,并将金刚石作为散热材料,应用于微波雪崩二极管、GeIMPATT(碰撞雪崩及渡越时间二极管)和激光器,提高了它们的输出功率.但是,受天然金刚石或高温高压下合成金刚石昂贵的价格和尺寸的限制,这种技术无法大规模推广. 1.1.4金属基复合材料

常见芯片封装类型的汇总

常见芯片封装类型的汇总 芯片封装,简单点来讲就是把制造厂生产出来的集成电路裸片放到一块起承载作用的基板上,再把管脚引出来,然后固定包装成为一个整体。它可以起到保护芯片的作用,相当于是芯片的外壳,不仅能固定、密封芯片,还能增强其电热性能。所以,封装对CPU和其他大规模集成电路起着非常重要的作用。 今天,与非网小编来介绍一下几种常见的芯片封装类型。 DIP双列直插式 DIP是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。DIP封装结构形式有多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP (含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式)等。 DIP是最普及的插装型封装,应用范围包括标准逻辑IC,存储器和微机电路等。 DIP封装 特点: 适合在PCB(印刷电路板)上穿孔焊接,操作方便。 芯片面积与封装面积之间的比值较大,故体积也较大。 最早的4004、8008、8086、8088等CPU都采用了DIP封装,通过其上的两排引脚可插到主板上的插槽或焊接在主板上。 在内存颗粒直接插在主板上的时代,DIP 封装形式曾经十分流行。DIP还有一种派生方式SDIP(Shrink DIP,紧缩双入线封装),它比DIP的针脚密度要高六倍。 现状:但是由于其封装面积和厚度都比较大,而且引脚在插拔过程中很容易被损坏,可靠性较差。同时这种封装方式由于受工艺的影响,引脚一般都不超过100个。随着CPU内

这些芯片封装类型,基本都全了

这些芯片封装类型,基本都全了 1、2、BQFP(quad flat package with bumper)3、碰焊PGA(butt joint 4、C-(ce5、Cerdip6、Cerquad7、CLCC(ceramic leaded chip carrier)8、COB(chip on board)9、DFP(dual flat package)10、DIC(dual in-line ceramic package)11、DIL(dual in-line)12、DIP(dual in-line package)13、DSO(dual small out-lint)14、DICP(dual tape carrier package)15、DIP(dual tape carrier package)16、FP(flat package)17、flip-chip18、FQFP(fine pitch quad flat package)19、CPAC(globe top 20、CQFP(quad fiat package with guard ring)21、H-(with heat sink)22、pin grid array(surface mount type)23、JLCC(J-leaded chip carrier)24、LCC(Leadless chip carrier)25、LGA(land grid array)26、LOC(lead on chip)27、LQFP(low profile quad flat package)28、L-QUAD29、MCM(mul30、MFP(mini flat package)31、MQFP(metric quad flat package)32、MQUAD(metal quad)33、MSP(mini square package)34、OPMAC(over molded pad array carrier)35、P-(plastic)36、PAC(pad array carrier)37、PCLP(printed circuit board leadless package)38、PFPF(plastic flat package)39、PGA(pin grid array)40、piggy back41、42、P-LCC(plastic 43、QFH(quad flat high package)44、QFI(quad flat I-leaded packgac)45、QFJ(quad flat J-leaded package)46、QFN(quad flat non-leaded package)47、QFP(quad flat package)48、QFP(FP)(QFP fine pitch)49、QIC(quad in-line ceramic package)50、QIP(quad in-line plastic package)51、QTCP(quad tape carrier package)52、QTP(quad tape carrier package)53、QUIL(quad in-line)54、QUIP(quad in-line package)55、56、SH-DIP(shrink dual in-line package)57、SIL(single in-line)58、SIMM(single in-line memory module)59、SIP(single in-line package)60、SK-DIP(skinny dual in-line package)61、SL-DIP(slim dual in-line package)62、SMD(surface mount devices)63、SO(small out-line)64、SOI(small out-line I-leaded package)65、SOIC(small out-line integrated circuit)66、SOJ(Small Out-Line J-Leaded Package)67、SQL(Small Out-Line L-leaded package)68、SONF(Small Out-Line Non-Fin)69、SOF(small Out-Line package)70、SOW (Small Outline Package(Wide-Jype)) 宽体SOP。部分半导体厂家采用的名称。林超文PCB设计直播第1节:PADS元件库管理

元器件封装知识

元器件封装知识 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

贴片式元件 表面组装技术(surface Mount Technology 简称SMT) 表面贴装 (Surface Mounted Devices 简称SMD) 一、表面贴片组件(形状和封装的规格) 表面贴片技术由1960年代开始发展,在1980年代逐渐广泛采用,至现在已发展多种类SMD组件,优点是体积较小,适合自动化生产而使用在线路更密集的底板上。SMD组件封装的形装和尺寸的规格都已标准化,由JEDEC标准机构统一,以下是SMD组件封装的命名:1.二个焊接端的封装形式: 矩形封装:通常有片式电阻(Chip-R)/ 片式电容(Chip-C)/ 片式磁珠 (Chip Bead),常以它们的外形尺寸(英制)的长和宽命名,来标志它们的大小,以英制(inch) 或公制(mm)为单位, 1inch=,如外形尺寸为×0,06in,记为1206,公制记为×。常用的尺寸规格见下表:(一般长度误差值为±10%) NO 英制名称长(L) "X宽(W) " 公制(M)名称长(L)X宽(W) mm 1 01005 " × " 0402M × mm 2 0201 ” × "0603M × mm 3 0402 ” × " 1005M × 4 0603 " × " 1608M × mm 5 0805 " × " 2012M × mm 6 1206 " × " 3216M × mm 7 1210 " × " 3225M × mm 8 1808 " × " 4520M × mm 9 1812 " × " 4532M × mm 10 2010 " × " 5025M 5..0 × mm 片式电阻(Chip-R) 片式磁珠 (Chip Bead) 片式电容(Chip Cap)

倒装封装介绍

倒装封装介绍 什么是LED倒装芯片?近年来,在芯片领域,倒装芯片技术正异军突起,特别是在大功率、户外照明的应用市场上更受欢迎。但由于发展较晚,很多人不知道什么叫LED倒装芯片,LED倒装芯片的优点是什么?今天慧聪LED屏网编辑就为你做一个简单的说明。先从LED正装芯片为您讲解LED倒装芯片,以及LED倒装芯片的优势和普及难点。 要了解LED倒装芯片,先要了解什么是LED正装芯片 LED正装芯片是最早出现的芯片结构,也是小功率芯片中普遍使用的芯片结构。该结构,电极在上方,从上至下材料为:P-GaN,发光层,N-GaN,衬底。所以,相对倒装来说就是正装。 LED倒装芯片和症状芯片图解 为了避免正装芯片中因电极挤占发光面积从而影响发光效率,芯片研发人员设计了倒装结构,即把正装芯片倒置,使发光层激发出的光直接从电极的另一面发出(衬底最终被剥去,芯片材料是透明的),同时,针对倒装设计出方便LED封装厂焊线的结构,从而,整个芯片称为倒装芯片(Flip Chip),该结构在大功率芯片较多用到。 正装、倒装、垂直LED芯片结构三大流派

倒装技术并不是一个新的技术,其实很早之前就存在了。倒装技术不光用在LED行业,在其他半导体行业里也有用到。目前LED芯片封装技术已经形成几个流派,不同的技术对应不同的应用,都有其独特之处。 目前LED芯片结构主要有三种流派,最常见的是正装结构,还有垂直结构和倒装结构。正装结构由于p,n电极在LED同一侧,容易出现电流拥挤现象,而且热阻较高,而垂直结构则可以很好的解决这两个问题,可以达到很高的电流密度和均匀度。未来灯具成本的降低除了材料成本,功率做大减少LED颗数显得尤为重要,垂直结构能够很好的满足这样的需求。这也导致垂直结构通常用于大功率LED应用领域,而正装技术一般应用于中小功率LED。而倒装技术也可以细分为两类,一类是在蓝宝石芯片基础上倒装,蓝宝石衬底保留,利于散热,但是电流密度提升并不明显;另一类是倒装结构并剥离了衬底材料,可以大幅度提升电流密度。 LED倒装芯片的优点 一是没有通过蓝宝石散热,可通大电流使用;二是尺寸可以做到更小,光学更容易匹配;三是散热功能的提升,使芯片的寿命得到了提升;四是抗静电能力的提升;五是为后续封装工艺发展打下基础。 什么是LED倒装芯片 据了解,倒装芯片之所以被称为“倒装”是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。传统的通过金属线键合与基板连接的晶片电气面朝上,而倒装晶片的电气面朝下,相当于将前者翻转过来,故称其为“倒装芯片”。 倒装LED芯片,通过MOCVD技术在蓝宝石衬底上生长GaN基LED结构层,由P/N结发光区发出的光透过上面的P型区射出。由于P型GaN传导性能不佳,为获得良好的电流扩展,需要通过蒸镀技术在P区表面形成一层Ni- Au组成的金属电极层。P 区引线通过该层金属薄膜引出。为获得好的电流扩展,Ni-Au金属电极层就不能太薄。为此,器件的发光效率就会受到很大影响,通常要同时兼顾电流扩展与出光效率二个因素。但无论在什麼情况下,金属薄膜的存在,总会使透光性能变差。此外,引线焊点的存在也使器件的出光效率受到影响。采用GaN LED倒装芯片的结构可以从根本上消除上面的问题。 在倒装芯片的技术基础上,有厂家发展出了LED倒装无金线芯片级封装。 什么是LED倒装无金线芯片级封装 倒装无金线芯片级封装,基于倒装焊技术,在传统LED芯片封装的基础上,减少了金线封装工艺,省掉导线架、打线,仅留下芯片搭配荧光粉与封装胶使用。作为新封装技术产品,倒装无金线芯片级光源完全没有因金线虚焊或接触不良引起的不亮、闪烁、

常用元件封装

1. 电阻原理图中常用的名称为RES1-RES4; 电阻类及无极性双端元件封装形式:AXIAL0.3-AXIAL1.0,数字代表两焊盘的间距,单位为Kmil.。电阻排:RESPACK1/RESPACK2 RESPACK3/RESPACK4 。 贴片电阻: 0603表示的是封装尺寸与具体阻值没有关系,但封装尺寸与功率有关通常来说 0201 1/20W 0402 1/16W 0603 1/10W 0805 1/8W 1206 1/4W 2.电容原理图中常用的名称为CAP(无极性电容)、ELECTRO(有极性电容); 引脚封装形式:无极性电容为RAD0.1--RAD0.4,有极性电容为RB.2/.4或RB.3/.6或RB.4/.8或RB.5/1.0斜杠前数字表示焊盘间距,斜杠后数字表电容外直径。电解电容为 3.电位器原理图中常用的名称为POT1和POT2;引脚封装形式:VR-1到VR-5. 4.二极管原理图中常用的名称为DIODE(普通二极管)、DIODE SCHOTTKY(肖特基二极管)DUIDE TUNNEL(隧道二极管)DIODE VARCTOR(变容二极管)ZENER1~3(稳压二极管)发光二极管:LED;封装可以才用电容的封装。(RAD0.1-0.4) 引脚封装形式:DIODE0.4和DIODE 0.7; 发光二极管封装(RAD0.1-0.4)。 5.继电器引脚封装形式:RELAY-DPDT/ RELAY-DPST RELAY-SPDT/ RELAY-SPST 6.三极管原理图中常用的名称为NPN,NPN1和PNP,PNP1;

引脚封装形式TO18、TO92A(普通三极管)TO220H(大功率三极管)TO3(大功率达林顿管) 7.场效应管原理图中常用的名称为JFET N(N沟道结型场效应管),JFET P(P 沟道结型场效应管) MOSFET N(N沟道增强型管)MOSFET P(P沟道增强型管)引脚封装形式与三极管同。 8.整流桥原理图中常用的名称为BRIDGE1和BRIDGE2,引脚封装形式为D系列,如D-44,D-37,D-46等。 9.单排多针插座原理图中常用的名称为CON系列,从CON1到CON60,引脚封装形式为SIP系列,从SIP-2到SIP-20。 10.双列直插元件原理图中常用的名称为根据功能的不同而不同,引脚封装形式DIP 系列。 11.串并口类原理图中常用的名称为DB系列,引脚封装形式为DB和MD系列。 12.晶体振荡器:CRYSTAL;封装:XTAL1 13.发光数码管:DPY;至于封装嘛,建议自己做! 14.拨动开关:SW DIP;封装就需要自己量一下管脚距离来做! 15.按键开关:SW-PB:封装同上,也需要自己做。 16.变压器:TRANS1——TRANS5;封装不用说了吧?自己量,然后加两个螺丝上去。 Protel 零件库中常用的零器件及封装 类别名称零件名称零件英文名称常用编号封装封装说明 电阻RES1/RES2 R? AXIAL0.3-AXIAL1.0 数字表示焊盘间距 电阻排RESPACK1/RESPACK2 RESPACK3/RESPACK4 可变电阻RES3/RES4 电位器POT1或POT2 VR1- VR 5 数字表示管脚形状

常用元器件及元器件封装总结

常用元器件及元器件封装总结 一、元器件封装按照安装的方式不同可以分成两大类。(1) 直插式元器件封装直插式元器件封装的焊盘一般贯穿整个电路板,从顶层穿下,在底层进行元器件的引脚焊接,如图所示。 典型的直插式元器件及元器件封装如图所示。 (2)表贴式元器件封装。表贴式的元器件,指的是其焊盘只附着在电路板的顶层或底层,元器件的焊接是在装配元器件的工作层面上进行的,如图所示。

典型的表贴式元器件及元器件封装如图所示。在PCB元器件库中,表贴式的元器件封装的引脚一般为红色,表示处在电路板的顶层(TopLayer)。在PCB元器件库中,表贴式的元器件封装的引脚一般为红色,表示处在电路板的顶层(Top Layer)。 二、常用元器件的原理图符号和元器件封装 在设计PCB的过程中,有些元器件是设计者经常用到的,比如电阻、电容以及三端稳压源等。在Protel 99 SE中,同一种元器件虽然相同电气特性,但是由于应用的场合不同而导致元器件的封装存在一些差异。前面的章节中已经讲过,电阻由于其负载功率和运用场合不同而导致其元器件的封装也多种多样,这种情况对于电容来说也同样存在。因此,本节主要向读者介绍常用元器件的原理图符号和与之相对应的元器件封装,同时尽量给出一些元器件的实物图,使读者能够更快地了解并掌握这些常用元器件的原理图符号和元器件封装。(1)、电阻。电阻器通常简称为电阻,它是一种应用十分广泛的电子元器件,其英文名字为“Resistor”,缩写为“Res”。电阻的种类繁多,通常分为固定电阻、可变电阻和特种电阻3大类。固定电阻可按电阻的材料、结构形状及用途等进行多种分类。电阻的种类虽多,但常用的电阻类型主要为RT型碳膜电阻、RJ型金属膜电阻、RX型线绕电阻和片状电阻等。固定电阻的原理图符号的常用名称是“RES1”和“RES2”,如图F1-5(a)所示。常用的引脚封装形式为AXIAL系列,包括AXIAL-0.3、AXIAL-0.4、AXIAL-0.5、AXIAL-0.6、AXIAL-0.7、AXIAL-0.8、AXIAL-0.9和AXIAL-1.0等封装形式,其后缀数字代表两个焊盘的间距,单位为“英寸”,如图F1-5(b)所示。常用固定电阻的实物图如图F1-5(c)所示。

正装与倒装芯片的封装

倒装芯片的封装 倒装芯片通常是功率芯片主要用来封装大功率LED(>1W),正装芯片通常是用来进行传统的小功率φ3~φ10的封装。因此,功率不同导致二者在封装及应用的方式均有较大的差别,主要区别有如下几点: 1. 封装用原材料差别: 2.封装制程区别: (1).固晶:正装小芯片采取在直插式支架反射杯内点上绝缘导热胶来固定芯片,而倒装芯片多采用导热系数更高的银胶或共晶的工艺与支架基座相连,且本身支架基座通常为导热系数较高的铜材; (2).焊线:正装小芯片通常封装后驱动电流较小且发热量也相对较小,因此采用正负电极各自焊接一根φ0.8~φ0.9mil金线与支架正负极相连即可;而倒装功率芯片驱动电流一般在350mA以上,芯片尺寸较大,因此为了保证电流注入芯片过程中的均匀性及稳定性,通常在芯片正负级与支架正负极间各自焊接两根φ1.0~φ1.25mil的金线; (3).荧光粉选择:正装小芯片一般驱动电流在20mA左右,而倒装功率芯片一般在350mA左右,因此二者在使用过程中各自的发热量相差甚大,而现在市场通用的荧光粉主要为YAG, YAG自身耐高温为127℃左右,而芯片点亮后,结温(Tj)会远远高于此温度,因此在散热处理不好的情况下,荧光粉长时间老化衰减严重,因此在倒装芯片封装过程中建议使用耐高温性能更好的硅酸盐荧光粉; (4).胶体的选择:正装小芯片发热量较小,因此传统的环氧树脂就可以满足封装的需要;而倒装功率芯片发热量较大,需要采用硅胶来进行封装;硅胶的选择过程中为了匹配蓝宝石衬底的折射率,建议选择折射率较高的硅胶(>1.51),防止折射率较低导致全反射临界角增大而使大部分的光在封装胶体内部被全反射而损失掉;同时,硅胶弹性较大,与环氧树脂相比热应力比环氧树脂小很多,在使用过程中可以对芯片及金线起到良好的保护作用,有利于提高整个产品的可靠性; (5).点胶:正装小芯片的封装通常采用传统的点满整个反射杯覆盖芯片的方式来封装,而倒装功率芯片封装过程中,由于多采用平头支架,因此为了保证整个荧光粉涂敷的均匀性提高出光率而建议采用保型封装(Conformal-Coating)的工艺;示意图如下:

常用电子元件封装

常用电子元件封装 电阻:RES1, RES2, RES3, RES4;封装属性为axial系列 无极性电容:cap;封装属性为RAD-0.1到rad-0.4 电解电容:electroi;封装属性为rb.2/.4至到rb.5/1.0 电位器:pot1,pot2 ;封装属性为vr-1到vr-5 二极管:封装属性为diode-0.4(小功率)diode-0.7(大功率) 三极管:常见的封装属性为to-18 (普通三极管)to-22(大功率三极管)to-3(大功率达林顿管)电源稳压块有78和79系列;78系列如7805 , 7812 , 7820等 79 系列有7905 , 7912 , 7920 等 常见的封装属性有to126h和to126v 整流桥:BRIDGE1,BRIDGE2:封装属性为 D 系列(D-44 , D-37 , D-46 )电阻:AXIAL0.3- AXIAL0.7 其中0.4-0.7指电阻的长度,一般用AXIAL0.4 瓷片电容:RAD0.1-RAD0.3。其中0.1-0.3指电容大小,一般用RAD0.1 电解电容:RB.1/.2- RB.4/.8 其中.1/.2-.4/.8 指电容大小。一般<100uF用 RB.1/.2,100uF-470uF 用RB.2/.4,>470uF 用RB.3/.6 二极管:DIODE0.4-DIODE0.7 其中0.4-0.7 指二极管长短,一般用DIODE0.4 发光二极管:RB.1/.2 集成块:DIP8-DIP40,其中8 —4 0指有多少脚,8脚的就是DIP8 贴片电阻 0603表示的是封装尺寸与具体阻值没有关系,但封装尺寸与功率有关通常来说如下: 0201 1/20W 0402 1/16W 0603 1/10W 0805 1/8W 1206 1/4W 电容电阻外形尺寸与封装的对应关系是: 0402=1.0mmx0.5mm 0603=1.6mmx0.8mm 0805=2.0mmx1.2mm 1206=3.2mmx1.6mm 1210=3.2mmx2.5mm 1812=4.5mmx3.2mm 2225=5.6mmx6.5mm 零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。是纯粹的空间概念 因此不同的元件可共用同一零件封装,同种元件也可有不同的零件封装。像电阻,有传统的 针插式,这种元件体积较大,电路板必须钻孔才能安置元件,完成钻孔后,插入元件,再过锡炉或喷锡(也可手焊),成本较高,较新的设计都是采用体积小的表面贴片式元件(SMD)这种元件不必钻孔,用钢膜将半熔状锡膏倒入电路板,再把SMD元件放上,即可焊接在电 路板上了。 关于零件封装我们在前面说过,除了DEVICE。LIB库中的元件外,其它库的元件都已 经有了固定的元件封装,这是因为这个库中的元件都有多种形式:以晶体管为例说明一下:晶体管是我们常用的的元件之一,在DEVICE。LIB库中,简简单单的只有NPN与PNP 之分,但实际上,如果它是NPN的2N3055那它有可能是铁壳子的TO—3,如果它是NPN 的2N3054,则有可能是铁壳的TO-66或T0-5,而学用的CS9013,有TO-92A , TO-92B ,

芯片倒装技术及芯片封装技术

芯片倒装技术及芯片封装技术 引言世纪90年代以来,移动电话、个人数字助手(PDA)、数码相机等消费类电子产品的体积越来越小,工作速度越来越快,智能化程度越来越高。这些日新月异的变化为电子封装与组装技术带来了很多挑战和机遇。材料、设备机能与工艺控制能力的改进使越来越多的EMS 公司可以跳过尺度的表面安装技术(SMT)直接进入提高前辈的组装技术领域,包括倒装芯片等。因为越来越多的产品设计需要不断减小体积,进步工作速度,增加功能,因此可以预计,倒装芯片技术的应用范围将不断扩大,终极会取代SMT当前的地位,成为一种尺度的封装技术。 多年以来,半导体封装公司与EMS公司一直在通力进行,在施展各自特长的同时又介入对方领域的技术业务,力争使自己的技术能力更加完善和全面。在半导体产业需求日益增加的环境下,越来越多的公司开始提供\\\"完整的解决方案\\\"。这种趋同性是人们所期望看到的,但同时双方都会面对一定的挑战。 例如,以倒装芯片BGA或系统封装模块为例,跟着采用提高前辈技术制造而成的产品的类型由板组装方式向元件组装方式的转变,以往好像不太重要的诸多因素都将施展至关重要的作用。互连应力不同了,材料的不兼容性增加了,工艺流程也不一样了。不论你的新产品类型是否需要倒装芯片技术,不论你是否以为采用倒装芯片的时间合适与否,理解倒装芯片技术所存在的诸多挑战都是十分重要的。 倒装芯片技术倒装芯片技术\\\",这一名词包括很多不同的方法。每一种方法都有很多不同之处,且应用也有所不同。例如,就电路板或基板类型的选择而言,不管它是有机材料、陶瓷材料仍是柔性材料,都决定着组装材料(凸点类型、焊剂、底部填充材料等)的选择,而且在一定程度上还决定着所需设备的选择。在目前的情况下,每个公司都必需决定采用哪一种技术,选购哪一类工艺部件,为知足未来产品的需要进行哪一些研究与开发,同时还需要考虑如何将资本投资和运作本钱降至最低额。 在SMT环境中最常用、最合适的方法是焊膏倒装芯片组装工艺。即使如斯,为了确保可制造性、可靠性并达到本钱目标也应考虑到该技术的很多变化。目前广泛采用的倒装芯片方法主要是根据互连结构而确定的。如,和婉凸点技术的实现要采用镀金的导电聚合物或聚合物/弹性体凸点。 焊柱凸点技术的实现要采用焊球键合(主要采用金线)或电镀技术,然后用导电的各向同性粘接剂完成组装。工艺中不能对集成电路(1C)键合点造成影响。在这种情况下就需要使用各向异性导电膜。焊膏凸点技术包括蒸发、电镀、化学镀、模版印刷、喷注等。因此,互连的选择就决定了所需的键合技术。通常,可选择的键合技术主要包括:再流键合、热超声键合、热压键合和瞬态液相键合等。 上述各种技术都有利也有弊,通常都受应用而驱动。但就尺度SMT工艺使用而言,焊膏倒装芯片组装工艺是最常见的,且已证实完全适合焊膏倒装芯片组装技术传统的焊膏倒装芯片组装工艺流程包括:涂焊剂、布芯片、焊膏再流与底部填充等。但为了桷保成功而可靠的倒装芯片组装还必需留意其它事项。通常,成功始于设计。 首要的设计考虑包括焊料凸点和下凸点结构,其目的是将互连和IC键合点上的应力降至最低。假如互连设计适当的话,已知的可靠性模型可猜测出焊膏上将要泛起的题目。对IC 键合点结构、钝化、聚酰亚胺启齿以及下凸点治金(UBM)结构进行公道的设计即可实现这一目的。钝化启齿的设计必需达到下列目的:降低电流密度;减小集中应力的面积;进步电迁移的寿命;最大限度地增大UBM和焊料凸点的断面面积。 凸点位置布局是另一项设计考虑,焊料凸点的位置尽可能的对称,识别定向特征(去掉一个边角凸点)是个例外。布局设计还必需考虑顺流切片操纵不会受到任何干扰。在IC的有

PCB中常见的元器件封装大全参考word

PCB中常见的元器件封装大全 一、常用元器件: 1.元件封装电阻 AXIAL 2.无极性电容 RAD 3.电解电容 RB- 4.电位器 VR 5.二极管 DIODE 6.三极管 TO 7.电源稳压块78和79系列 TO-126H和TO-126V 8.场效应管和三极管一样 9.整流桥 D-44 D-37 D-46 10.单排多针插座 CON SIP 11.双列直插元件 DIP 12.晶振 XTAL1 电阻:RES1,RES2,RES3,RES4;封装属性为axial系列 无极性电容:cap;封装属性为RAD-0.1到rad-0.4 电解电容:electroi;封装属性为rb.2/.4到rb.5/1.0 电位器:pot1,pot2;封装属性为vr-1到vr-5 二极管:封装属性为diode-0.4(小功率)diode-0.7(大功率) 三极管:常见的封装属性为to-18(普通三极管)to-22(大功率三极管)to-3(大功率达林 顿管) 电源稳压块有78和79系列;78系列如7805,7812,7820等;79系列有7905,7912,7920等.常见的封装属性有to126h和to126v 整流桥:BRIDGE1,BRIDGE2: 封装属性为D系列(D-44,D-37,D-46) 电阻:AXIAL0.3-AXIAL0.7 其中0.4-0.7指电阻的长度,一般用AXIAL0.4 瓷片电容:RAD0.1-RAD0.3。其中0.1-0.3指电容大小,一般用RAD0.1 电解电容:RB.1/.2-RB.4/.8 其中.1/.2-.4/.8指电容大小。一般<100uF用RB.1/.2,100uF-470uF用RB.2/.4,>470uF用RB.3/.6 二极管:DIODE0.4-DIODE0.7 其中0.4-0.7指二极管长短,一般用DIODE0.4 发光二极管:RB.1/.2 集成块:DIP8-DIP40, 其中8-40指有多少脚,8脚的就是DIP8

元器件封装大全

元器件封装大全 一、元器件封装的类型 元器件封装按照安装的方式不同可以分成两大类。 (1)直插式元器件封装。 直插式元器件封装的焊盘一般贯穿整个电路板,从顶层穿下,在底层进行元器件的引脚焊接,如图F1-1所示。 图F1-1 直插式元器件的封装示意图 典型的直插式元器件及元器件封装如图F1-2所示。 图F1-2 直插式元器件及元器件封装 (2)表贴式元器件封装。 表贴式的元器件,指的是其焊盘只附着在电路板的顶层或底层,元器件的焊接是在装配元器件的工作层面上进行的,如图F1-3所示。 焊盘贯穿整个电路板

Protel 99 SE基础教程 2 图F1-3 表贴式元器件的封装示意图典型的表贴式元器件及元器件封装如图F1-4所示。 图F1-4 表贴式元器件及元器件封装在 PCB元器件库中,表贴式的元器件封装的引脚一般为红色,表示处在电路板的顶层(Top Layer)。 二、常用元器件的原理图符号和元器件封装 在设计PCB的过程中,有些元器件是设计者经常用到的,比如电阻、电容以及三端稳压源等。在Protel 99 SE中,同一种元器件虽然相同电气特性,但是由于应用的场合不同而导致元器件的封装存在一些差异。前面的章节中已经讲过,电阻由于其负载功率和运用场合不同而导致其元器件的封装也多种多样,这种情况对于电容来说也同样存在。因此,本节主要向读者介绍常用元器件的原理图符号和与之相对应的元器件封装,同时尽量给出一些元器件的实物图,使读者能够更快地了解并掌握这些常用元器件的原理图符号和元器件封装。 (1)电阻。 电阻器通常简称为电阻,它是一种应用十分广泛的电子元器件,其英文名字为“Resistor”,缩写为“Res”。 电阻的种类繁多,通常分为固定电阻、可变电阻和特种电阻3大类。 固定电阻可按电阻的材料、结构形状及用途等进行多种分类。电阻的种类虽多,但常用的电阻类型主要为RT型碳膜电阻、RJ型金属膜电阻、RX型线绕电阻和片状电阻等。 固定电阻的原理图符号的常用名称是“RES1”和“RES2”,如图F1-5(a)所示。常用的引脚封装形式为AXIAL系列,包括AXIAL-0.3、AXIAL-0.4、AXIAL-0.5、AXIAL-0.6、AXIAL-0.7、AXIAL-0.8、AXIAL-0.9和AXIAL-1.0等封装形式,其后缀数字代表两个焊盘的间距,单位为“英寸”,如图F1-5(b)所示。常用固定电阻的实物图如图F1-5(c)所示。 焊盘只附着在电路板的顶层或底层

芯片封装类型图鉴方案

芯片封装类型图鉴

壹.TO晶体管外形封装 TO(TransistorOut-line)的中文意思是“晶体管外形”。这是早期的封装规格,例如TO-92,TO-92L,TO-220,TO-252等等均是插入式封装设计。近年来表面贴装市场需求量增大,TO封装也进展到表面贴装式封装。 TO252和TO263就是表面贴装封装。其中TO-252又称之为D-PAK,TO-263又称之为D2PAK。 D-PAK封装的MOSFET有3个电极,栅极(G)、漏极(D)、源极(S)。其中漏极(D)的引脚被剪断不用,而是使用背面的散热板作漏极(D),直接焊接于PCB上,壹方面用于输出大电流,壹方面通过PCB散热。所以PCB的D-PAK 焊盘有三处,漏极(D)焊盘较大。 二.DIP双列直插式封装 DIP(DualIn-linePackage)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数壹般不超过100个。封装材料有塑料和陶瓷俩种。采用DIP封装的CPU芯片有俩排引脚,使用时,需要插入到具有DIP结构的芯片插座上。当然,也能够直接插于有相同焊孔数和几何排列的电路板上进行焊接。DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式)等。 DIP封装具有以下特点:

1.适合于PCB(印刷电路板)上穿孔焊接,操作方便。 2.比TO型封装易于对PCB布线。 3.芯片面积和封装面积之间的比值较大,故体积也较大。以采用40根I/O引脚塑料双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积 =(3×3)/(15.24×50)=1:86,离1相差很远。(PS:衡量壹个芯片封装技术先进和否的重要指标是芯片面积和封装面积之比,这个比值越接近1越好。如果封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。) 用途:DIP是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。Intel公司早期CPU,如8086、80286就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。 PS.以下三~六使用的是SMT封装工艺(表面组装技术),欲知详情,请移步此处。 三.QFP方型扁平式封装 QFP(PlasticQuadFlatPockage)技术实现的CPU芯片引脚之间距离很小,管脚很细,壹般大规模或超大规模集成电路采用这种封装形式,其引脚数壹般均于100之上。基材有陶瓷、金属和塑料三种。引脚中心距有1.0mm、0.8mm、0.65mm、0.5mm、0.4mm、0.3mm 等多种规格。

倒装芯片封装

Flip-chip LEDs倒装芯片封装指导 倒装芯片的封装 倒装芯片通常是功率芯片主要用来封装大功率LED(>1W),正装芯片通常是用来进行传统的小功率φ3~φ10的封装。因此,功率不同导致二者在封装及应用的方式均有较大的差别,主要区别有如下几点: 1. 封装用原材料差别: 2.封装制程区别: 1. 固晶:正装小芯片采取在直插式支架反射杯内点上绝缘导热胶来固定芯片,而倒装芯片多采用导热系数更高的银胶或共晶的工艺与支架基座相连,且本身支架基座通常为导热系数较高的铜材; 焊线:正装小芯片通常封装后驱动电流较小且发热量也相对较小,因此采用正负电极各自焊接一根φ0.8~2. φ0.9mil金线与支架正负极相连即可;而倒装功率芯片驱动电流一般在350mA以上,芯片尺寸较大,因此为了保证电流注入芯片过程中的均匀性及稳定性,通常在芯片正负级与支架正负极间各自焊接两根 φ1.0~φ1.25mil的金线; 3. 荧光粉选择:正装小芯片一般驱动电流在20mA左右,而倒装功率芯片一般在350mA左右,因此二者在使用过程中各自的发热量相差甚大,而现在市场通用的荧光粉主要为YAG, YAG自身耐高温为127℃左右,

而芯片点亮后,结温(Tj)会远远高于此温度,因此在散热处理不好的情况下,荧光粉长时间老化衰减严重,因此在倒装芯片封装过程中建议使用耐高温性能更好的硅酸盐荧光粉; 4. 胶体的选择:正装小芯片发热量较小,因此传统的环氧树脂就可以满足封装的需要;而倒装功率芯片发热量较大,需要采用硅胶来进行封装;硅胶的选择过程中为了匹配蓝宝石衬底的折射率,建议选择折射率较高的硅胶(>1.51),防止折射率较低导致全反射临界角增大而使大部分的光在封装胶体内部被全反射而损失掉;同时,硅胶弹性较大,与环氧树脂相比热应力比环氧树脂小很多,在使用过程中可以对芯片及金线起到良好的保护作用,有利于提高整个产品的可靠性; 5. 点胶:正装小芯片的封装通常采用传统的点满整个反射杯覆盖芯片的方式来封装,而倒装功率芯片封装过程中,由于多采用平头支架,因此为了保证整个荧光粉涂敷的均匀性提高出光率而建议采用保型封装(Conformal-Coating)的工艺;示意图如下: 6 灌胶成型:正装芯片通常采用在模粒中先灌满环氧树脂然后将支架插入高温固化的方式;而倒装功率芯片则需要采用从透镜其中一个进气孔中慢慢灌入硅胶的方式来填充,填充的过程中应提高操作避免烘烤后出

零件封装知识

零件封装知识 零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。是纯粹的空间概念.因此不同的元件可共用同一零件封装,同种元件也可有不同的零件封装。像电阻,有传统的针插式,这种元件体积较大,电路板必须钻孔才能安置元件,完成钻孔后,插入元件,再过锡炉或喷锡(也可手焊),成本较高,较新的设计都是采用体积小的表面贴片式元件(SMD)这种元件不必钻孔,用钢膜将半熔状锡膏倒入电路板,再把SMD元件放上,即可焊接在电路板上了。 电阻AXIAL 无极性电容RAD 电解电容RB- 电位器VR 二极管DIODE 三极管TO 电源稳压块78和79系列TO-126H和TO-126V 场效应管和三极管一样 整流桥D-44 D-37 D-46 单排多针插座CON SIP 双列直插元件DIP

晶振XTAL1 电阻:RES1,RES2,RES3,RES4;封装属性为axial系列 无极性电容:cap;封装属性为RAD-0.1到rad-0.4 电解电容:electronic ;封装属性为rb.2/.4到rb.5/1.0 电位器:pot1,pot2;封装属性为vr-1到vr-5 二极管:封装属性为diode-0.4(小功率)diode-0.7(大功率) 三极管:常见的封装属性为to-18(普通三极管)to-22(大功率三极管)to-3(大功率达林 顿管) 电源稳压块有78和79系列;78系列如7805,7812,7820等79系列有7905,7912,7920等 常见的封装属性有to126h和to126v 整流桥:BRIDGE1,BRIDGE2: 封装属性为D系列(D-44,D-37,D-46) 电阻:AXIAL0.3-AXIAL0.7其中0.4-0.7指电阻的长度,一般用AXIAL0.4 瓷片电容:RAD0.1-RAD0.3。其中0.1-0.3指电容大小,一般用RAD0.1 电解电容:RB.1/.2-RB.4/.8 其中.1/.2-.4/.8指电容大小。一般

相关文档
最新文档