三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形的重心、外心、垂心、内心和旁心(五心定理)
三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形五心定理(三角形的重心,外心,垂心,内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

一、三角形重心定理

三角形的三条边的中线交于一点。该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)

重心的性质:

1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。

2、重心和三角形3个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

二、三角形外心定理

三角形外接圆的圆心,叫做三角形的外心。

外心的性质:

1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

5、外心到三顶点的距离相等

三、三角形垂心定理

三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:

1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG∶GH=1∶2。(此直线称为三角形的欧拉线(Euler line))

3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

定理证明

已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB

于点F ,求证:CF⊥AB

证明:

连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE

∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC

∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE

又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB

因此,垂心定理成立!

四、三角形内心定理

三角形内切圆的圆心,叫做三角形的内心。

内心的性质:

1、三角形的三条内角平分线交于一点。该点即为三角形的内心。

2、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。

3、P为ΔABC所在平面上任意一点,点I是ΔABC内心的充要条件是:向量PI=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).

4、O为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC

五、三角形旁心定理

三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心,叫做三角形的旁心。

旁心的性质:

1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。

2、每个三角形都有三个旁心。

3、旁心到三边的距离相等。

如图,点M就是△ABC的一个旁心。三角形任意两角的外角平分线和第三个角的内角平分线的交点。一个三角形有三个旁心,而且一定在三角形外。

附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

有关三角形五心的诗歌三角形五心歌(重外垂内旁)

三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混.

重心

三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.

外心

三角形有六元素,三个内角有三边.作三边的中垂线,三线相交共一点.

此点定义为外心,用它可作外接圆.内心外心莫记混,内切外接是关键.

垂心

三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整,

直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清. 内心

三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心”有根源;点至三边均等距,可作三角形内切圆,此圆圆心称“内心”,如此定义理当然.

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

(完整word版)初中几何三角形五心及定理性质

初中几何三角形五心定律及性质 三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。 三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称 重心定理 三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。 2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。 5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。 外心定理

三角形外接圆的圆心,叫做三角形的外心。 外心的性质: 1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。 2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或 ∠BOC=360°-2∠A(∠A为钝角)。 3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。 5、外心到三顶点的距离相等 垂心定理 图1 图2 三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质: 1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。 2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line)) 3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。 4、垂心分每条高线的两部分乘积相等。 推论: 1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。(图1) 2. 三角形的垂心是其垂足三角形的内心。(图1) 3. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。(图2) 定理证明 已知:ΔABC中,AD、BE是两条高,AD、BE相交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB 证明: 连接DE ∵∠ADB=∠AEB=90度 ∴A、B、D、E四点共圆 ∴∠ADE=∠ABE

向量与三角形内心、外心、重心、垂心知识的交汇

向量与三角形内心、外心、重心、垂心知识的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++0OC OB OA O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ? =++0OC OB OA ?? ?=-+-+-=-+-+-0 )()()(0)()()(321321y y y y y y x x x x x x ??? ??? ?++=++=?3 3321321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 OC OB OA ++ 02=+=OD OA ∴OD AO 2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为A B C ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足. 0)(=?=-??=?CA OB OC OA OB OC OB OB OA AC OB ⊥? 同理BC OA ⊥,AB OC ⊥ ?O 为A B C ?的垂心 (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O OC c OB b OA a ?=++0为A B C ?的内心. 证明:b AC c AB 、 分别为AC AB 、方向上的单位向量, ∴ b AC c AB + 平分BAC ∠, (λ=∴AO b AC c AB +),令c b a b c ++= λ O A B C D E O A B C D E

内心、外心、重心、垂心定义及性质总结

内心、外心、重心、垂心 1、内心 (1)定义:三角形的内心是三角形三条角平分线的交点(或内切圆的圆心)。 (2)三角形的内心的性质 ①三角形的三条角平分线交于一点,该点即为三角形的内心 ②三角形的内心到三边的距离相等,都等于内切圆半径r ③s= (r是内切圆半径) 2 ④在Rt△ ABC中,/ C=90 , r=(a+b-c)/2 . ⑤/BOC = 90 +Z A/2 / BOA = 90+/C/2 / AOC = 90+/B/2 2、外心 (1)定义:三角形的外心是三角形三条垂直平分线的交点(或三角形外接圆的圆心)。 (2)三角形的外心的性质 ①三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心. ②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。 ③锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合

④OA=OB=OC=R ⑤/ B0C=2 BAC / AOB=Z ACB / C0A=2 CBA ⑥S A ABC二abc/4R 3、重心 (1)三角形的三条边的中线交于一点。该点叫做三角形的重心。 (2)三角形的重心的性质 ①重心到顶点的距离与重心到对边中点的距离之比为2:1。 ②重心和三角形 3 个顶点组成的 3 个三角形面积相等。 ③重心到三角形 3 个顶点距离的平方和最小。 ④在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3) ;空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:( Z1+Z2+Z3) /3 ⑤重心和三角形 3 个顶点的连线的任意一条连线将三角形面积平分。⑥重心是三角形内到三边距离之积最大的点。 4、垂心 (1)定义:三角形的垂心是三角形三边上的高的交点(通常用H表示)。 (2)三角形的垂心的性质 ①锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外 ②三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 ③垂心0关于三边的对称点,均在△ ABC的外接圆上

重心定理

重心定理 三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.上述交点叫做三角形的重心. 外心定理 三角形的三边的垂直平分线交于一点. 这点叫做三角形的外心. 垂心定理 三角形的三条高交于一点. 这点叫做三角形的垂心. 内心定理 三角形的三内角平分线交于一点. 这点叫做三角形的内心. 旁心定理 三角形一内角平分线和另外两顶点处的外角平分线交于一点. 这点叫做三角形的旁心.三角形有三个旁心. 三角形的重心、外心、垂心、内心、旁心称为三角形的五心. 它们都是三角形的重要相关点. 中位线定理 三角形的中位线平行于第三边且等于第三边的一半. 三边关系定理 三角形任意两边之和大于第三边,任意两边之差小于第三边.

三角形面积计算公式 S(面积)=a(边长)h(高)/2---三角形面积等于一边与这边上的高的积的一半[编辑本段]勾股定理 在Rt三角形ABC中,A≤90度,则 AB·AB+AC·AC=BC·BC A〉90度,则 AB·AB+AC·AC>BC·BC [编辑本段]梅涅劳斯定理 梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。 证明: 过点A作AG‖BC交DF的延长线于G, 则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。 三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1 它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。 另外,有很多人会觉得书写这个公式十分烦琐,不看书根本记不住,下面从别人转来一些方法帮助书写 为了说明问题,并给大家一个深刻印象,我们假定图中的A、B、C、D、E、F是六个旅游景点,各景点之间有公路相连。我们乘直升机飞到这些景点的上空,然后选择其中的任意一个景点降落。我们换乘汽车沿公路去每一个景点游玩,最后回到出发点,直升机就停在那里等待我们回去。

三角形内心、外心专项训练

三角形内心、外心专项训练 内心相关知识 一、判断题 1、在同一平面内,到三角形三边距离相等的点只有一个 2、在同一平面内,到三角形三边所在直线距离相等的点只有一个 3、三角形三条角平分线交于一点(三角形的内心) 4、等腰三角形底边中点到两腰的距离相等 5、三角形是以它的角平分线为对称轴的轴对称图形 二、填空题 6、如图(1),点P为△ABC三条角平分线交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD__________PE__________PF. 7、如图(2),P是∠AOB平分线上任意一点,且PD=2cm,若使PE=2cm,则PE与OB的关系是__________. 8、如图(3),CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、CB于点E、F,FG ⊥AB,垂足为G,则CF__________FG,∠1+∠3=__________度,∠2+∠4=__________度,∠3__________∠4,CE__________CF. 9、如右图,E、D分别是AB、AC上的一点,∠EBC、∠BCD的角平分线交于点M,∠BED、∠EDC的角平分线交于N. 求证:A、M、N在一条直线上. 证明:过点N作NF⊥AB,NH⊥ED,NK⊥AC 过点M作MJ⊥BC,MP⊥AB,MQ⊥AC ∵EN平分∠BED,DN平分∠EDC ∴NF__________NH,NH__________NK ∴NF__________NK ∴N在∠A的平分线上 又∵BM平分∠ABC,CM平分∠ACB ∴__________=__________,__________=__________ ∴__________=__________ ∴M在∠A的__________上 ∴M、N都在∠A的__________上 ∴A、M、N在一条直线上 三、作图题 10、利用角平分线的性质,找到△ABC内部距三边距离相等的点.

三角形的中心及其性质

三角形的中心及其性質 學習階段 : 三 學習範疇 : 度量、圖形與空間範疇 學習單位 : 以演繹法學習幾何 基本能力 : KS3-MS9-3 識別三角形的中線、垂直平分線、高線及角平分線 簡介: 1. 教師派發「三角形的中心及其性質」工作紙。 2. 學生利用Java 檔案 “ABC2.html ”及“Centres.html ”去完成工作 紙。 (此檔案需與其他所有檔案放於同一folder 內才可執行,電腦亦需安裝了Java 軟體。) 3. 學生利用檔案 “ABC2.html ”,在Java 的互動幾何的環境中,透 過特別設計的工具簡便地分別作出三角形的中線、角平分線、高線及垂直平分線,從而認識這些線的共點性質。 4. 學生再利用檔案 “Centres.html ”,透過拖拉頂點到不同的位置, 認識形心將以2:1這個比將各中線分成兩份。 5. 學生再使用「圓」工具( )及特別設計的 工具,在各個 中心點嘗試構作外接圓及內切圓,從而認識外心和內心分別是外 接圓及內切圓的中心。

學習單位:以演繹法學習幾何– 「三角形的中心及其性質」工作紙 三角形的中心及其性質 開啟檔案“ABC2.html ”,可看到以下畫面: 畫面顯示的 ABC ,它的三個頂點A 、B 、C 可被隨意拖拉到不同的位置。 題一:三角形的三條中線 1. 點選「中線」工具( ),再依次點選A 、B 、C 三點, 構作中線AD (圖1)。 2. 再依次點選B 、C 、A 及C 、A 、B ,構作中線BE 及CF 。 3. 拖拉三個頂點A 、B 、C ,觀察三條中線的變化,回答以 下問題: (a) 三條中線是否相交於同一點? 是? 否? (b) 若三條中線相交於同一點,這交點是否一定會在三角形 之內? 是? 否? (c) 若否,在甚麼情況下這交點會在三角形之外? 圖1

三角形的重心定理及其证明

三角形的重心定理及其证明 积石中学王有华 同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好. 已知:(如图)设ABC V 中,L 、M 、N 分 别是BC 、CA 、AB 的中点. 求证:AL 、BM 、CN 相交于一点G ,且 AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中 线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点. 现在,延长GL ,并在延长线上取点D ,使GL=LD 。因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点. 另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点. 另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1. 这个点G 被叫做ABC V 的重心. 证明2(向量法):(如图2)在ABC V 中,设AB 边上的中B C

线为CN ,AC 边上的中线为BM ,其交点为 G ,边BC 的中点为L ,连接AG 和GL ,因 为B 、G 、M 三点共线,且M 是AC 的中点, 所以向量BG u u u r ∥BM u u u u r ,所以,存在实数1λ ,使得 1BG BM λ=uuu r uuu u r ,即 1()AG AB AM AB λ-=-u u u r u u u r u u u u r u u u r 所以,11(1)AG AM AB λλ=+-u u u r u u u u r u u u r =111(1)2 AC AB λλ+-u u u r u u u r 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所以存在实数2λ,使得 22(1)AG AN AC λλ=+-u u u r u u u r u u u r = 221(1)2 AB AC λλ+-uu u r uuu r 所以 111(1)2AC AB λλ+-u u u r u u u r = 221(1)2 AB AC λλ+-u u u r u u u r 又因为 AB uuu r 、 AC u u u r 不共线,所以 1221112112λλλλ=-=-??? 所以 1223λλ== ,所以 1133AG AB AC =+uuu r uu u r uuu r . 因为L 是BC 的中点,所以GL GA AC CL =++u u u r u u u r u u u r u u r =111()332AB AC AC CB -+++u u u r u u u r u u u r u u u r =121()332AB AC AB AC -++-uuu r uuu r uuu r uuu r =1166 AB AC +uuu r uuu r ,即2AG GL =u u u r u u u r ,所以A 、G 、L 三点共线.故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1 C

三角形重心性质定理题教案资料

三角形重心性质定理 1.三角形重心性质定理 课本原题(人教八年级《数学》下册习题19.2第16题) 在△ABC中,BD、CE是边AC、AB上的中线,BD与CE相交于O。BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么? (提示:作BO中点M,CO的中点N。连接ED、EM、MN、ND) 分析:三角形三条中线的交点是三角形的重心(第十九章课题学习《重心》)。这道习题要证明的结论是三角形 重心的一个重要数学性质:三角形的重心将三角形的每条中线都分成1∶2两部分,其中重心到三角形某一顶点的距离是到该顶点对边中点距离的2倍。 证法1:(根据课本上的提示证明) (点评:证法1是利用中点构造三角形中位线,从而得到平行四边形,再利用平行四边形性质得到中线上三个线段之间的相等关系。) (点评:利用线段中点,还可以将与线段中点有关的线段倍长,构造全等,从而利用全等三角形的性质及三角形中位线的性质证明结论。) 2.三角形重心性质定理的应用 ⑴求线段长 例1如图3所示,在Rt△ABC中,∠A=30°,点D是斜边AB的中点,当G是Rt△ABC的重心,GE⊥AC 于点E,若BC=6cm,则GE= cm。 解: ⑵求面积 例2在△ABC中,中线AD、BE相交于点O,若△BOD的面积等于5,求△ABC的面积。 解:

练习:1.如图5,△ABC 中,AD 是BC 边上的中线,G 是重心,如果AG=6,那么线段DG= 。 2.如图6,在△ABC 中,G 是重心,点D 是BC 的中点,若△ABC 的面积为6cm 2,则△CGD 的面积为 。 巧用中线的性质解题 我们知道三角形的一条中线将三角形分成的两个三角形等底同高,这样的两个三角形的面积相等.下面我们利用上述性质来巧解以下问题. 一、巧算式子的值 例1 在数学活动中,小明为了求23411112222++++…12n +的值(结果用n 表示),设计了如图1所示的几何图形.请你利用这个几何图形求 23411112222++++ (12) n +的值. 解析:从图中可以看出大三角形的面积为1,根据三角形的中线把它分成两个面积相等的三角形可知,23411112222++++…12n +12 n +表示:组成面积为1的大三角形的所有小三角形的面积之和,于是23411112222++++ (12) n +112n =-. 【点评】此题运用“数形结合思想”,借助三角形的面积来求数的运算. 二、求图形的面积 例2 如图2,长方形ABCD 的长为a ,宽为b ,E 、F 分别是BC 和CD 的中点,DE 、BF 交于点G ,求四边形ABGD 的面积.

三角形的内心、外心、垂心

一、三角形内心 (一)定义 在三角形中,三个角的角平分线的交点是这个三角形内切圆的圆心,而三角形内切圆的圆心就叫做三角形的内心, (二)三角形内心的性质: 设△ABC的内切圆为☉I(r),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2. 1、三角形的内心到三边的距离相等,都等于内切圆半径r. 2、∠BIC=90°+A/2. 3、如图在RT△ABC中,∠A=90°△内切圆切BC于D则S△ABC=BD*CD 4、点O是平面ABC上任意一点,点I是△ABC内心的充要条件是: 向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c). 5、△ABC中,A(x1,y1),B(x2,y2),C(x3,y3),那么△ABC内心I的坐标是: (ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c)). 6、(欧拉定理)⊿ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr. 7、点O是平面ABC上任意一点,点I是△ABC内心的充要条件是: a(向量OA)+b(向量OB)+c(向量OC)=向量0. 8、双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。 9、△ABC中,内切圆分别与AB,BC,CA相切于P,Q,R,则AP=AR=(b+c-a)/2,BP =BQ =(a +c-b)/2,CR =CQ =(b+a-c)/2,r=[(b+c-a)tan(A/2)]/2。 10、(内角平分线定理) △ABC中,0为内心,∠A 、∠B、∠C的内角平分线分别交BC、AC、AB于Q、P、R,则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b. (三)三角形内接圆半径 1、在Rt△ABC中,∠C=90°,r=(a+b-c)/2. 2、在RT△ABC中,∠C=90°,r=ab/a+b+c 3任意△ABC中r=(2*S△ABC)/C△ABC (C为周长) 二、三角形外心 (一)定义 三角形外接圆的圆心叫做三角形的外心. 三角形外接圆的圆心也就是三角形三边中垂线的交点,三角形的三个顶点就在这个外接圆上 (二)三角形外心的性质: 设⊿ABC的外接圆为☉G(R),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.性质1:(1)锐角三角形的外心在三角形内;

三角形重心的应用

三角形重心的应用 南昌县渡头中学邓淑刚 教学目的:1、了解三角形重心的概念,掌握重心的性质并能加以应用。 2、了解并掌握“一题多解法”证明思路。 教学重、难点:三角形重心的性质及其应用。 教学过程: 一、三角形重心性质定理 课本原题(人教八年级《数学》下册习题19.2第16题) 在△ABC中,BD、CE是边AC、AB上的中线,BD与CE相交于O。BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么? (提示:作BO中点M,CO的中点N。连接ED、EM、MN、ND) 分析:三角形三条中线的交点是三角形的重心(第十九章课题学习《重心》)。这道习题要证明的结论是三角形重心的一个重要数学性质:三角形的重心将三角形的每条中线都分成1∶2两部分,其中重心到三角形某一顶点的距离是到该 顶点对边中点距离的2倍。 证法1:(根据课本上的提示证明) 取GA、GB中点M、N,连接MN、ND、DE、EM。(如图1) ∵MN是△GAB的中位线,∴MN∥AB,MN=1 2AB 又ED是△ACB的中位线,∴DE∥AB,DE=1 2AB ∴DE∥MN,DE=MN,四边形MNDE是平行四边形∴GM=GD,又AM=MG,则AG=2GD

同理可证:CG=2GF ,BG=2GE 点评:证法1是利用中点构造三角形中位线,从而得到平行四边形,再利用平行四边形性质得到中线上三个线段之间的相等关系。 证法2:延长BE 至F ,使GF=GB ,连接FC 。 ∵G 是BF 的中点,D 是BC 的中点 ∴GD 是△BFC 的中位线,GD ∥FC ,GD= 12 FC 由GD ∥FC ,AE=CE ,易证△AEG ≌△CEF ∴AG=FC ,即GD= 12 AG 点评:利用线段中点,还可以将与线段中点有关的线段倍长,构造全等,从而利用全等三角形的性质及三角形中位线的性质证明结论。 证法3:取EC 中点M ,连DM ,利用平行线分线段成比例及E 是AC 中点可证得相同的结论。(证明过程略) 二、三角形重心性质定理的应用 ⑴求线段长 例1 如图3所示,在Rt △ABC 中,∠A=30°,点D 是斜边AB 的中点,当G 是Rt △ABC 的重心,GE ⊥AC 于点E ,若BC=6cm ,则GE= cm 。 解:Rt △ABC 中,∠A=30°,BC=6 ∴AB=BC=12, D 是斜边AB 的中点,∴CD= 12 AB=6 G 是Rt △ABC 的重心,∴CG=23 CD=4 由CD=AD ,∠A=30°,∠GCE=30°

三角形的重心、垂心、内心、外心知识讲解

一、三角形重心定理 二、三角形外心定理 三、三角形垂心定理 四、三角形内心定理 五、三角形旁心定理 有关三角形五心的诗歌 三角形五心定理 三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。 一、三角形重心定理 三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。 2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。 二、三角形外心定理 三角形外接圆的圆心,叫做三角形的外心。外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。2、若O 是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A 为钝角)。3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。 5、外心到三顶点的距离相等 三、三角形垂心定理 三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。4、垂心分每条高线的两部分乘积

三角形重心、外心、垂心、内心的向量表示及其性质70409

三角形“四心”向量形式的充要条件应用 1.O 是ABC ?的重心?=++; 若O 是ABC ?的重心,则 AB C AOB AOC BOC S 31 S S S ????= ==故=++; 1()3 PG PA PB PC =++u u u r u u u r u u u r u u u r ?G 为ABC ?的重心. 2.O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC :: ::=??? 故0OC C tan OB B tan OA A tan =++ 3.O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 OC OB OA ==) 若O 是ABC ?的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:: :: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4.O 是内心ABC ?的充要条件是 ( ( ( =?=?=-? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是 ABC ?内心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? ,O 是 ABC ?内心的充要条件也可以是c b a =++ 。若O 是ABC ?的内心,则 c b a S S S AOB AOC BOC ::::=??? 故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=?u u u r u u u r u u u r u u u r u u u r u u u r r 是ABC ?的内心; 向量()(0)|||| AC AB AB AC λλ+≠u u u r u u u r u u u r u u u r 所在直线过ABC ?的内心(是BAC ∠的角平分线所在直线); (一)将平面向量与三角形内心结合考查 例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满 足 OA OP + +=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ?的( ) (A )外心(B )内心(C )重心(D )垂心 解析:因为 是向量AB u u u r 的单位向量设AB u u u r 与AC u u u r 方向上的单位向量分别为21e e 和, 又

三角形重心、外心、垂心、内心性质

三角形重心性质定理 1三角形的重心将三角形的每条中线都分成1∶2两部分,其中重心到三角形某一顶点的距离是到该顶点对边中点距离的2倍。 2重心到顶点的距离与重心到对边中点的距离之比为2:1。 3重心和三角形3个顶点组成的3个三角形面积相等。 4重心到三角形3个顶点距离的平方和最小。 5在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为 ((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标: (Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3 6重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。 7重心是三角形内到三边距离之积最大的点。 三角形的外心是三角形三条垂直平分线的交点(或三角形外接圆的圆心) 。 三角形的外心的性质 1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心. 2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。 3.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重 合 4.OA=OB=OC=R 5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA 6.S△ABC=abc/4R 三角形的内心是三角形三条角平分线的交点(或内切圆的圆心)。 三角形的内心的性质 1.三角形的三条角平分线交于一点,该点即为三角形的内心 2.三角形的内心到三边的距离相等,都等于内切圆半径r 3.r=2S/(a+b+c) 4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2. 5.∠BOC = 90 °+∠A/2 ∠BOA = 90 °+∠C/2 ∠AOC = 90 °+∠B/2 6.S△=[(a+b+c)r]/2 (r是内切圆半径) 三角形的垂心是三角形三边上的高的交点(通常用H表示)。 三角形的垂心的性质 1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外 2.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 3. 垂心O关于三边的对称点,均在△ABC的外接圆上 4.△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AO·OD=BO·OE=CO·OF 5. H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。 6.△ABC,△ABO,△BCO,△ACO的外接圆是等圆。 7.在非直角三角形中,过O的直线交AB、AC所在直线分别于P、Q,则AB/AP·tanB+ AC/AQ·tanC=tanA+tanB+tanC 8.三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。 9.设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。 10.锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。 11.锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。

三角形重心三角形重心定理

三角形重心-三角形重心定理 三角形中的几个重要定理 三角形中的几个重要定理 1.梅涅劳斯定理 一直线与ΔABC的三边AB、BC、CA或它们的延长线分别相交于X,Y,Z,AXBYCZ则 梅涅劳斯定理的逆定理也成立 在ΔABC的边AB、BC、CA分别取X,Y,Z. AXBYCZ 如果1,那么X,Y,Z三点共线。 XBYCZA 梅氏定理的逆定理常用来证明三点共线。

2. 塞瓦定理常可分为边元塞瓦定理和角元塞瓦定理。边元塞瓦定理:ΔABC内任取一点P,直线AP,BP,CP分别与边BC,CA,AB相交于点D,BDCEAF E,F,则 1. DCEAFB 边元塞瓦定理逆定理也成立: 在ΔABC的边BC,CA,AB上分别取点D,E,F,如果那么直线AD,BE,CF三线相交于同一点. 塞瓦定理的逆定理常用来证明三线共点。角元塞瓦定理 BDCEAF 1. DCEAFB A F M E B D

C 如图,设D、E、F 分别是△ABC 的三边BC、CA、AB 上的点,三条线段AD、BE、CF 交于一点M.则 对ΔABC与点M,有 sin BAMsin ACMsin CBM 1 sin MACsin MCBsin MBAsin BM Dsin MCAsin CBA 1 sin DMCsin ACBsin AMBsin CM Esin MABsin ACB 1 sin EMAsin BACsin BCM 对ΔMBC与点A,有 对ΔMCA与点B,有 对ΔMAB与点C,有 角元塞瓦定理的逆定理也成立。 sin AMFsin MBCsin BAC 1

sin FMBsin CBAsin CAM A D DE B F C B C E A F B E DA CF 如图,过△ ABC的三个顶点各引一条异于三角形三边的直线AD、BE、CF.若 sin BADsin ACFsin CBE 1,则AD、BE、CF三线共点或互相平行。

三角形的重心定理及其证明

三角形的重心定理及其证明 积石中学王有华 同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好. 已知:(如图)设ABC 中,L 、M 、N 分别是BC 、CA 、AB 的中点. 求证:AL 、BM 、CN 相交于一点G ,且 AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中 线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点. 现在,延长GL ,并在延长线上取点D ,使GL=LD 。因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点. 另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点. 另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1. 这个点G 被叫做ABC 的重心. 证明2(向量法):(如图2)在ABC 中,设AB 边上的中 B C

线为CN ,AC 边上的中线为BM ,其交点为G ,边BC 的中点为L ,连接AG 和GL ,因为B 、G 、M 三点共线,且M 是AC 的中点, 所以向量B G ∥BM ,所以,存在实数1λ ,使得 1BG BM λ= ,即 1()AG AB AM AB λ-=- 所以,11(1)AG AM AB λλ=+- =111 (1)2 A C A B λλ+- 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所 以存在实数2λ,使得 22(1)AG AN AC λλ=+- = 221(1)2 A B A C λλ+- 所以 111 (1)2A C A B λλ+- = 221(1)2 A B A C λλ+- 又因为 AB 、 A C 不共线,所以 12 21 112112 λλλλ=-=-?? ? 所以 122 3λλ== ,所以 1133 A G A B A C =+ . 因为L 是BC 的中点,所以G L G A AC C L =++ =111()332 A B A C A C C B -+++ =121()332AB AC AB AC -++- =1166 A B A C + ,即2AG GL = ,所以A 、G 、L 三点共线. 故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1 C

三角形重心性质的向量表示及其推广

三角形重心的性质的向量表示与推广及其应用 吴家华(四川省遂宁中学校 629000) 摘 要 本文给出了三角形重心性质的一个向量表示并进行了推广,同时介绍了它们的简单应用. 关键词 三角形、重心、向量、推广 我们知道,三角形的三条中线相交于一点,这点叫做三角形的重心,重心到顶点的距离与到对边中点的距离的比为1:2,即重心到顶点的距离等于该中线长的三分之二. 重心的这一性质如果我们用向量来表示的话,则有下列结论: 定理1 设G 为ABC ?的重心,则)(31AC AB AG +=;反之也成立. 证明:设BC 的中点为D ,则)(21AC AB AD +=. ∵G 为ABC ?的重心,∴AD AG 32=. ∴)(31)(213232AC AB AC AB AD AG +=+?==. 故)(3 1AC AB AG +=. 反之,若)(3 1AC AB AG +=,则AC AB AG +=3,即 0)()(=-+-+AC AG AB AG AG ,0=++CG BG AG , ∴0=++GC GB GA ,故G 为ABC ?的重心. 定理1 得证. 笔者在解题研究中,尝试把重心G 改为ABC ?所在平面内的任意一点,发现定理1可以推广为下列一般形式: 定理 2 设分别过ABC ?的两个顶点C B ,的直线相交于一点P ,且分别交对边所在直线于点M N ,. 若AB AM λ=,AC AN μ=,则 AC AB AP λμ λμλμμλ--+--=1)1(1)1(. 证明:如图1所示,设MC t MP =,NB s NP =,则 M p N B C A

t t t t +-=-+=+=+=)1()(t t +-=)1(λ. s s s s +-=-+=+=+=)1()(s s +-=)1(μ. ∵与不共线, ∴???=-=-t s s t )1()1(μλ??? ????--=--=?λμμλλμλμ1)1(1)1(s t . 故λμ λμλμμλ--+--=1)1(1)1(. 定理2得证. 显然,定理2的结论是建立在ABC ?的基础上的,那么,我们在应用定理2解决问题 时就需要一个三角形作依托,也就是说,我们解决问题的关键在于这个三角形的选择. 因此,我们不妨把定理中的这个ABC ?叫做基底三角形(注意,顶点C B A ,,按逆时针顺序),简称为“基三角”. 笔者在教学和解题实践中发现,上述三角形重心性质的向量表示及其推广在解决平面 向量和平面几何问题中具有较广泛的应用.下面举例说明之. 例1.如图2所示,在ABC ?中,E D ,分别为AC AB ,的中点,CD 与BE 交于点F , 设a AB =,b AC =,b n a m AF +=,若向量),(n m =,则=||( ) .A 32 .B 32 .C 65 .D 3 4 图2 解:由已知可知,F 为ABC ?的重心, 则由定理1可得:3131)(31+=+= .

三角形内心、外心专项训练

三角形内心、外心专项 训练 -CAL-FENGHAL-(YICAI)-Company One 1

内心相关知识 三角形内心、外心专项训练 一、判断题 在同一平面内, 在同一平面内, 三角形三条角平分线交于一点(三角形的内心) 1 、 2 、 3> 4 、 5 、 到三角形三边距离相等的点只有一个到三角形三 边所在直线距离相等的点只有一个 等腰三角形底边中点到两腰的距离相等 三角形是以它的角平分线为对称轴的轴对称图形 二、填空题 6、如图(1),点P为△A8C三条角平分线交点,PD丄AB, PE丄BC, PF丄AC,则 PD __________ PE __________ PF. 7、如图(2) , P是ZAOB平分线上任意一点,II PD=2cm,若使P&2cm,则PE与 0B的关系是___________ . 8、如图(3) , CD为RtAAfiC斜边上的高,ZBAC的平分线分别交CD、CB于点£, F, FG 丄AB,垂足为G,则CF _________________ F G, Z1+Z 3= ____________ 度,Z 2+Z 4= FG. Z 1+ Z 3= CF. 度,Z3Z4, CE 9.如右图,£、D分别是&& BED、ZEDC的角平分线交于M 求证;A、M、W在 一条直线上. 证明:过点W作WF丄AB, NH丄ED, NKLAC 过 点M 作MJ丄BC, MPMQ丄AC V£/V¥分Z8£6 DN 平分ZEDC :.NF _________ NH, NH NK :.NF _________ NK 代W在ZA的平分线上 乂TBM 半分ZABC, CM 半分ZACB AC匕的一点, ZffiC. /BCD的角平分线交于点Z AM在ZA的_____________ 上 AM. W都在ZA的 _____________ 上 :4、W在一条直线上 三、作图题 10、利用角平分线的性质,找到△ABC内部距三边距离相等的点 C

三角形的重心的性质

三角形的重心的性质 1.重心到顶点的距离与重心到对边中点的距离之比为2:1。 2.重心和三角形3个顶点组成的3个三角形面积相等。 3.重心到三角形3个顶点距离的平方和最小。 4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/3 5.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。 6.重心是三角形内到三边距离之积最大的点。 三角形的外心是三角形三条垂直平分线的交点(或三角形外接圆的圆心)。 三角形的外心的性质 1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心. 2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。 3.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合 4.OA=OB=OC=R 5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA 6.S△ABC=abc/4R 三角形的内心是三角形三条角平分线的交点(或内切圆的圆心)。 三角形的内心的性质 1.三角形的三条角平分线交于一点,该点即为三角形的内心

2.三角形的内心到三边的距离相等,都等于内切圆半径r 3.r=2S/(a+b+c) 4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2. 5.∠BOC = 90 °+∠A/2∠BOA = 90 °+∠C/2∠AOC = 90 °+∠B/2 6.S△=[(a+b+c)r]/2 (r是内切圆半径) 三角形的垂心是三角形三边上的高的交点(通常用H表示)。 三角形的垂心的性质 1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外 2.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 3.垂心O关于三边的对称点,均在△ABC的外接圆上 4.△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AO·OD=BO·OE=CO·OF 5. H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。 6.△ABC,△ABO,△BCO,△ACO的外接圆是等圆。 7.在非直角三角形中,过O的直线交AB、AC所在直线分别于P、Q,则AB/AP·tanB+ AC/AQ·tanC=tanA+tanB+tanC 8.三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。 9.设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。10.锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。

相关文档
最新文档