三相逆变器的建模

三相逆变器的建模
三相逆变器的建模

1

三相逆变器的建模

1.1 逆变器主电路拓扑与数学模型

三相全桥逆变器结构简单,采用器件少,并且容易实现控制,故选择三相三线两电平全桥逆变器作为主电路拓扑,如图 1所示。

图 1三相三线两电平全桥逆变拓扑

图 1中V dc 为直流输入电压;C dc 为直流侧输入电容;Q 1-Q 6为三个桥臂的开关管;L fj (j =a ,

b ,

c )为滤波电感;C

fj (j =a ,b ,c )为滤波电容,三相滤波电容采用星形接法;N 为滤波电容中点;L cj (j =a ,b ,c )是为确保逆变器输出呈感性阻抗而外接的连线电感;v oj (j =a ,b ,c )为逆变器的滤波电容端电压即输出电压;i Lj (j =a ,b ,c )为三相滤波电感电流,i oj (j =a ,b ,c )为逆变器的输出电流。

由分析可知,三相三线全桥逆变器在三相静止坐标系abc 下,分析系统的任意状态量如输出电压v oj (j =a ,b ,c )都需要分别对abc 三相的三个交流分量v oa 、v ob 、v oc 进行分析。但在三相对称系统中,三个交流分量只有两个是相互独立的。为了减少变量的个数,引用电机控制中的Clark 变换到三相逆变器系统中,可以实现三相静止坐标系到两相静止坐标系的变换,即将abc 坐标系下的三个交流分量转变成αβ坐标系下的两个交流分量。由自动控制原理可以知道,当采用PI 控制器时,对交流量的控制始终是有静差的,但PI 控制器对直流量的调节是没有静差的。为了使逆变器获得无静差调节,引入电机控制中的Park 变换,将两相静止坐标系转换成两相旋转坐标系,即将αβ坐标系下的两个交流分量转变成dq 坐标系下的两个直流分量。

定义αβ坐标系下的α轴与abc 三相静止坐标系下的A 轴重合,可以得到Clark 变换矩阵为:

11122230Clark

T ?

?--??

?

=??? (1)

两相静止坐标系αβ到两相旋转坐标系dq 的变换为Park 变换,矩阵为:

2

cos()sin()sin()cos()Park t t T t t ωωωω??=??-??

(2)

对三相全桥逆变器而言,设三相静止坐标系下的三个交流分量为:

cos()cos(2/3)cos(2/3)

a m

b m

c m u U t u U t u U t ωωπωπ==-=+ (3)

经过Clark 和Park 后,可以得到:

d m q u U u == (4)

由式(3)和式 (4)可以看出,三相对称的交流量经过上述Clark 和Park 变换后可以得到在 d 轴和 q 轴上的直流量,对此直流量进行 PI 控制,可以取得无静差的控制效果。

1.1.1 在abc 静止坐标系下的数学模型

首先考虑并网情况下,微电网储能逆变器的模型。选取滤波电感电流为状态变量,列写方程:

000a a a la b f b b lb c c lc c di dt u u i di L u u r i dt u u i di dt ??

??

????

????????????=--????????????????????????

????

(5)

其中,f L 为滤波电感,r 为滤波电感寄生电阻,系统中三相滤波电感取值相同。 在abc 三相静止坐标系中,三个状态变量有两个变量独立变量,需要对两个个变量进行分析控制,但是其控制量为交流量,所以其控制较复杂。

1.1.2 在αβ两相静止坐标系下的数学模型

由于在三相三线对称系统中,三个变量中只有两个变量是完全独立的,可以应用Clark 变换将三相静止坐标系中的变量变换到αβ两相静止坐标系下,如图 2所示。

A

图 2 Clark 变换矢量图

3

定义αβ坐标系中α轴与abc 坐标系中a 轴重合,根据等幅变换可以得到三相abc 坐标系到两相αβ坐标系的变换矩阵:

12

12120

3a b c u u u u u αβ??--??????

=??????????

????

(6)

联立式(5)与式(6),可以得到微电网储能逆变器在αβ坐标系下的数学模型:

00f di u u i dt L r u u i di dt α

αααββββ??

??????????=--??????????????????

(7)

从式(7)可以看出,与三相静止坐标系下模型相比,减少了一个控制变量,而各变量仍然为交流量,控制器的设计依然比较复杂。

1.1.3 在dq 同步旋转坐标系下的数学模型

根据终值定理,PI 控制器无法无静差跟踪正弦给定,所以为了获得正弦量的无静差跟踪,可以通过Clark 和Park 变换转换到dq 坐标系下进行控制。dq 两相旋转坐标系相对于αβ两相静止坐标系以ω的角速度逆时针旋转,其坐标系间的夹角为θ,图 3给出了Park 变换矢量图。

图 3 Park 变换矢量图

Park 变换矩阵方程为:

cos sin sin cos d q u u t t u u t t αβωωωω??????=??????-?

????? (8)

联立式(7)和式(8)可得微电网储能逆变器在dq 坐标系下的数学模型:

00d

f d d f q d q

f q q f d q di L u u L i ri dt

di L u u L i ri dt

ωω?=-+-????=---??

(9)

在两相旋转坐标系下电路中控制变量为直流量,采用PI 控制能消除稳态误差,大大简化了系统控制器的设计。但是,由于dq 轴变量之间存在耦合量,其控制需要采用解耦控制,解耦控

4

制方法将在下节介绍。

1.1.4 解耦控制

从式(9)可以看出,dq 轴之间存在耦合,需要加入解耦控制。令逆变器电压控制矢量的d 轴和q 轴分量为:

d gd q d

q

gq d q v u Li v v u Li v ωω=+-????

=--??? (10)

其中d v ?,q v ?分别是d 轴和q 轴电流环的输出,当电流环采用PI 调节器,满足:

**()()()()

ii d ip d d ii q ip q q K v K i i s

K v K i i s ??=+-???

??=+-??

(11)

ip K ,ii K 分别是电流PI 调节器的比例系数和积分系数,*d i ,*

q i 分别为d 轴和q 轴的参考

电流,d i ,q i 分别为d 轴和q 轴的实际电流采样。

把公式(10)代入公式(9)可得:

d

d d q q q

di L ri v dt

di L ri v

dt

?=-+????

?=-+??? (12)

由式(12)可以看出,由于在控制矢量中引入了电流反馈,抵消了系统实际模型中的耦合电流量,两轴电流已经实现独立控制。同时控制中引入电网电压前馈量gd u 和gq u ,提高了系统对电网电压的动态响应。图 4是电流解耦控制框图。解耦方法为在各轴电流PI 调节器输出中加入其他轴的解耦分量,解耦分量大小与本轴被控对象实际产生的耦合量大小一致,方向相反

[1]

5

图 4 电流解耦控制图

对公式(12)进行拉普拉斯变换,同时把公式(11)代入公式(12)可得:

()()()()()()

ii d ip d d ii q ip q q

k Ls r i k i i s

k Ls r i k i i s **?

+=+-???

?+=+-??

(13) 在采用解耦控制之后,d 轴电流和q 轴电流分别控制。图 5给出电流内环的结构框图。

*

图 5 电流内环结构框图

其中,s T 为电感电流采样周期,ip K 和ii K 对应电流环的PI 参数,1/(10.5)s T s +代表PWM 控制产生的惯性环节[2],1/(1)s T s +代表电流采样的延迟[3]。PWM K 为调制比,由于本文空间矢量调制(Space Vector Pulse Width Modulation, SVPWM),调制过程中引入了直流电压的前馈环节,所以PWM K 可以表示为:

1PWM K =

(14)

本系统开关频率和器件参数为:1/1/15kHz=66.7us s s T f ==, 1.5mH L =,0.1R =Ω,

50uF C =。

由于d 轴和q 轴电流环完全对称,所以本文只分析d 轴电流环的设计过程。由于合并小惯性环节并不会影响系统低频特性,可以将错误!未找到引用源。化简,得到图 6。

图 6 d 轴电流环简化结构框图

6

1.2 电压电流双环设计

1.2.1 电流环设计

由上述分析可知,在环路设计时可以对d 轴电流和q 轴电流分别进行控制[4],从而可以得到如图 7所示的电流环控制框图。

图 7 电流环控制框图

其中, K ip 和K ii 对应电流环的PI 参数,T s 为电流内环采样周期,1/(1+T s s )和1/(1+0.5T s s )分别代替电流环信号采样的延迟和PWM 控制的小惯性延时环节[5]。

本文设计的系统参数如下:L =1.5mH ,R =0.1Ω,C =50μF ,T s =1/f s =1/15k Hz=66.7μs 。由于d 轴与q 轴的电流环类似,故以d 轴电流环为例进行分析。

补偿前电流环的开环传递函数为:

0()(1.51)()

PWM

c s K G s T s R Ls =

++

(15)

补偿网络的传递函数为:

1()ip ii

K s K H s s

+=

(16)

直流增益20lg|G c 0(s)|=20dB ;幅频特性的转折频率为100Hz ,设定补偿后的穿越频率为1/10的开关频率,即1500Hz 。则有:

011(21500)(21500)

c G j H j ππ?=

?

(17)

若加入补偿网络后,系统回路的开环增益曲线以-20dB/dec 斜率通过0dB 线,变换器具有较好的相位裕量。由于补偿前的传递函数在中频段的斜率已经为-20dB/dec ,因此补偿网络在1500Hz 时斜率为零。将PI 调节器的零点设计在原传递函数的主导极点转折频率处,即100Hz 处。

令:

ip ii

K L

K R

= (18)

联立式(17)及式(18)可得电流环的PI 参数:K ip =18,K ii =1200。实际取值:K ip =10,K ii =1200。

7

频率/Hz

图 8 电流环补偿前后的波特图

图 8所示为电流环补偿前后的波特图。可以看出,补偿前电流环的开环传递函数G c 0(s )在低频段的增益为20dB ,并且在100Hz 时穿越0dB 线,相位裕度为75°;加入补偿环节后,电流环的闭环传递函数G il (s )其幅频特性曲线在1000Hz 处以-20dB/dec 斜率通过0dB 线,相位裕度为60°。

补偿之后回路的开环传递函数为:

()()(1.51)()

PWM ip ii s K K s K G s s T s R Ls +=

++

(19)

因此,补偿之后电流环的闭环传递函数为:

2()

(1.51)()()

1

()() 1.51()

11(1.51)()PWM ip ii s il PWM ip ii s ip PWM

ip PWM s K K s K s T s R Ls G s G s K K s K LT L

G s s s K K K K s T s R Ls +++=

=

=

+++++

++ (20)

1.2.2 电压环设计

电压外环主要是保证输出电压的稳态精度,动态响应相对较慢。设计电压外环时,可以将电流内环看成一个环节,其控制框图如图 9所示。

补偿前系统的开环传递函数为:

01

()C s ()(1)

v il s G s G s T s =

??+

(21)

8

图 9 电压环控制框图

PI 调节器的传递函数为:

2()vp vi

K s K H s s

+=

(22)

将电压环的穿越频率设计在150Hz 左右。由于G v 0(s )的幅频特性在150Hz 处的斜率为-20dB/dec ,因此需要设计PI 调节器的零点在小于200Hz 处,文中取为150Hz 。同理参照电流环设计方法,可以得到:

021

(2150)(2150)

v G j H j ππ=

(23)

并且

1

2150

vp vi

K K π=?

(24)

根据式(23)和式(24),得出电压环的PI 参数为:K vp =20,K vi =0.06。画出初始的传递函数、补偿网络及补偿后系统的开环传递函数Bode 图如图 10所示。

由图 10可以看出,补偿前原始回路增益函数G v 0(s)在2k Hz 时穿越0dB 线;加入补偿网络之后,由图 10可知,幅频特性在150Hz 处以-20dB/dec 斜率通过0dB 线,相位裕度为55°。

在实际调试过程中,PI 参数进行了适当的调整,使系统能够得到最优化。

频率/Hz

图 10 电压环补偿前后的波特图

9

四桥臂三相逆变器的控制策略

四桥臂三相逆变器的控制策略 阮新波严仰光 摘要提出了一种新型的三相四线逆变器,它有四个桥臂,第四个桥臂用来构成中点,从而省去了三相三桥臂逆变器中的中点形成变压器,减小了逆变器的体积和重量。针对这种逆变器,本文提出了一种电流调节器,它根据三相滤波电感电流和给定电流的误差值最大的那相选择逆变器的开关模态。为了消除输出相电压的静态误差,本文讨论 了一种基于PI调节器改进的电压调节方案。仿真结果表明,本文的思路是可行的。本 文为构造大功率、高效率的三相四线逆变器提供了可靠的理论基础。 关键词:三相逆变器控制策略 The Control Strategy for Three-Phase Inverter with Four Bridge Legs Ruan Xinbo Yan Yangguang (Nanjing University of Aeronaut ics & Astronautics 210016 China) Abstract A novel three phase inverter with four bridge legs i s presented in this paper.The inverter eliminates the neutral forming transforme r by adding a bridge leg to form neutral point to provide balanced voltages to a ny kinds of three phase loads.The principle of the inverter is analyzed,and a ne w current regulator,which chooses switching modes a ccording to the maximum cur rent error of filter inductance current and the reference current is proposed.Th e modified voltage regulator on the basis of PI regulator is proposed to elimina te output voltage static error under any load conditions. Keywords:Three-phase Inverters Control strategies 1 引言 三相逆变器一般是采用三个桥臂组成的拓扑结构,为了给不对称负载供电,必须在 输出端加入一个中点形成变压器(Neutral Formed Transformer,NFT),如图1所示。中点形成变压器是变比为1的自耦变压器,工作频率为输出交流电的频率,体积和重 量很大,而且体积和重量随着负载不对称的程度变化而变化,不对称度越大,NFT的体积重量也就越大。

三相全控桥式整流及有源逆变电路的设计

电力电子技术课程设计报告 有源逆变电路的设计 姓名 学号 年级20级 专业电气工程及其自动化 系(院) 指导教师 2012年12 月10 日 课程设计任务书

课程《电力电子技术》 题目 有源逆变电路的设计 引言 任务: 在已学的《电力电子技术》课程后,为了进一步加强对整流和有源逆变电路的认识。可设计一个三相全控桥式整流电路及有源逆变电路。分析两种电路的工作原理及相应的波形。通过电路接线的实验手段来进行调试,绘制相关波形图 要求: a. 要有设计思想及理论依据 b. 设计出电路图即整流和有源逆变电路的结构图 c. 计算晶闸管的选择和电路参数 d. 绘出整流和有源逆变电路的u d(t)、i d(t)、u VT(t)的波形图 e. 对控制角α和逆变β的最小值的要求

设计题目三相全控桥式整流及有源逆变电路的设计 一.设计目的 1.更近一步了解三相全控桥式整流电路的工作原理,研究全控桥式整流电路分别工作在电阻负载、电阻—电感负载下Ud, Id及Uvt的波形,初步 认识整流电路在实际中的应用。 2.研究三相全控桥式整流逆变电路的工作原理,并且验证全控桥式电路在有源逆变时的工作条件,了解逆变电路的用途。 二.设计理念与思路 晶闸管是一种三结四层的可控整流元件,要使晶闸管导通,除了要在阳极—阴极间加正向电压外,还必须在控制级加正向电压,它一旦导通后,控制级就失去控制作用,当阴极电流下降到小于维持电流,晶闸管回复阻断。因此,晶闸管的这一性能可以充分的应用到许多的可控变流技术中。 在实际生产中,直流电机的调速、同步电动机的励磁、电镀、电焊等往往需要电压可调的直流电源,利用晶闸管的单向可控导电性能,可以很方便的实现各种可控整流电路。当整流负载容量较大时,或要求直流电压脉冲较小时,应采用三相整流电路,其交流侧由三相电源提供。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最广泛的是三相桥式全控整流电路。三相半波可控电路只用三只晶闸管,接线简单,但晶闸管承受的正反向峰值电压较高,变压器二次绕组的导电角仅120°,变压器绕组利用率较低,并且电流是单向的,会导致变压器铁心直流磁化。而采用三相全控桥式整流电路,流过变压器绕组的电流是反向电流,避免了变压器铁芯的直流磁化,同时变压器绕组在一个周期的导电时间增加了一倍,利用率得到了提高。 逆变是把直流电变为交流电,它是整流的逆过程,而有源逆变是把直流电经过直-交变换,逆变成与交流电源同频率的交流电反送到电网上去。逆变在工农业生产、交通运输、航空航天、办公自动化等领域已得到广泛的应用,最多的是交流电机的变频调速。另外在感应加热电源、航空电源等方面也不乏逆变电路的身影。 在很多情况下,整流和逆变是有着密切的联系,同一套晶闸管电路即可做整流,有能做逆变,常称这一装置为“变流器”。 三.关键词

三相PWM逆变器的设计_毕业设计

湖南文理学院 课程设计报告 三相PWM逆变器的设计 课程名称:专业综合课程设计 专业班级:自动化10102班

摘要 本次课程设计题目要求为三相PWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相PWM 逆变电路Matlab 仿真

Abstract The curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements. This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results. Keywords: Matlab simulation, three-phase ,PWM, inverter circuit

三相并网逆变器数学模型

一. 三相线电压到三相相电压的转化 1()31()31() 3 a a b ca b b c ab c ca bc U U U U U U U U U =-=-= - 二. 三相静止坐标到两相静止坐标的转化(恒功率) 2[0.5()]3 2()] 3 2 alf a b c beta b c = -+= - 三. 两相静止坐标到两相旋转坐标的转化(恒功率) cos*sin*sin*cos*d alf beta q alf beta =+=-+ 四. 两相旋转坐标到两相静止坐标的转化(恒功率) cos*sin*sin*cos*alf d q beta d q =-=+ 五. SVPWM 的算法 1. 扇区N 的计算 A=beta U , alf beta U -, C=a lf b eta U -当A>=0,A=1,否则A=0; B>=0,B=1,否则B=0;当C>=0,C=1,否则C=0;那么扇区N=A+2B+4C 。 2.XYZ 的计算 dc X U = ,32alf beta dc U Y T U += ,32alf beta dc U Z T U -+ = 当T1+T2>=T 时,1112 T T T T T =+,2212 T T T T T = +

https://www.360docs.net/doc/f714784274.html,R1_Val, CCR2_Val, CCR3_Val 的计算 六. 有功无功解耦控制 * *()()*()()*id d d d pd d q d iq q q q pq q d q k U i i k i R Li E s k U i i k i R Li E s ωω=-++-+=-+ +++

(完整版)三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

两电平三相逆变器控制方法

两电平三相逆变器控制方法

————————————————————————————————作者:————————————————————————————————日期: 2

两电平三相逆变器控制方法 黄洋 (上海大学机自学院) 摘要:目前三相逆变器的控制方法主要采用的是PWM控制,根据两电平三相逆变器的工作原理,经过比较,选择空间矢量PWM控制。了解其控制原理,通过合理地选择、安排开关变量(开关器件的通断状态)的转换顺序和通、断持续时间,利用特定位置的电压空间矢量和零矢量合成任意空间矢量,可以调控三相输出电压的大小和相位,以实现两电平三相逆变器的PWM控制。 关键词:空间矢量PWM控制;三相逆变器 Control methods of two-level and three-phase inverter Huang yang (Shanghai University) Abstract: At present, the three-phase inverter’s control methods mainly adopt the PWM. According to the two-level and three-phase inverter’s working principle, we choose the Space-vector PWM. After understand its control principle, we can control and adjust the amplitude and phase of three-phase output voltage, which used specific position voltage space-vector and zero-vector to synthesize arbitrary space-vector by select and arrange the switch variables (Switch devices’ On-Off states) reasonably. Therefore, we can achieve the control of two-level and three-phase inverter. Key words: Space-vector PWM; three-phase inverter 1引言 逆变器是一种将直流电压变换成交流电压的装置。依据不同的分类规则,逆变器有多种分类方式。根据直流环节直流电源性质的不同,可以分为电压源型和电流源型;根据相数又可以分为单相、三相和多相;另外根据逆变器的主电路结构又可以分为简单两电平逆变器、多电平逆变器和多重化逆变器。 PWM技术可以用于电压型逆变器,也可以用于电流型逆变器,它对逆变技术的发展起了巨大的推动作用。它具有以下显著优点: (1)电路简单,只用一个功率控制级就可以调节电压和频率。 (2)可以使用不可控整流桥,使系统对电网的功率因数与逆变器输出电压值无关。 (3)可以同时进行调频、调压,与中间直流环节的元件参数无关,系统的动态响应速度快。 (4)可以获得更好的波形改善效果。 正是由于这些优点,使PWM技术在当今逆变器控制领域占据了绝对的主导地位。 2三相逆变器简介

基于SIMULINK的并网逆变器的仿真研究

计算机辅助工程设计 课程设计与报告 题目:基于SIMULINK的并网逆变器的仿真研究

基于SIMULINK的并网逆变器的仿真研究 第一章绪论 1.1课题背景及研究意义 当今社会,资源、环境和能源问题仍困扰着世界的发展。对此,各国对开发利用新型能源、使用清洁能源的需求日益迫切,尤其是中国,地广人多,是能源消耗大国。目前,国内更多的依靠火电、水电和核聚变发电来供电。然而火电生产排放大量的硫化物、粉尘等严重污染空气,影响气候变迁,其来源化石能源也将消耗殆尽;水电建设成本高,资源有限,还会给江河系统造成不可逆的破坏;核电在安全方面有缺陷,一旦核泄漏,将给环境造成毁灭性的破坏,日本福岛核泄漏事故就是一个活生生的例子。 因此,人类不得不寻求更加清洁、安全的替代能源。进入21世纪后,各国政府都在大力鼓励研究清洁可再生能源,太阳能、风能、地热能、潮汐能等环境能量开发技术获得快速发展,其中尤以风能和太阳能应用最多。由于我国资源分布不均衡,有些地方如内蒙古、沿海,有的地方太阳能蕴藏量大,如西藏,但这些地方发出的电当地并不能完全消纳,而其他一些地区则因负荷过重而缺电,因此将电资源丰富的地方发出的电并入电网是明智之举。 然而,分布型电能并入电网需要做到与电网同频同相同幅值,目前并网技术成为了新能源发电的瓶颈技术。因此,本文通过从并网逆变器的设计着手研究新能源并网技术,具有一定实际意义。 1.2 并网标准 新能源发电并入电网的电能必须满足以下3个条件[5]: (1)电压幅值:纹波幅值≤10%。 (2)频率:频差≤0.3Hz[1]。 (3)相位相同,相序相同,且相位差≤20°。 表1-1 并网标准化指标

三相SVPWM逆变电路MATLAB仿真

基于电压空间矢量控制的三相逆变器的研究 1、SVPWM逆变电路的基本原理及控制算法 图1.1中所示的三相逆变器有6个开关,其中每个桥臂上的开关工作在互补状态,三相桥臂的上下开关模式得到八个电压矢量,包括6个非零矢量(001)、(010)、(011)、(100)、(101)、(110)和两个零矢量(000)、(111). 图1.-1 三相桥式电压型有源逆变器拓扑结构 在平面上绘出不同的开关状态对应的电压矢量,如图1.2所示。由于逆变器能够产生的电压矢量只有8个,对与任意给定的参考电压矢量,都可以运用这8个已知的参考电压矢量来控制逆变器开关来合成。 3 U(011) 1 U(001)5 U(101) 4 U(100) 6 U(110) 2 U(010) Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ U(000) 7 U(111) β c U θ β u α u 1 sv U2 sv U 3 sv U 图1.2 空间电压矢量分区 图1.2中,当参考电压矢量在1扇区时,用1扇区对应的三个空间矢量U sv1、U sv2、U sv3 来等效参考电压矢量。若1.2 合成矢量 ref U所处扇区N的判断 三相坐标变换到两相β α-坐标: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ) ( ) ( ) ( 2 3 - 2 3 2 1 - 2 1 - 1 3 2 ) ( ) ( t t t t t u u u u u co bo ao β α (1.1)

根据u α、u β的正负及大小关系就很容易判断参考电压矢量所处的扇区位置。如表1.1所示。 表1.1 参考电压矢量扇区位置的判断条件 可以发现,扇区的位置是与u β、 u u βα-3及u u βα--3的正负有关。为判断方便,我们设空间电压矢量所在的扇区N N=A+2B+3C (1.2) 其中,如果u β >0,那么A=1,否则A=0 如果u u βα-3 >0,那么B=1,否则B=0 如果u u βα--3 >0,那么C=1,否则C=0 1.3 每个扇区中基本矢量作用时间的计算 在确定参考电压矢量的扇区位置后,根据伏秒特性等效原理,采用该扇区三个顶点所对应的三个电压空间矢量来逼近参考电压矢量。以参考电压矢量位于3扇区为例,如图1.3所示,参考电压U ref 与U 4的夹角为γ。 β 1 4 图1.3 电压空间矢量合成示意图 根据伏秒特性等效原理算出 () ???? ? ? ? ?? ????--==-=T T T T V T u T V T u u T s dc s ref dc s ref ref 21021 33321 β β α (1.3)

3KVA三相逆变器的设计

3KVA三相逆变器设计 1概述 随着各行各业自动化水平及控制技术的发展和其对操作性能要求的提高,许多行业的用电设备(如通信电源、电弧焊电源、电动机变频调速器等)都不是直接使用交流电网作为电源,而是通过形式对其进行变换而得到各自所需的电能形式,它们所使用的电能大都是通过整流和逆变组合电路对原始电能进行变换后得到的。 当今世界逆变器应用非常广泛。逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但由于其含有较大成分低次谐波等缺点,近十余年来,由于电力电子技术的迅速发展,全控型快速半导体器件BJT,IGBT,GTO 等的发展和PWM 的控制技术的日趋完善,使SPWM 逆变器得以迅速发展并广泛使用。PWM 控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度和周期以达到变压目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术,SPWM 控制技术又有许多种,并且还在不断发展中,但从控制思想上可分为四类,即等脉宽PWM 法,正弦波PWM 法(SPWM 法),磁链追踪型PWM 法和电流跟踪型PWM 法,其中利用SPWM 控制技术做成的SPWM 逆变器具有以下主要特点:(1)逆变器同时实现调频调压,系统的动态响应不受中间直流环节滤波器参数的影响。 (2)可获得比常规六拍阶梯波更接近正弦波的输出电压波形,低次谐波减少,在电气传动中,可使传动系统转矩脉冲的大大减少,扩大调速范围,提高系统性能。 (3)组成变频器时,主电路只有一组可控的功率环节,简化了结构,由于采用不可控整流器,使电网功率因数接近于1,且与输出电压大小无关。 本次课程设计要完成的是设计容量为3KVA的三相逆变器。初始条件为:输入直流电压220V。要求输出220V三相交流电,完成总电路的设计,并计算电路中各元件的参数。

三相光伏并网逆变器的设计

三相光伏并网逆变器的设计毕业设计开题报告 1 选题的目的和意义 随着社会生产的曰益发展,对能源的需求量在不断增长,全球范围内的能源危机也日益突出。地球中的化石能源是有限的,总有一天会被消耗尽。随着化石能源的减少,其价格也会提高,这将会严重制约生产的发展和人民生活水平的提高。可再生能源是满足世界能源需求的一种重要资源,特别是对于我们这个人口大国来讲更加重要。其中太阳能资源在我国非常丰富,其应用具有很好的前景。 光伏并网发电系统是通过太阳能电池板将太阳能转化为电能,并通过并网逆变器将直流电变为与市电同频同相的交流电,并回馈电网。存阳光充足时,太阳能发出的电可供使用,而不使用市网电;在阳光不充足或光伏发电量达不到使用量时,由控制部分自动调节,通过市网电给予补充。此系统主要用于输电线路调峰电站以及屋顶光伏系统。 光伏并网发电系统的核心技术是并网逆变器,在本文中对于单相并网逆变器硬件进行了建摸及设计。给出了硬件主回路并对各部分的功能进行了分析,同时选用Tl公司的DSP芯片TMs320F2812作为控制CPU,阐述了芯片特点及选择的原因。并对并网逆变器的控制及软件实现进行了研究。文中对于光伏电池的最大功率跟踪(MPPT)技术作了闸述并提出了针对本设计的实现方法。最后对安全并网的相关问题进行了分析探讨。 2 本选题的国内外动向 太阳能光伏并网发电始于20世纪80年代,由于光伏并网逆变器在并网发电中所起的核心作用,世界上主要的光伏系统生产商都推出了各自商用的并网逆变器产品。这些并网逆变器在电路拓扑、控制方式、功率等级上都有其各自特点,其性能和效率也参差不齐。目前在国内外市场上比较成功的商用光伏并网逆变器主要有以下几种: 1.德国SMA公司的Sunny Boy系列光伏逆变器艾思玛太阳能技术股份公司(SMA SolarTechnology AG)是全球光伏逆变器第一大生产供应商,并引领着全球光伏领域的技术创新和发展。该公司推出的Sunny Boy系列光伏组串逆变器是目前为止并网光伏发电站最成功的逆变器,市场份额高达60%。其在国内的典型工程包括大兴天普“50kWp大型屋顶光伏并网示范电站"、深圳国际园林花卉博览园1MWp光伏并网发电工程等。 2.奥地利Fronius公司的IG系列光伏逆变器Fronius是专业生产光伏并网逆变器和控制器

(完整版)三相SPWM逆变器仿真

三相SPWM逆变器仿真 一、原理分析 1、基本原理 按照输出交流电压半周期内的脉冲数,脉宽调制(PWM)可分为单脉冲调制和多脉冲调制;按照输出电压脉冲宽度变化规律,PWM可分为等脉宽调制和正弦脉 宽调制(SPWM)。 等脉宽调制产生的电压波形中谐波含量仍然很高,为了使输出电压波形中基波含量增大,应选用正弦波作为调制信号u R。这是因为等腰三角形的载波u T上、下 宽度线性变化,任何一条光滑曲线与三角波相交时,都会得到一组脉冲宽度正比于 该函数值的矩形脉冲。而且在三角载波u T不变条件下,改变正弦调制波u R的周期 就可以改变输出脉冲宽度变化的周期;改变正弦调制波u R的幅值,就可改变输出脉 冲的宽度,进而改变u D中基波u D1的大小。这就是正弦脉宽调制(sine pulse width modulated,SPWM)。 2、正弦脉宽调制方法(此处仅介绍了采样法) SPWM是以获得正弦电压输出为目标的一种脉宽调制方式。这里就以应用最普遍的三相电压源型逆变电路来讨论SPWM具体实现方法。 下图就是三相电压源型PWM逆变器主电路结构图: 图—1 上图为一三相电压源型PWM逆变器,VT1~VT6为高频自关断器件,VD1~VD6为与之 反并联的快速恢复二极管,为负载感性无功电流提供通路。两个直流滤波电容C串 联接地,中点O’可以认为与三相Y接负载中点O等电位。逆变器输出A、B、C三 相PWM电压波形取决于开关器件VT1~VT6上的驱动信号波行,即PWM的调制方式。 假设逆变电路采用双极性SPWM控制,三相公用一个三角形载波u T,三相正弦调制信号u RA、u RB、u RC互差120o,可用A相来说明功率开关器件的控制规律,正如 下图中所示。当u RA>u T时,在两电压的交点处,给A相上桥臂元件VT1导通信号、下桥臂元件VT4关断信号,则A相与电源中点O’间的电压u AO’=E/2。当u RA

三相逆变器的建模

三相逆变器的建模 1.1 逆变器主电路拓扑与数学模型 三相全桥逆变器结构简单,采用器件少,并且容易实现控制,故选择三相三线两电平全桥逆变器作为主电路拓扑,如图 1所示。 图 1三相三线两电平全桥逆变拓扑 图 1中V dc 为直流输入电压;C dc 为直流侧输入电容;Q 1-Q 6为三个桥臂的开关管;L fj (j =a ,b ,c )为滤波电感;C fj (j =a ,b ,c )为滤波电容,三相滤波电容采用星形接法;N 为滤波电容中点;L cj (j =a ,b ,c )就是为确保逆变器输出呈感性阻抗而外接的连线电感 ;v oj (j =a ,b ,c )为逆变器的滤波电容端电压即输出电压;i Lj (j =a ,b ,c )为三相滤波电感电流,i oj (j =a ,b ,c )为逆变器的输出电流。 由分析可知,三相三线全桥逆变器在三相静止坐标系abc 下,分析系统的任意状态量如输出电压v oj (j =a ,b ,c )都需要分别对abc 三相的三个交流分量v oa 、v ob 、v oc 进行分析。但在三相对称系统中,三个交流分量只有两个就是相互独立的。为了减少变量的个数,引用电机控制中的Clark 变换到三相逆变器系统中,可以实现三相静止坐标系到两相静止坐标系的变换,即将abc 坐标系下的三个交流分量转变成αβ坐标系下的两个交流分量。由自动控制原理可以知道,当采用PI 控制器时,对交流量的控制始终就是有静差的,但PI 控制器对直流量的调节就是没有静差的。为了使逆变器获得无静差调节,引入电机控制中的Park 变换,将两相静止坐标系转换成两相旋转坐标系,即将αβ坐标系下的两个交流分量转变成dq 坐标系下的两个直流分量。 定义αβ坐标系下的α轴与abc 三相静止坐标系下的A 轴重合,可以得到Clark 变换矩阵为: 11122230Clark T ? ?--?? ? =??? (1) 两相静止坐标系αβ到两相旋转坐标系dq 的变换为Park 变换,矩阵为:

3KVA三相逆变电源设计

课程设计 题目3KVA三相逆变电源设计学院自动化学院 专业自动化 班级 姓名 指导教师朱国荣 2014 年 1 月 2 日

课程设计任务书 学生姓名:专业班级:自动化1102 指导教师:朱国荣工作单位:自动化学院 题目: 3KVA三相逆变电源设计 初始条件: 输入直流电压110V。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 设计容量为3KVA的三相逆变器,要求达到: 1、输出380V,频率50Hz三相交流电。 2、完成总电路设计。 3、完成电路中各元件的参数计算。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1 设计要求、意义及思路 (2) 1.1 设计意义 (2) 1.2 设计要求 (2) 1.3 设计思路 (3) 2 方案设计及原理 (3) 2.1逆变电路 (3) 2.2 SPWM采样方法选择 (4) 2.3 LC滤波 (5) 2.4 升压变压器 (6) 3 主电路设计及参数设计 (7) 3.1 IGBT三相桥式逆变电路 (7) 3.2 脉宽控制电路的设计 (9) 3.2.1 SG3524芯片 (9) 3.2.2 调制波及载波的产生 (10) 3.3 触发电路的设计 (11) 3.3.1 IR2110芯片构成的触发 (11) 3.3.2 M57962L芯片构成的触发电路 (12) 3.4其他部分的参数设计 (13) 结束语 (15) 参考文献 (16) 附录一: (17) 附录二:主电路图 (18)

基于Matlab的单周期控制三相高功率因数并网逆变器的建模与仿真

182/2009 收稿日期:2008-12-10 作者简介:杨志强(1982-),男,硕士研究生,主要研究方向为 电力电子与能源变换。

19 2/2009基于M A T L A B 的单周期控制三相高功率因数并网逆变器的建模与仿真考价值。 单周期控制的并网逆变器[7,8]可以等效为双并联的BUCK 型逆变器, 控制电路简单(复位积分器和一些逻辑器件),动态响应快,且开关损耗低,同一时间内,只有2个开关导通,大大减小了开关损耗。 1单周期控制三相PWM 并网逆变器建模 单周期控制作用于单个开关管时(在Boost 或Buck 电路中),能够很好地体现单周期的基本思想。假设开关频率f s =1/T s (T s 是开关周期)恒定[9],开关管的工作过程可以用以时间t 为自变量的开关函数k (t )表示 。 (1)T on 是开关导通时间, 并且T on +T off = T s ,模拟控制信号V ref (t )调制占空比D =T on /T s 。根据单周期控制思想,开关输入信号x (t )与输出信号y (t )的关系为: y (t )=k (t )x (t ) (2)假设开关频率f s 高于输入信号x (t )和模拟控制信号V ref (t )的带宽频率,那么开关输出的有效信号为: (3)因此,可以通过调节占空比D (t ),使每个周期开关输出斩波波形的积分值恰好等于控制信号的积分值,即 : (4)从而实现每个开关周期开关输出量y (t )的平均值等于参考量V ref (t )的平均值。这样,利用开关能完全抑制输入信号和线性化后的控制信号V ref (t ),使系统具有良好的可控性。 利用基于单周期控制的三相PWM 并网逆变器,可使输出电流与电网电压同相,减小无功功率的输出。为了简化推导过程做如下假设:电网电压为理想的三相电压源;各相的电感相等,即L a =L b =L c =L ;三相电路参数对称;开关频率远远大于工频;忽略开关器件的导通压降和开关损耗。图1是三相并网逆变器的主电路。 为使单周期控制简便,三相逆变器在6个区间内等 效为双并联Buck 型逆变器,该6个区间是按每相电压的过零点来划分的。三相电压6个区间的划分如图2所示。 在第1区间[0°,60°]内,i a >0,i b <0,i c >0,6个开关的动作如下:S bn 一直导通,同时S bp 、S an 和S cn 一直关断,控制开关S ap 和S cp ,使相电流i a 和i c 跟踪各自的相电压V a 和V c 。由于三相电压对称及V a +V b +V c =0,i a +i b +i c =0 ,i b 将自动跟踪V b [10,11],对于其他区间可以进行类似的分析。从以上分析可知,每一时刻只有2开关动作,极大地减小了开关损耗。在区间1内,逆变器可以解耦为并联的双Buck 逆变器,其等效电路如图3所示。 由图3可以看出,开关S ap 和S cp 共有4种可变的开关状态:(1)S ap 和S cp 都导通;(2)S ap 导通,S cp 关断;(3)S ap 关断,S cp 导通;(4)S ap 和S cp 都关断。在一个开关周期内,只有2种可能的开关顺序,即(1)、(2)、(4)和(1)、(3)、(4)。按(1)、(2)、(4)开关顺序时,开关占空比d ap >d cp ;按(1)、(3)、(4)开关顺序时,开关占空比d ap <d cp 。假设开关频率远远大于电网频率,以第一种开关顺序为例,在一个开关周期内,由于电感电压的平均值为零,可以推导出式(5) 。 (5)式中:E ——逆变器直流侧电压。 同理可以证明式(5)对于第二种开关顺序也是成立的。 为了使功率因数接近1,电流和电压应该成比例 , 图1 三相并网逆变器主电路 Fig.1 Main circuit of three-phase PWM GCI 图2 三相电压6个区间划分 Fig.2 Six regions of three-phase voltage 图3 区间内逆变器等效电路 Fig.3 Equivalent circuit of GCI in the region of 0° to 60°

无源三相PWM逆变器控制电路设计65427

目录 第一章:课程设计的目的及要求 (2) 第二章整流电路 (5) 第三章逆变电路 (9) 第四章PWM逆变电路的工作原理 (11) 第五章三相正弦交流电源发生器 (14) 第六章三角波发生器 (15) 第七章比较电路 (16) 第八章死区生成电路 (18) 第九章驱动电路 (20) 附录 参考文献 课程设计的心得体会

第一章:课程设计的目的及要求 一、课程设计的目的 通过电力电子计术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索 需要的文献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 1. 自立题目 题目:无源三相PWM逆变器控制电路设计 注意事项: ①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等,

②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计容。 控制框图 设计装置(或电路)的主要技术数据 主要技术数据 输入交流电源: 三相380V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流: 电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH

设计容: 整流电路的设计和参数选择 滤波电容参数选择 三相逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 三相SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。主电路具体电路元器件的选择应有计算和说明。课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明,否则也不能得优)。

基于MATLAB的三相桥式PWM逆变电路资料

交流调速系统课程设计题目:三相桥式SPWM逆变器的仿真设计 班级:0 姓名: 学号: 指导老师:

目录 摘要 (2) 关键词 (2) 绪论 (2) 三相桥式SPWM逆变器的设计内容及要求 (3) SPWM逆变器的工作原理 (3) 1 工作原理 (5) 2 控制方式 (6) 3 正弦脉宽调制的算法 (9) MATlAB仿真设计 (12) 硬件实验 (19) 实验总结 (23) 附录 Matab简介 (24) 参考文献 (24)

三相桥式SPWM逆变电路设计 摘要: 随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。 在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的6个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。本实验针对正弦波输出变压变频电源SPWM调制方式及数字化控制策略进行了研究,以SG3525为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。 关键词:逆变器SPWM逆变器的工作原理正弦脉宽调制的调制算法单极性正弦脉宽调制双极性正弦脉宽调制自然采样法规则采样法双极性正弦波等面积法 一、绪论 正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( Emergence Power Supply) ;针对船舶工业用电的岸电电源SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种PWM 型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制. 电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。 IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它

三相电压型逆变器课程设计

三相电压型逆变器 一.电力电子器件的发展: 1.概述: 1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向 电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。(电力电子的发展动向)电力电子技术包括功率半导体器件与IC 技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路中

的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 2.发展: A.整流管: 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。它们的通态压降为IV 左右,反向恢复时间为PIN整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。 B.晶闸管: 自1957年美国通用电气公司GE研制出第一个晶闸管开始,其结构的改进和工艺的改革,为新器件开发研制奠定了基础,其后派生出各种系列产品。1964年,GE公司成功开发双向晶闸管,将其应用于调光和马达控制;1965年,小功率光触发晶闸管问世,为其后出现的光耦合器打下了基础;60年代后期,出现了大功率逆变晶闸管,成为当时逆变电路的基本元件;逆导晶闸管和非对称晶闸管于1974年研制完成。 C.门极可关断晶闸管: GTO可达到晶闸管相同水平的电压、电流等级,工作频率也可扩展到

相关文档
最新文档