决策树分类的定义以及优缺点

决策树分类的定义以及优缺点
决策树分类的定义以及优缺点

决策树分类?

决策树(?Decision?Tree?)又称为判定树,是运用于分类的一种树结构。其中的每个内部结点(?internal?node?)代表对某个属性的一次测试,每条边代表一个测试结果,叶结点(?leaf?)代表某个类(?class?)或者类的分布

(?class?distribution?),最上面的结点是根结点。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。?

构造决策树是采用自上而下的递归构造方法。决策树构造的结果是一棵二叉或多叉树,它的输入是一组带有类别标记的训练数据。二叉树的内部结点(非叶结点)一般表示为一个逻辑判断,如形式为?(a?=?b)?的逻辑判断,其中?a?是属性,?b?是该属性的某个属性值;树的边是逻辑判断的分支结果。多叉树(?ID3?)的内部结点是属性,边是该属性的所有取值,有几个属性值,就有几条边。树的叶结点都是类别标记。?

使用决策树进行分类分为两步:?

第?1?步:利用训练集建立并精化一棵决策树,建立决策树模型。这个过程实际上是一个从数据中获取知识,进行机器学习的过程。?

第?2?步:利用生成完毕的决策树对输入数据进行分类。对输入的记录,从根结点依次测试记录的属性值,直到到达某个叶结点,从而找到该记录所在的类。?

问题的关键是建立一棵决策树。这个过程通常分为两个阶段:?

(1)?建树(?Tree?Building?):决策树建树算法见下,可以看得出,这是一个递归的过程,最终将得到一棵树。?

(2)?剪枝(?Tree?Pruning?):剪枝是目的是降低由于训练集存在噪声而产生的起伏。?

决策树方法的评价。?

优点?

与其他分类算法相比决策树有如下优点:?

(1)?速度快:计算量相对较小,且容易转化成分类规则。只要沿着树根向下一直走到叶,沿途的分裂条件就能够唯一确定一条分类的谓词。?

(2)?准确性高:挖掘出的分类规则准确性高,便于理解,决策树可以清晰的显示哪些字段比较重要。?

缺点?

一般决策树的劣势:?

(1)?缺乏伸缩性:由于进行深度优先搜索,所以算法受内存大小限制,难于处理大训练集。一个例子:在?Irvine?机器学习知识库中,最大可以允许的数据

集仅仅为?700KB?,?2000?条记录。而现代的数据仓库动辄存储几个?G-Bytes?的海量数据。用以前的方法是显然不行的。?

(2)?为了处理大数据集或连续量的种种改进算法(离散化、取样)不仅增加了分类算法的额外开销,而且降低了分类的准确性,对连续性的字段比较难预测,当类别太多时,错误可能就会增加的比较快,对有时间顺序的数据,需要很多预处理的工作。?

但是,所用的基于分类挖掘的决策树算法没有考虑噪声问题,生成的决策树很完美,这只不过是理论上的,在实际应用过程中,大量的现实世界中的数据都不是以的意愿来定的,可能某些字段上缺值(?missing?values?);可能数据不准确含有噪声或者是错误的;可能是缺少必须的数据造成了数据的不完整。?

另外决策树技术本身也存在一些不足的地方,例如当类别很多的时候,它的错误就可能出现甚至很多。而且它对连续性的字段比较难作出准确的预测。而且一般算法在分类的时候,只是根据一个属性来分类的。?

在有噪声的情况下,完全拟合将导致过分拟合(?overfitting?),即对训练数据的完全拟合反而不具有很好的预测性能。剪枝是一种克服噪声的技术,同时它也能使树得到简化而变得更容易理解。另外,决策树技术也可能产生子树复制和碎片问题。?

决策树算法介绍(DOC)

3.1 分类与决策树概述 3.1.1 分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是一个离散属性,它的取值是一个类别值,这种问题在数据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2 决策树的基本原理 1.构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={“优”,

基于决策树的分类方法研究

南京师范大学 硕士学位论文 基于决策树的分类方法研究 姓名:戴南 申请学位级别:硕士 专业:计算数学(计算机应用方向) 指导教师:朱玉龙 2003.5.1

摘要 厂 {数掘挖掘,又称数据库中的知识发现,是指从大型数据库或数据仓库中提取 具有潜在应用价值的知识或模式。模式按其作用可分为两类:描述型模式和预测型模式。分类模式是一种重要的预测型模式。挖掘分娄模式的方法有多种,如决 策树方法、贝叶斯网络、遗传算法、基于关联的分类方法、羊H糙集和k一最临近方、/ 法等等。,/驴 I 本文研究如何用决策树方法进行分类模式挖掘。文中详细阐述了几种极具代表性的决策树算法:包括使用信息熵原理分割样本集的ID3算法;可以处理连续属性和属性值空缺样本的C4.5算法;依据GINI系数寻找最佳分割并生成二叉决策树的CART算法;将树剪枝融入到建树过程中的PUBLIC算法:在决策树生成过程中加入人工智能和人为干预的基于人机交互的决策树生成方法;以及突破主存容量限制,具有良好的伸缩性和并行性的SI,lQ和SPRINT算法。对这些算法的特点作了详细的分析和比较,指出了它们各自的优势和不足。文中对分布式环境下的决策树分类方法进行了描述,提出了分布式ID3算法。该算法在传统的ID3算法的基础上引进了新的数掘结构:属性按类别分稚表,使得算法具有可伸缩性和并行性。最后着重介绍了作者独立完成的一个决策树分类器。它使用的核心算法为可伸缩的ID3算法,分类器使用MicrosoftVisualc++6.0开发。实验结果表明作者开发的分类器可以有效地生成决策树,建树时间随样本集个数呈线性增长,具有可伸缩性。。 ,,荡囊 关键字:数据挖掘1分类规则,决策树,分布式数据挖掘

C4.5 分类决策树

C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法。它的目标是监督学习:给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互斥的类别中的某一类。C4.5的目标是通过学习,找到一个从属性值到类别的映射关系,并且这个映射能用于对新的类别未知的实体进行分类。 C4.5由J.Ross Quinlan在ID3的基础上提出的。ID3算法用来构造决策树。决策树是一种类似流程图的树结构,其中每个内部节点(非树叶节点)表示在一个属性上的测试,每个分枝代表一个测试输出,而每个树叶节点存放一个类标号。一旦建立好了决策树,对于一个未给定类标号的元组,跟踪一条有根节点到叶节点的路径,该叶节点就存放着该元组的预测。决策树的优势在于不需要任何领域知识或参数设置,适合于探测性的知识发现。 从ID3算法中衍生出了C4.5和CART两种算法,这两种算法在数据挖掘中都非常重要。下图就是一棵典型的C4.5算法对数据集产生的决策树。 数据集如图1所示,它表示的是天气情况与去不去打高尔夫球之间的关系。

图1 数据集 图2 在数据集上通过C4.5生成的决策树 算法描述

C4.5并不一个算法,而是一组算法—C4.5,非剪枝C4.5和C4.5规则。下图中的算法将给出C4.5的基本工作流程: 图3 C4.5算法流程 我们可能有疑问,一个元组本身有很多属性,我们怎么知道首先要对哪个属性进行判断,接下来要对哪个属性进行判断?换句话说,在图2中,我们怎么知道第一个要测试的属性是Outlook,而不是Windy?其实,能回答这些问题的一个概念就是属性选择度量。 属性选择度量 属性选择度量又称分裂规则,因为它们决定给定节点上的元组如何分裂。属性选择度量提供了每个属性描述给定训练元组的秩评定,具有最好度量得分的属性被选作给定元组的分裂属性。目前比较流行的属性选择度量有--信息增益、增益率和Gini指标。

数据挖掘算法综述

数据挖掘方法综述 [摘要]数据挖掘(DM,DataMining)又被称为数据库知识发现(KDD,Knowledge Discovery in Databases),它的主要挖掘方法有分类、聚类、关联规则挖掘和序列模式挖掘等。 [关键词]数据挖掘分类聚类关联规则序列模式 1、数据挖掘的基本概念 数据挖掘从技术上说是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识的过程。这个定义包括好几层含义: 数据源必须是真实的、大量的、含噪声的、发现的是用户感兴趣的知识, 发现的知识要可接受、可理解、可运用, 并不要求发现放之四海皆准的知识, 仅支持特定的发现问题, 数据挖掘技术能从中自动分析数据进行归纳性推理从中发掘出潜在的数据模式或进行预测, 建立新的业务模型帮助决策者调整策略做出正确的决策。数据挖掘是是运用统计学、人工智能、机器学习、数据库技术等方法发现数据的模型和结构、发现有价值的关系或知识的一门交叉学科。数据挖掘的主要方法有分类、聚类和关联规则挖掘等 2、分类 分类(Classification)又称监督学习(Supervised Learning)。监

督学习的定义是:给出一个数据集D,监督学习的目标是产生一个联系属性值集合A和类标(一个类属性值称为一个类标)集合C的分类/预测函数,这个函数可以用于预测新的属性集合(数据实例)的类标。这个函数就被称为分类模型(Classification Model),或者是分类器(Classifier)。分类的主要算法有:决策树算法、规则推理、朴素贝叶斯分类、支持向量机等算法。 决策树算法的核心是Divide-and-Conquer的策略,即采用自顶向下的递归方式构造决策树。在每一步中,决策树评估所有的属性然后选择一个属性把数据分为m个不相交的子集,其中m是被选中的属性的不同值的数目。一棵决策树可以被转化成一个规则集,规则集用来分类。 规则推理算法则直接产生规则集合,规则推理算法的核心是Separate-and-Conquer的策略,它评估所有的属性-值对(条件),然后选择一个。因此,在一步中,Divide-and-Conquer策略产生m条规则,而Separate-and-Conquer策略只产生1条规则,效率比决策树要高得多,但就基本的思想而言,两者是相同的。 朴素贝叶斯分类的基本思想是:分类的任务可以被看作是给定一个测试样例d后估计它的后验概率,即Pr(C=c j︱d),然后我们考察哪个类c j对应概率最大,便将那个类别赋予样例d。构造朴素贝叶斯分类器所需要的概率值可以经过一次扫描数据得到,所以算法相对训练样本的数量是线性的,效率很高,就分类的准确性而言,尽管算法做出了很强的条件独立假设,但经过实际检验证明,分类的效果还是

实验六:遥感图像监督分类与非监督分类

成都信息工程学院 遥感图像处理实验报告 实验6:遥感图像监督分类与非监督分类 专业:遥感科学与技术 班级: 092班 姓名:李翔 学号:2009043063 实验名称:遥感图像监督分类与非监督分类 实验教室: 5404教室 指导老师:刘志红 实验日期:2011年4月6日和4月13日

遥感数字图像处理实验报告 一、项目名称 遥感图像监督分类与非监督分类 二、实验目的 学会使用ERDAS IMAGINE软件对遥感图像进行非监督分类、监督分类、分类后处理、决策树分类,加深对图像分类过程和原理的理解,为图像解译打下基础。 三、实验原理 同类地物在相同的条件下应该具有相同或相似的光谱信息和空间信息特征。反之,不同类的地物之间具有这些差异。根据这些差异,将图像中的所有像素按其性质分为若干类别的过程,称为图像的分类。 根据是否需要分类人员事先提供已知类别及其训练样本,对分类器进行训练和监督,可将遥感图像分类方法划分为监督分类和非监督分类。 分类后处理包括聚类统计、过滤分析、去除分析和分类重编码等操作。 聚类统计是通过计算分类专题图像每个分类图斑面积、记录相邻区域中最大图斑面积的分类操作。 四、数据来源 1.下载网站:https://www.360docs.net/doc/f716109715.html,/admin/dataLandsatMain.jsp 2.波段数为6个。 3.分辨率为28.50,米。 4.投影为UTM, Zone48。 五、实验过程 一、非监督分类 1.在ERDAS IMAGINE依次点击如下图标,打开对话框, 2. 设定好输出数据,设置聚类选项,确定初始聚类方法和分类数。设置预处理选项,确定循环次数和阈值。如图所示:

《C4.5算法概述》

目录 1 决策树算法 (2) 1.1 具体应用场景和意义 (2) 1.2 现状分析 (3) 2 C4.5算法对ID3算法的改进 (4) 3 C4.5算法描述 (7) 3.1 C4.5算法原理 (7) 3.2 算法框架 (8) 3.3 C4.5算法伪代码 (9) 4 实例分析 (9) 5 C4.5算法的优势与不足 (12) 5.1 C4.5算法的优势 (12) 5.2 C4.5算法的不足: (12) 参考文献 (12)

C4.5算法综述 摘要 最早的决策树算法是由Hunt等人于1966年提出的CLS。当前最有影响的决策树算法是Quinlan于1986年提出的ID3和1993年提出的C4.5。ID3只能处理离散型描述属性,它选择信息增益最大的属性划分训练样本,其目的是进行分枝时系统的熵最小,从而提高算法的运算速度和精确度。ID3算法的主要缺陷是,用信息增益作为选择分枝属性的标准时,偏向于取值较多的属性,而在某些情况下,这类属性可能不会提供太多有价值的信息。C4.5是ID3算法的改进算法,不仅可以处理离散型描述属性,还能处理连续性描述属性。C4.5采用了信息增益比作为选择分枝属性的标准,弥补了ID3算法的不足。 C4.5算法在ID3算法的基础上进行了改进,对于预测变量的缺值处理、剪枝技术、派生规则等方面作了较大的改进,既适合于分类问题,又适合于回归问题,是目前应用最为广泛的归纳推理算法之一,在数据挖掘中收到研究者的广泛关注。 1 决策树算法 1.1具体应用场景和意义 决策树(Decision Tree)是用于分类和预测的主要技术,它着眼于从一组无规则的事例推理出决策树表示形式的分类规则,采用自顶向下的递归方式,在决策树的内部节点进行属性值的比较,并根据不同属性判断从该节点向下分支,在决策树的叶节点得到结论。因此,从根节点到叶节点就对应着一条合理规则,整棵树就对应着一组表达式规则。基于决策树算法的一个最大的优点是它在学习过程中不需要使用者了解很多背景知识,只要训练事例能够用属性即结论的方式表达出来,就能使用该算法进行学习。 决策树算法在很多方面都有应用,如决策树算法在医学、制造和生产、金融分析、天文学、遥感影像分类和分子生物学、机器学习和知识发现等领域得到了广泛应用。 决策树技术是一种对海量数据集进行分类的非常有效的方法。通过构造决策树模型,提取有价值的分类规则,帮助决策者做出准确的预测已经应用在很多领

基于决策树的分类算法

1 分类的概念及分类器的评判 分类是数据挖掘中的一个重要课题。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。分类可用于提取描述重要数据类的模型或预测未来的数据趋势。 分类可描述如下:输入数据,或称训练集(training set)是一条条记录组成的。每一条记录包含若干条属性(attribute),组成一个特征向量。训练集的每条记录还有一个特定的类标签(类标签)与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为样本向量:(v1,v2,…,…vn:c)。在这里vi表示字段值,c表示类别。 分类的目的是:分析输入数据,通过在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。这种描述常常用谓词表示。由此生成的类描述用来对未来的测试数据进行分类。尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新数据所属的类。注意是预测,而不能肯定。我们也可以由此对数据中的每一个类有更好的理解。也就是说:我们获得了对这个类的知识。 对分类器的好坏有三种评价或比较尺度: 预测准确度:预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务,目前公认的方法是10番分层交叉验证法。 计算复杂度:计算复杂度依赖于具体的实现细节和硬件环境,在数据挖掘中,由于操作对象是巨量的数据库,因此空间和时间的复杂度问题将是非常重要的一个环节。 模型描述的简洁度:对于描述型的分类任务,模型描述越简洁越受欢迎;例如,采用规则表示的分类器构造法就更有用。 分类技术有很多,如决策树、贝叶斯网络、神经网络、遗传算法、关联规则等。本文重点是详细讨论决策树中相关算法。

决策树学习研究综述

科技论坛 决策树学习研究综述 叶萌 (黑龙江电力职工大学,黑龙江哈尔滨150030) 1概述 决策树是构建人工智能系统的主要方法之一,随着数据挖掘技术在商业智能等方面的应用,决策树技术将在未来发挥越来越强大的作用[1]。自从Quinlan 在1979年提出构造决策树ID3算法以来,决策树的实现已经有很多算法,常见的有:CLS (concept learning system )学习算法,ID4、ID5R 、C4.5算法,以及CART 、C5.0、FuzzyC4.5、0C1、QUEST 和CAL5等[2]。 现在,许多学者在规则学习与决策树学习的结合方面,做了大量的研究工作。Brako 等的ASSISTANT ,将AQ15中的近似匹配方法引入决策树中。Clark 等的CN2,将ID3算法和AQ 算法编织在一起,用户可选择其中任何一种算法使用。Utgoff 等的ID5R 算法,不要求一次性提供所有的训练实例,训练实例可以逐次提供,生成的决策树逐次精化,以支持增量式学习。洪家荣教授结合实际应用问题对ID3算法作了一些改进,提出了两个ID3和AQ 结合的改进算法,IDAQ 和AQID ,此外,还陆续出现了处理大规模数据集的决策树算法,如SLIQ ,SPRINT 等等[3]。 2决策树算法研究2.1构造决策树算法 决策树学习是从无次序、无规则的样本数据集中推理出决策树表示形式、逼近离散值目标函数的分类规则方法。它采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较并根据不同的属性值判断从该结点向下的分支,在决策树的叶结点得到结论,因此从根结点到叶结点的一条路径就对应着一条规则,整棵决策树就对应着一组表达式规则。我们可将决策树看成是定义布尔函数的一种方法。其输入是一组属性描述的对象,输出为yes/no 决策。决策树代表一个假设,可以写成逻辑公式。决策树的表达能力限于命题逻辑,该对象的任一个属性的任一次测试均是一个命题。在命题逻辑范围内,决策树的表达能力是完全的。一棵决策树可以代表一个决定训练例集分类的决策过程,树的每个结点对应于一个属性名或一个特定的测试,该测试在此结点根据测试的可能结果对训练例集进行划分。划分出的每个部分都对应于相应训练例集子空间的一个分类子问题,该分类子问题可以由一棵决策树来解决。因此,一 棵决策树可以看作是一个对目标分类的划分和获取策略[4] 。 2.2处理大规模数据集的决策树算法 ID3或者C4.5算法都是在建树时将训练集一次性装载入内存的。但当面对大型的有着上百万条纪录的数据库时,就无法实际应用这些算 法。针对这一问题, 前人提出了不少改进方法,如数据采样法、连续属性离散化法或将数据分为若干小块分别建树然后综合成一个最终的树,但这些改进都以降低了树的准确性为代价。直到M etha,Agrawal 和Ris-sane 在1996年提出了SLIQ 方法,以及在此基础上进行改进得到的SPRINT [6]方法。 3决策树学习的常见问题3.1过度拟合 在利用决策树归纳学习时,需要事先给定一个假设空间,且必须在这个假设空间中选择一个,使之与训练实例集相匹配。我们知道任何一个学习算法不可能在没有任何偏置的情况下学习。如果事先知道所要学习的函数属于整个假设空间中的一个很小的子集,那么即使训练实例不完整,也有可能从已有的训练实例集中学习到有用的假设,使它对未来的实例进行正确的分类。当然,我们往往无法事先知道所要学习的函数属于整个假设空间中的哪个很小的子集,即使是知道,我们还是希望有一个大的训练实例集。因为训练实例集越大,关于分类的信息就越多。这时,即使随机地从与训练实例集相匹配的假设集中选择一个,它也能对未知实例的分类进行预测。相反,如果训练实例集与整个假设空间相比 过小,即使在有偏置的情况下,仍有过多的假设与训练实例集相匹配,这 时作出假设的泛化能力将很差。当有过多的假设与训练实例集相匹配,便称为过度拟合(overfit )。 3.2树剪枝 对决策树进行修剪可以控制决策树的复杂程度,避免决策树过于复 杂和庞大。此外, 还可以解决过度拟合的问题。修剪决策树有多种算法,通常分为这样五类。最为常用的是通过预 剪枝(pre-pruning )和后剪枝(post-pruning )完成,或逐步调整树的大小;其次是扩展测试集方法,首先按特征构成是数据驱动还是假设驱动的差别,将建立的特征组合或分割,然后在此基础上引进多变量测试集。第三类方法包括选择不同的测试集评价函数,通过改善连续特征的描述或修改搜索算法本身实现;第四类方法使用数据库约束,即通过削减数据库或实例描述特征集来简化决策树;第五类方法是将决策树转化成另一种数据结构。这些方法通常可以在同另一种算法相互结合中,增强各自的功能。 4决策树在工程中的应用 决策树在工程中的诸多领域获得了非常广泛的应用,主要有以下几个方面: 4.1决策树技术应用于机器人导航 E.Swere 和D .J.M ulvaney 将决策树技术应用于移动机器人导航并取得了一定的成功。 4.2决策树技术应用于地铁中的事故处理 法国的Brezillon 等人成功地将决策树技术应用于地铁交通调度智能系统。他们根据决策树的基本思想开发出上下文图表来帮助驾驶员针对事故做出正确的处理。 4.3决策树技术应用于图像识别 决策树技术应用于包括图像在内的科学数据分析。如利用决策树对上百万个天体进行分类,利用决策树对卫星图像进行分析以估计落叶林和针叶林的基部面积值。 4.4决策树应用于制造业 决策树技术已经成功应用于焊接质量的检测以及大规模集成电路 的设计,它不仅可以规划印刷电路板的布线, 波音公司甚至将它用于波音飞机生产过程的故障诊断以及质量控制。 5决策树技术面临的问题和挑战发展至今,决策树技术面临的问题和挑战表现在以下几个方面:5.1决策树方法的效率亟待提高 数据挖掘面临的数据往往是海量的,对实时性要求较高的决策场所,数据挖掘方法的主动性和快速性显得日益重要。应用实时性技术、主动数据库技术和分布并行算法设计技术等现代计算机先进技术,是数据挖掘方法实用化的有效途径。 5.2适应多数据类型、容噪的决策树挖掘方法随着计算机网络和信息的社会化,数据挖掘的对象已不是关系数据库模型,而是分布、异构的多类型数据库,数据的非结构化程度、噪声等现象越来越突出,这也是决策树技术面临的困难问题。 6结论 决策树技术早已被证明是利用计算机模仿人类决策的有效方法,已经得到广泛的应用,并且已经有了许多成熟的系统。但是,解决一个复杂的数据挖掘问题的任何算法都要面临以下问题:从错误的数据中学习、从分布的数据中学习、从有偏的数据中学习、学习有弹性的概念、学习那些抽象程度不同的概念、整合定性与定量的发现等,因此,还有很多未开 发的课题等待研究。若将决策树技术与其他新兴 摘要:决策树分类学习算法是使用广泛、实用性很强的归纳推理方法之一,在机器学习、数据挖掘等人工智能领域有相当重要的理 论意义与实用价值。在详细阐述决策树技术的几种典型算法以及它的一些常见问题后, 介绍了它在工程上的实际应用,最后提出了它的研究方向以及它所面临的问题和挑战。 关键词:决策树;决策树算法;ID3;C4.5;SLIQ ;SPRINT (下转156页)22··

如何运用决策树进行分类分析

如何运用决策树进行分类分析 前面我们讲到了聚类分析的基本方法,这次我们来讲讲分类分析的方法。 所谓分类分析,就是基于响应,找出更好区分响应的识别模式。分类分析的方法很多,一般而言,当你的响应为分类变量时,我们就可以使用各种机器学习的方法来进行分类的模式识别工作,而决策树就是一类最为常见的机器学习的分类算法。 决策树,顾名思义,是基于树结构来进行决策的,它采用自顶向下的贪婪算法,在每个结点选择分类的效果最好的属性对样本进行分类,然后继续这一过程,直到这棵树能准确地分类训练样本或所有的属性都已被使用过。 建造好决策树以后,我们就可以使用决策树对新的事例进行分类。我们以一个生活小案例来说什么是决策树。例如,当一位女士来决定是否同男士进行约会的时候,她面临的问题是“什么样的男士是适合我的,是我值得花时间去见面再进行深入了解的?” 这个时候,我们找到了一些女生约会对象的相关属性信息,例如,年龄、长相、收入等等,然后通过构建决策树,层层分析,最终得到女士愿意去近一步约会的男士的标准。 图:利用决策树确定约会对象的条件

接下来,我们来看看这个决策的过程什么样的。 那么,问题来了,怎样才能产生一棵关于确定约会对象的决策树呢?在构造决策树的过程中,我们希望决策树的每一个分支结点所包含的样本尽可能属于同一类别,即结点的”纯度”(Purity )越来越高。 信息熵(Information Entropy )是我们度量样本集合纯度的最常见指标,假定当前样本集合中第K 类样本所占的比例为P k ,则该样本集合的信息熵为: Ent (D )=?∑p k |y| k=1 log 2p k 有了这个结点的信息熵,我们接下来就要在这个结点上对决策树进行裁剪。当我们选择了某一个属性对该结点,使用该属性将这个结点分成了2类,此时裁剪出来的样本集为D 1和D 2, 然后我们根据样本数量的大小,对这两个裁剪点赋予权重|D 1||D|?,|D 2||D|?,最后我们就 可以得出在这个结点裁剪这个属性所获得的信息增益(Information Gain ) Gain(D ,a)=Ent (D )?∑|D V ||D |2 v=1Ent(D V ) 在一个结点的裁剪过程中,出现信息增益最大的属性就是最佳的裁剪点,因为在这个属性上,我们获得了最大的信息增益,即信息纯度提升的最大。 其实,决策树不仅可以帮助我们提高生活的质量,更可以提高产品的质量。 例如,我们下表是一组产品最终是否被质检接受的数据,这组数据共有90个样本量,数据的响应量为接受或拒绝,则|y|=2。在我们还没有对数据进行裁剪时,结点包含全部的样本量,其中接受占比为p 1= 7690,拒绝占比为p 2=1490,此时,该结点的信息熵为: Ent (D )=?∑p k |y|k=1log 2p k =-(7690log 27690+1490log 21490)=0.6235

决策树算法分析报告

摘要 随着信息科技的高速发展,人们对于积累的海量数据量的处理工作也日益增重,需发明之母,数据挖掘技术就是为了顺应这种需求而发展起来的一种数据处理技术。 数据挖掘技术又称数据库中的知识发现,是从一个大规模的数据库的数据中有效地、隐含的、以前未知的、有潜在使用价值的信息的过程。决策树算法是数据挖掘中重要的分类方法,基于决策树的各种算法在执行速度、可扩展性、输出结果的可理解性、分类预测的准确性等方面各有千秋,在各个领域广泛应用且已经有了许多成熟的系统,如语音识别、模式识别和专家系统等。本文着重研究和比较了几种典型的决策树算法,并对决策树算法的应用进行举例。 关键词:数据挖掘;决策树;比较

Abstract With the rapid development of Information Technology, people are f acing much more work load in dealing with the accumulated mass data. Data mining technology is also called the knowledge discovery in database, data from a large database of effectively, implicit, previou sly unknown and potentially use value of information process. Algorithm of decision tree in data mining is an important method of classification based on decision tree algorithms, in execution speed, scalability, output result comprehensibility, classification accuracy, each has its own merits., extensive application in various fields and have many mature system, such as speech recognition, pattern recognition and expert system and so on. This paper studies and compares several kinds of typical decision tree algorithm, and the algorithm of decision tree application examples. Keywords: Data mining; decision tree;Compare

决策树分类-8页文档资料

基于专家知识的决策树分类 概述 基于知识的决策树分类是基于遥感影像数据及其他空间数据,通过专家经验总结、简单的数学统计和归纳方法等,获得分类规则并进行遥感分类。分类规则易于理解,分类过程也符合人的认知过程,最大的特点是利用的多源数据。 如图1所示,影像+DEM就能区分缓坡和陡坡的植被信息,如果添加其他数据,如区域图、道路图土地利用图等,就能进一步划分出那些是自然生长的植被,那些是公园植被。 图1.JPG 图1 专家知识决策树分类器说明图 专家知识决策树分类的步骤大体上可分为四步:知识(规则)定义、规则输入、决策树运行和分类后处理。 1.知识(规则)定义 规则的定义是讲知识用数学语言表达的过程,可以通过一些算法获取,也可以通过经验总结获得。 2.规则输入

将分类规则录入分类器中,不同的平台有着不同规则录入界面。 3.决策树运行 运行分类器或者是算法程序。 4.分类后处理 这步骤与监督/非监督分类的分类后处理类似。 知识(规则)定义 分类规则获取的途径比较灵活,如从经验中获得,坡度小于20度,就认为是缓坡,等等。也可以从样本中利用算法来获取,这里要讲述的就是C4.5算法。 利用C4.5算法获取规则可分为以下几个步骤: (1)多元文件的的构建:遥感数据经过几何校正、辐射校正处理后,进行波段运算,得到一些植被指数,连同影像一起输入空间数据库;其他空间数据经过矢量化、格式转换、地理配准,组成一个或多个多波段文件。 (2)提取样本,构建样本库:在遥感图像处理软件或者GIS软件支持下,选取合适的图层,采用计算机自动选点、人工解译影像选点等方法采集样本。 (3)分类规则挖掘与评价:在样本库的基础上采用适当的数据挖掘方法挖掘分类规则,后基于评价样本集对分类规则进行评价,并对分类规则做出适当的调整和筛选。这里就是C4.5算法。 4.5算法的基本思路基于信息熵来“修枝剪叶”,基本思路如下: 从树的根节点处的所有训练样本D0开始,离散化连续条件属性。计算增益比率,取GainRatio(C0)的最大值作为划分点V0,将样本分为两个部分D11和D12。对属性C0的每一个值产生一个分支,分支属性值的相应样本子集被移到新生成的子节点上,如果得到的样本都属于同一个类,那么直接得到叶子结点。相应地将此方法应用于每个子节点上,直到节点的所有样本都分区到某个类中。到达决策树的叶节点的每条路径表示一条分类规则,利用叶列表及指向父结点的指针就可以生成规则表。

决策树分类算法的时间和性能测试(DOC)

决策树分类算法的时间和性能测试 姓名:ls 学号:

目录 一、项目要求 (3) 二、基本思想 (3) 三、样本处理 (4) 四、实验及其分析 (9) 1.总时间 (9) 2.分类准确性. (12) 五、结论及不足 (13) 附录 (14)

一、项目要求 (1)设计并实现决策树分类算法(可参考网上很多版本的决策树算法及代码, 但算法的基本思想应为以上所给内容)。 (2)使用UCI 的基准测试数据集,测试所实现的决策树分类算法。评价指标 包括:总时间、分类准确性等。 (3) 使用UCI Iris Data Set 进行测试。 二、基本思想 决策树是一个类似于流程图的树结构,其中每个内部节点表示在一个属性变量上的测试,每个分支代表一个测试输出,而每个叶子节点代表类或分布,树的最顶层节点是根节点。 当需要预测一个未知样本的分类值时,基于决策树,沿着该树模型向下追溯,在树的每个节点将该样本的变量值和该节点变量的阈值进行比较,然后选取合适的分支,从而完成分类。决策树能够很容易地转换成分类规则,成为业务规则归纳系统的基础。 决策树算法是非常常用的分类算法,是逼近离散目标函数的方法,学习得到的函数以决策树的形式表示。其基本思路是不断选取产生信息增益最大的属性来划分样例集和,构造决策树。信息增益定义为结点与其子结点的信息熵之差。信息熵是香农提出的,用于描述信息不纯度(不稳定性),其计算公式是 Pi为子集合中不同性(而二元分类即正样例和负样例)的样例的比例。这样信息收益可以定义为样本按照某属性划分时造成熵减少的期望,可以区分训练样本中正负样本的能力,其计算公式是

基于决策树的鸢尾花分类

科技论坛 0 引言 图像识别技术,要运用目前流行的机器学习算法,而目前流行的机器学习算法就有十几种,比如支持向量机、神经网络、决策树。机器学习是人工智能发展的重要一部分,它涉及的学科很多,应用也相当广泛,它通过分析、研究、设计让计算机学习知识,从而提高完善自身的性能。但是神经网络学习的速度较慢,传统的支持向量机则不能解决分类多的问题。 本文针对鸢尾花的特征类别少以及种类少的特点,采用决策树算法对课题进行展开,对比与其他人利用支持向量机、神经元网络模型来进行研究,该系统具有模型简单、便于理解、计算方便、消耗资源少的优点。 1 决策树模型和学习 本文采用决策树算法对鸢尾花进行分类,先建立决策树的模型并进行学习训练,在决策树的训练过程中采用是信息论的知识进行特征选择,对选定的特征采用分支的处理,然后再对分支过后的数据集如此反复的递归生成决策树,在一颗决策树生成完后对决策树进行剪枝,以减小决策树的拟合度,来达到一个对鸢尾花较高的分类准确率。 要对鸢尾花进行分类首先需要大量的鸢尾花数据集作为本文的实验数据,本文采用的数据集是来自加州大学欧文分校UCI数据库中的鸢尾花数据集。该数据集中鸢尾花的属性有四个,分别是花萼长度、花萼宽度、花瓣长度和花瓣宽度,鸢尾花的类别则有三种,分别是Iris Setosa,Iris Versicolour,Iris Virginica,用简写Se、Ve和Vi表示这三种花,具体数据如图1所示。 ■1.1 信息论 美贝尔电话研究所的数学家香农是信息论的创始人,1948年香农发表了《通讯的数学理论》,成为信息论诞生的标志。信息论的诞生对信息技术革命以及科学技术的发展起到重要作用。信息论中有两个概念信息增益及信息增益率,都是用于衡量原始数据集在按照某一属性特征分裂之后整体信息量的变化值。这样,本文就可以通过这种指标寻找出最优的划分属性,数据集在经过划分之后,节点的“纯度”越来越高,这里的纯度值得是花朵的类别,当某一节点中花朵全为一类时,该节点已经达到最纯状态,无需再进行划分, 反之继续划分。 图1 鸢尾花数据集 1.1.1 信息熵 信息熵用于描述信源的不确定性。即发生每个事件都有不确定性,为了使不确定性降低,我们需要引入一些相关的信息进行学习,引入信息越多,那么得到的准确率越高,信息熵越高,信源越不稳定。例如一束鸢尾花,它可能是Se,可能是Vi,也有可能是Ve,我们利用数据库中的各种鸢尾花的花瓣长度、花瓣宽度、花萼长度和花萼宽度来预测鸢尾花的类别,引入的鸢尾花种类越多,信息熵就越高。 样本集合D的信息熵Ent(D)以下面的公式进行计算,其中集合里第k类样本所占的比例是k p,k的取值范围是从1到y,y值得是总共有y类样本,通过式(1)可以计算得到原始样本集的信息熵。 ()21 Ent D y k k k p log p = =?∑(1) 1.1.2 信息增益 信息增益即在一个条件下,信源不确定性减少的程度。信息增益用于度量节点的纯度。信息增益对可取值数目较多的属性有所偏好。在鸢尾花数据集的D集合中,属性a取到某一取值情况的概率乘该取值情况的信息熵得到的值记为v D,其中V指的是该属性a可以取值的个数,则属性a 的信息增益为: ()()() 1 Gain D,a Ent D V v v v D Ent D D = =?∑(2) 基于决策树的鸢尾花分类 徐彧铧 (浙江省衢州第二中学,浙江衢州,324000) 摘要:针对传统手工分类的不足,满足不了人们对图片分类的需求,本文利用机器学习算法中的决策树算法进行研究。通过模型简单、便于理解、计算方便、消耗资源少的决策树算法模型,并利用现成的数据库,运用图像识别技术对鸢尾花进行分类,以求方便简单快速地识别出不同类别的鸢尾花。在此过程中,学习到图像识别的一些基本分类操作,为我们实现更复杂的模型提供了帮助。 关键词:决策树信息论特征选择;C4.5算法;CART算法 www ele169 com | 99

决策树分类算法

决策树分类算法 决策树是一种用来表示人们为了做出某个决策而进行的一系列判断过程的树形图。决策树方法的基本思想是:利用训练集数据自动地构造决策树,然后根据这个决策树对任意实例进行判定。 1.决策树的组成 决策树的基本组成部分有:决策节点、分支和叶,树中每个内部节点表示一个属性上的测试,每个叶节点代表一个类。图1就是一棵典型的决策树。 图1 决策树 决策树的每个节点的子节点的个数与决策树所使用的算法有关。例如,CART算法得到的决策树每个节点有两个分支,这种树称为二叉树。允许节点含有多于两个子节点的树称为多叉树。 下面介绍一个具体的构造决策树的过程,该方法

是以信息论原理为基础,利用信息论中信息增益寻找数据库中具有最大信息量的字段,建立决策树的一个节点,然后再根据字段的不同取值建立树的分支,在每个分支中重复建立树的下层节点和分支。 ID3算法的特点就是在对当前例子集中对象进行分类时,利用求最大熵的方法,找出例子集中信息量(熵)最大的对象属性,用该属性实现对节点的划分,从而构成一棵判定树。 首先,假设训练集C 中含有P 类对象的数量为p ,N 类对象的数量为n ,则利用判定树分类训练集中的对象后,任何对象属于类P 的概率为p/(p+n),属于类N 的概率为n/(p+n)。 当用判定树进行分类时,作为消息源“P ”或“N ”有关的判定树,产生这些消息所需的期望信息为: n p n log n p n n p p log n p p )n ,p (I 22++-++- = 如果判定树根的属性A 具有m 个值{A 1, A 2, …, A m },它将训练集C 划分成{C 1, C 2, …, C m },其中A i 包括C 中属性A 的值为A i 的那些对象。设C i 包括p i 个类P 对象和n i 个类N 对象,子树C i 所需的期望信息是I(p i , n i )。以属性A 作为树根所要求的期望信息可以通过加权平均得到

分类算法综述

《数据挖掘》 数据挖掘分类算法综述 专业:计算机科学与技术专业学号:S2******* 姓名:张靖 指导教师:陈俊杰 时间:2011年08月21日

数据挖掘分类算法综述 数据挖掘出现于20世纪80年代后期,是数据库研究中最有应用价值的新领域之一。它最早是以从数据中发现知识(KDD,Knowledge Discovery in Database)研究起步,所谓的数据挖掘(Data Mining,简称为DM),就从大量的、不完全的、有噪声的、模糊的、随机的、实际应用的数据中提取隐含在其中的、人们不知道的但又有用的信息和知识的过程。 分类是一种重要的数据挖掘技术。分类的目的是根据数据集的特点构造一个分类函数或分类模型(也常常称作分类器)。该模型能把未知类别的样本映射到给定类别中的一种技术。 1. 分类的基本步骤 数据分类过程主要包含两个步骤: 第一步,建立一个描述已知数据集类别或概念的模型。如图1所示,该模型是通过对数据库中各数据行内容的分析而获得的。每一数据行都可认为是属于一个确定的数据类别,其类别值是由一个属性描述(被称为类别属性)。分类学习方法所使用的数据集称为训练样本集合,因此分类学习又可以称为有指导学习(learning by example)。它是在已知训练样本类别情况下,通过学习建立相应模型,而无指导学习则是在训练样本的类别与类别个数均未知的情况下进行的。 通常分类学习所获得的模型可以表示为分类规则形式、决策树形式或数学公式形式。例如,给定一个顾客信用信息数据库,通过学习所获得的分类规则可用于识别顾客是否是具有良好的信用等级或一般的信用等级。分类规则也可用于对今后未知所属类别的数据进行识别判断,同时也可以帮助用户更好的了解数据库中的内容。 图1 数据分类过程中的学习建模 第二步,利用所获得的模型进行分类操作。首先对模型分类准确率进行估计,例如使用保持(holdout)方法。如果一个学习所获模型的准确率经测试被认为是可以接受的,那么就可以使用这一模型对未来数据行或对象(其类别未知)进行分类。例如,在图2中利用学习获得的分类规则(模型)。对已知测试数据进行模型

数据挖掘——决策树分类算法 (2)

贝叶斯分类算法 学号:20120311108 学生所在学院:软件工程学院学生姓名:朱建梁 任课教师:汤亮 教师所在学院:软件工程学院 2015年11月

12软件1班 贝叶斯分类算法 朱建梁 12软件1班 摘要:贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正 式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论 贝叶斯分类中最简单的一种:朴素贝叶斯分类。 关键词:朴素贝叶斯;文本分类 1 贝叶斯分类的基础——贝叶斯定理 每次提到贝叶斯定理,我心中的崇敬之情都油然而生,倒不是因为这个定理多高深,而是因为它特别有用。这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率: P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:P(A|B)=P(AB)/P(B)。 贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。 下面不加证明地直接给出贝叶斯定理:P(B|A)=P(A|B)P(B)/P(A) 2 朴素贝叶斯分类的原理与流程 朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。 朴素贝叶斯分类的正式定义如下: 1、X={a1,a2,....am}设为一个待分类项,而每个a为x的一个特征属性。 2、有类别集合c={y1,y2,...,yn} 3、计算p(y1|x),p(y2|x),...,p(yn|x)。 4、如果p(yk|x)=max{p(y1|x),p(y2|x),...,p(yn|x)}, 那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做: 1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。 2、统计得到在各类别下各个特征属性的条件概率估计。即p(a1|y1),p(a2|y1),...,p(am|y1);p(a1|y2),p(a2|y2),...,p(am|y2);p(a1|yn),p(a2 |yn),...,p(am|yn);。

决策树分类的定义以及优缺点 (1)

决策树分类 决策树(Decision Tree)又称为判定树,是运用于分类的一种树结构。其中的每个内部结点(internal node)代表对某个属性的一次测试,每条边代表一个测试结果,叶结点(leaf)代表某个类(class)或者类的分布(class distribution),最上面的结点是根结点。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。 构造决策树是采用自上而下的递归构造方法。决策树构造的结果是一棵二叉或多叉树,它的输入是一组带有类别标记的训练数据。二叉树的内部结点(非叶结点)一般表示为一个逻辑判断,如形式为(a = b)的逻辑判断,其中a 是属性,b是该属性的某个属性值;树的边是逻辑判断的分支结果。多叉树(ID3)的内部结点是属性,边是该属性的所有取值,有几个属性值,就有几条边。树的叶结点都是类别标记。 使用决策树进行分类分为两步: 第1步:利用训练集建立并精化一棵决策树,建立决策树模型。这个过程实际上是一个从数据中获取知识,进行机器学习的过程。 第2步:利用生成完毕的决策树对输入数据进行分类。对输入的记录,从根结点依次测试记录的属性值,直到到达某个叶结点,从而找到该记录所在的类。 问题的关键是建立一棵决策树。这个过程通常分为两个阶段: (1) 建树(Tree Building):决策树建树算法见下,可以看得出,这是一个递归的过程,最终将得到一棵树。 (2) 剪枝(Tree Pruning):剪枝是目的是降低由于训练集存在噪声而产生的起伏。 决策树方法的评价。 优点 与其他分类算法相比决策树有如下优点: (1) 速度快:计算量相对较小,且容易转化成分类规则。只要沿着树根向下一直走到叶,沿途的分裂条件就能够唯一确定一条分类的谓词。 (2) 准确性高:挖掘出的分类规则准确性高,便于理解,决策树可以清晰的显示哪些字段比较重要。 缺点 一般决策树的劣势: (1) 缺乏伸缩性:由于进行深度优先搜索,所以算法受内存大小限制,难于处理大训练集。一个例子:在Irvine机器学习知识库中,最大可以允许的数据集仅仅为700KB,2000条记录。而现代的数据仓库动辄存储几个G-Bytes的海量数据。用以前的方法是显然不行的。

相关文档
最新文档