电路分析基础第2章指导与解答

电路分析基础第2章指导与解答
电路分析基础第2章指导与解答

电路分析基础第2章指导与解答

第2章电路的基本分析方法

电路的基本分析方法贯穿了整个教材,只是在激励和响应的形式不同时,电路基本分析方法的应用形式也不同而已。本章以欧姆定律和基尔霍夫定律为基础,寻求不同的电路分析方法,其中支路电流法是最基本的、直接应用基尔霍夫定律求解电路的方法;回路电流法和结点电压法是建立在欧姆定律和基尔霍夫定律之上的、根据电路结构特点总结出来的以减少方程式数目为目的的电路基本分析方法;叠加定理则阐明了线性电路的叠加性;戴维南定理在求解复杂网络中某一支路的电压或电流时则显得十分方便。这些都是求解复杂电路问题的系统化方法。

本章的学习重点:

●求解复杂电路的基本方法:支路电流法;

●为减少方程式数目而寻求的回路电流法和结

点电压法;

●叠加定理及戴维南定理的理解和应用。

2.1 支路电流法

1、学习指导

支路电流法是以客观存在的支路电流为未知量,应用基尔霍夫定律列出与未知量个数相同的方程式,再联立求解的方法,是应用基尔霍夫定律的一种最直接的求解电路响应的方法。学习支路电流法的关键是:要在理解独立结点和独立回路的基础上,在电路图中标示出各支路电流的参考方向及独立回路的绕行方向,正确应用KCL、KVL列写方程式联立求解。支路电流法适用于支

24

25

路数目不多的复杂电路。

2、学习检验结果解析

(1)说说你对独立结点和独立回路的看法,你应用支路电流法求解电路时,根据什么原则选取独立结点和独立回路?

解析:不能由其它结点电流方程(或回路电压方程)导出的结点(或回路)就是所谓的独立结点(或独立回路)。应用支路电流法求解电路时,对于具有m 条支路、n 个结点的电路,独立结点较好选取,只需少取一个结点、即独立结点数是n -1个;独立回路选取的原则是其中至少有一条新的支路,独立回路数为m -n +1个,对平面电路图而言,其网孔数即等于独立回路数。

2.图2.2所示电路,有几个结点?几条支路?几个回路?几个网孔?若对该电路应用支路电流法进行求解,最少要列出几个独立的方程式?应用支路电流法,列出相应的方程式。 解析:图2.2所示电路,有4个结点,6条支路,

7个回路,3个网孔。若对该

电路应用支路电流法进行求解,最少要列出6个独立的方程式;应用支路电流法,列出相应的方程式如下(在图中首先标出各支路电流的参考方向和回路的参考绕行方向如事箭头的各虚线所示):

选择A 、B 、C 三个结点作为独立结点,分别对它们列写KCL 方程式如下:

532654

431=--=-+=-+I I I I I I

I I I

选取三个网孔作为独立回路,分别对它们列写KVL 方程式如下:

+ U S1

R 1

- R 4

S2

R

2

- R

5

图2.2 检测题2.1.2电

R 3

U

S3

R 6

I 1

I

2

I 3

I 6

I

5

A

B

D

I 4

C

26

S3

335544S2

66552

2S1

664411U R I R I R I U R I R I R I

U R I R I R I =+-=++=++

2.2 回路电流法

1、学习指导

如果一个电路中支路数比较多,则应用支路电流法就会出现方程式数目很多,造成分析和计算的过程十分烦琐。从减少方程式数目、变繁为简的愿望出发,我们引入回路电流法(适用于支路数多、回路数较少的电路),应注意的是,用这种分析方法求解出来的未知量通常不是电路的待求响应,因此要掌握好电路待求量回路电流和解题变量支路电流之间的关系。

2、学习检验结果解析

(1)说说回路电流与支路电流的不同之处,你能很快找出回路电流与支路电流之间的关系吗?

解析:支路电流是电路中客观存在的现象,回路电流则是为了减少方程式数目而人为假想的。应用回路电流法求解电路,得出的回路电流并不是最终目的,还要根据回路电流与支路电流之间的关系求出客观存在的支路电流。若一条支路上仅通过一个回路电流,且回路电流与支路电流在电路图上标示的参考方向一致时,则这条支路上客观存在的支路电流在数值上就等于这个回路电流,若参考方向相反时,支路电流在数值上就等于这个回路电流的负值;若一条支路上通过的回路电流有两条,则支路电流在数值上等于这两条回路电流的代数和(回路电流参考方向与支路电流相同时取正,相反时取负)。

27

2.根据例2.2进行对比说明,阐述回路电流法的适用范围。

(已知负载电阻R L =24Ω,两台发电机的电源电压U S1=130V ,U S2=117V ;

其内阻R 1=1Ω,R 2=0.6Ω。)

解析:把例2.2用回路电流法求解过程和例2.1用支路电流法求解过程相比,回路电流法列写的方程数目少,但最后还必须根据回路电流和支路电流之间的关系求出客观存在的支路电流,对例2.1所示复杂直流电路而言,支路数与回路数相差不多,其优越性不太显著。如果一个复杂电路中,支路数较多、网孔数较少时,回路电流法则就会显示出其优越性。

2.3 结点电压法

1、学习指导

如果一个电路中支路数比较多,回路数也不少,但电路结点数较少时,应用支路电流法或是回路电流法都会出现方程式

数目较多,造成解题难的现

象。从减少方程式数目、变+

U S1

R 1

I 1

S2

R 2

图2.1 例2.2电

R L

I a

I + -

例2.1电路

24Ω

I

A

130V Ω

28

繁为简的愿望出发,我们又引入结点电压法(适用于支路数较多、结点数较少的电路),同样应该注意,用这种分析方法求解出来的未知量通常也不是电路的待求响应,因此掌握待求响应与结点电压之间的关系非常重要。

2、学习检验结果解析

(1)用结点电压法求解例2.1所示电路中各支路电流。

解析:让电路中的B 点作为电路参考点,求出A 点电位:

V

V A 12024

651951306.01241116.0/1171/130=+=+++=

可得:

101

120

1301=-=

I A

56

.0120

1172-=-=

I A

524

120

3==

I A

(2)用结点电压法求解图2.5所示电路,与用回路电流法求解此电路相比较,你能得出什么结论?

解析:用结点电压法求解此电路,由于此电路只有3个结点,因此独立结点数是2,选用结点电压法求解此电路时,只需列出2个独立的结点电流方程

29

3

S3S2A 3B 5323

S3S1B 3A 4311)111(1

)111(

R U I V R V R R R R U I V R V R R R -=-+++=-++

再根据VCR 可求得

1

A 1R V I =

2

B 2R V I =

3

S3

B A 3R U V V I --=

4

A 4R V I =

5

B

5R V I =

如果用回路电流法,由于此电路有5个网孔,所以需列5个方程式联立求解,显然解题过程繁于结点电压法。因此对此类型(支路数多、结点少,回路多)电路,应选择结点电压法解题。

(3)说说结点电压法的适用范围。应用结点电压法求解电路时,能否不选择电路参考点?

解析:结点电压法适用于支路数较多,回路数也不少,但结点数目较少的电路。应用结点电压法求解电路时,电路响应结点电压实际上是该结点相对于电路参考点的电位值。因此,根据结点电压的相对性,应用结点电压法求解电路时,必须首先选定电路参考结点,否则就失去了结点电压法求解意义。

(4)比较回路电流法和结点电压法,你能从

+ I S1

R 2

- R 5

U S3

R 3 I S2 R 1

R 4

C

A

B

图 2.4 结点电压法电路举

I 1 I 4 I 5

I 2 I 3

中找出它们相通的问题吗?

解析:用回路电流作为电路的独立待求量时,可自动满足结点电流定律,因此减少了结点电流方程式的数目;只需对电路列写回路电压方程即可;用结点电压作为电路的独立待求量时,可自动满足回路电压定律,因此减少了回路电压方程式的数目。显然,引入这两种电路分析方法,目的都是为了减少解题中所需的方程式数目,以减少分析步骤。

2.4 叠加定理

1、学习指导

叠加定理是从线性电路的基本特征入手,利用参考方向的概念得出的一种线性电路的分析方法。学习叠加定理不仅可用它分析计算具体的电路,更重要的是掌握其分析思想,用它来推导线性电路某些重要定理和引出某些重要的分析方法。

叠加定理只适用于线性电路的分析。在运用叠加定理求解线性电路的过程中,遇到含有受控源的电路时,注意不能把受控源和独立源一样进行处理,而要把受控源看作一般的无源二端元件,因为受控源的受控量是受电路结构和各元件的参数所制约的。

2、学习检验结果解析

(1)说说叠加定理的适用范围?是否它仅适

30

用于直流电路而不适用于交流电路的分析和计算?

解析:叠加定理只适用于线性电路的分析,无论电路是直流还是交流的,是正弦的还是非正弦的,只要是线性电路,都可以运用叠加定理进行电路分析。

(2)电流和电压可以应用叠加定理进行分析和计算,功率为什么不行?

解析:在线性电路中,当所有激励(独立的电压源和电流源)都同时增大或缩小K(K为实常数)倍时,响应(电流和电压)也将同样增大和缩小K倍,即电压、电流响应与电路激励之间的关系为一次正比关系;而电功率则不然,因为电功率等于电压和电流的乘积,与电路激励不再属于线性关系,而是二次函数关系,所以不具有叠加性。

(3)你从叠加定理的学习中,懂得并掌握了哪些基本分析方法?

解析:从叠加定理的学习中,主要应掌握的是线性电路具有叠加性的思想:只要是一个线性电路,当它有多个电源共同作用时,多个电源在电路中产生的响应,均可看作是各个电源单独作用下在电路中产生的响应的叠加。

31

32

2.5 戴维南定理

1、学习指导

(1)学习戴维南定理时,首先要充分理解有源二端网络、无源二端网络、开路电压、入端电阻等概念,在此基础上,掌握正确求解有源二端网络开路电压U S 和无源二端网络入端电阻的方法。

(2)戴维南定理的分析思想实际上就是把一个有源二端网络用一个理想电压源和一个电阻元件的串联组合来等效代替,因此戴维南定理也称为等效电源定理。等效电源的电压U S 在数值上等于有源二端网络的开路电压U OC ;等效电源的内阻R 0等于把有源二端网络除源后,化为无源二端网络后电路的入端电阻R 入。

(3)应用戴维南定理求解电路时,一般要先将待求支路断开,使其余部分成为一个有源二端网络,应用前面介绍的各种电路分析法,求出有源二端网络的开路电压U OC =U S ;再把有源二端网络除源(网络内部的所有电压源短路处理,但要保留其内阻;所有电流源开路处理),使其成为一个无源二端网络,然后应用电阻的串、并联公式或Y 、Δ变换求出无源二端网络的入端电阻R 入= R 0。

(4)通过戴维南定理的学习,可进一步加深理解电路“等效”的概念。需要注意:戴维南定理一般适用于只研究某一支路响应的电路分析和计算。

2、学习检验结果解析 (1)戴维南定理适用于哪些电路的分析和计算?是否对所有的电路都适用?

解析:如果一个电路只需求解某一支路的响应时,利用前面所讲得分析方法,必然要涉及到

33

许多无关的量,这就带来了不必要的烦琐。为了减少这些不必要的烦琐,才引入了戴维南定理。如果电路求解的响应是多个时,戴维南定理显然不适用。

(2)在电路分析时,独立源与受控源的处理上有哪些相同之处?哪些不同之处?

解析:在电路分析时,受控源以电源的身份出现时,同样具备电源的特性,同样在理想受控源之间无等效而言,在含有内阻的受控源之间仍然存在等效关系。独立源和受控源所不同的是,受控源的数值受电路某处电压(或电流)的控制,不象独立源一样由自身决定,因此在电路变换过程中,一定要注意不能随意把受控源的控制量变换掉。

(3)如何求解戴维南等效电路的电压源U S

及内阻R 0?该定理的物理实质是什么?

解析:戴维南等效电路的电压源U S 等于原有源二端网络的开路电压U OC ;内阻R 0等于原有源二端网络化为无源二端网络(其中的独立电压源短路,独立电流源开路)后的行为入端电阻。戴维南定理的物理实质是电路“等效”。

(4)应用戴维南定理求解例2.4中5Ω电阻上的电压U 。

解析:根据求解开路电压等效电路图可得 V 130151020OC

-=?-=U 根据求解入端电阻等效电路图可得

5Ω 2Ω

10A

+ -

U - 20V

+ (a) 例2.4电2Ω

- 20V

求解开路电压等效电路图

2Ω 4Ω

求解入端电阻等效电路图

图2.8 电路图

10A U OC

R 0

+ U OC

R 0

5Ω +

戴维南等效电路

34

R 0=15Ω

最后根据戴维南等效电路可求出5Ω电阻上的电压

5.325155130550

OC

-=+-=+=R U U V

第2章 章后习题解析

2.1 求图2.9所示电路中通过14Ω电阻的电流I 。

解:将待求支路断开,先求出戴维南等效电源

Ω

=+?++?=-=+-+=620

52055.2105.210V

5.720520

5.125.2105.25

.120OC R U

再把待求支路接到等效电源两端,应用全电路欧姆定律即可求出待求电流为 A 375.01465

.7140

OC -=+-=+=R U I

2.2 求图2.10所示电路中的电流I 2。

解:应用叠加定理求解。首先求出当理想电流源单独作用时的电流I 2′为

A 5.0200

1001005.1'2=+=I 再求出当理想电压源单独作用时的电流I 2″为 A 08.020010024

''2

=+=I

根据叠加定理可得

1.5A + 24V

100Ω Ω I 2

图2.10 习题2.2电路

10Ω 2.5Ω

20Ω

Ω

12.5V

+ - 图2.9 习题2.1电

I

A +

24V

- 1K Ω

图2.11 习题2.3电路

+ 4V - 2K Ω + - 2K Ω

35

I 2= I 2′+I 2″=0.5+0.08=0.58A 2.3电路如图2.11所示。试用弥尔曼定理求解电路中A 点的电位值。

解:

V 142

121124

24124A =+

+++=

V

2.4 某浮充供电电路如图2.12所示。整流器直流输出电压U S1=250V ,等效内阻R S1=1Ω,浮充蓄电池组的电压值U S2=239V ,内阻R S2=0.5Ω,负载电阻R L =30Ω,分别用支路电流法和回路电流法求解各支路电流、负载端电压及负载上获得的功率。

解:①应用支路电流法求解,对电路列出方程组

239

305.025********=+=+=-+I I I I I I I

联立方程可求得各支路电流分别为 I=8A I 1=10A I 2=-2A 负载端电压为

U AB =IR L =8×30=240V

U S1

R S1

应用支路电流法求解电路 + U S2

R S2

L

I 1 I 2

36

负载上获得的功率为

P L =I 2

R=82

×30=1920W ②应用回路电流法求解,对电路列出回路电

流方程

239

5.0)305.0(2392505.0)5.01(A B B A =-+-=-+I I I I

联立方程可求得各回路电流分别为 I A =10A I B =8A

根据回路电流与支路电流的关系可得出各支路电流为

I=I B =8A I 1= I A =10A I 2=

-I A + I B =-10+8=-2A

负载端电压为

U AB =IR L =8×30=240V 负载上获得的功率为

P L =I 2R=82×30=1920W

2.5 用戴维南定理求解图2.13所示电路中的电流I 。再用叠加定理进行校验。 解:断开待求支路,求出等效电源 V 40OC

=U + 40V - 4Ω 图2.13 习题2.5电路

+ 40V -

10Ω

2Ω 8Ω

I + U S1

R S1 图2.12 习题2.4电路

+ U S2

R S2

L

I A

I B

应用回路电流法求解电路 I 1 I 2

37

Ω

≈++=33.610//)82(4//20R

因此电流为

53

.35

33.640

≈+=

I A

用叠加定理校验,当左边理想电压源单独作用时

176

.110

22

2//}5]10//)82{[(440'≈+?+++=

I A

当右边理想电压源单独作用时

353

.210

44

4//}5]10//)82{[(240''≈+?+++=

I

因此电流为

I=I ′+I ″=1.176+2.353≈3.53A 2.6 先将图2.14所示电路化简,然后求出通过电阻R 3的电流I 3。

I 3

图2.14 习题2.6电路 10A

+ 1Ω

5A

- 20V

1Ω 1Ω 1Ω

1Ω I 3

习题2.6等效电路

+ 2Ω

+5V --

20V

1Ω 1Ω 1+

10V

- I 3

+ Ω3

2 +--

V 350

38

解:首先根据电压源和电流源模型的等效互换将电路化简为上右图所示,然后根据全电路欧姆定律求解电流

A 375.43

8315503=-=I

2.7 用结点电压法求解图 2.15所示电路中50K Ω电阻中的电流I 。

解: 510010100501)50151101(B A -=-++V V

10

1005100501)5151501101(A B -=-+++V V

联立方程式求解可得 V A ≈-30.12V V B ≈

18.1V

+100V +100V

10K

5K

5K

10K 5K

50K 图2.15 习题2.7电路

+ 100V -

A B =

10K

5K 5K

习题2.7电路一般画法

- 100V +

5K + 100V -

10K - 100V +

+ 3V -

10Ω (a) 习题2.8电路一

- 9V +

2A

8Ω 10Ω a b

39

由此可得50K Ω电阻中的电流为

964.050

1

.181.3050B

A

-≈--=-=V V I mA 电流I 的实际方向由B 点流向A 点。 2.8 求图2.16所示各有源二端网络的戴维南等效电路。 解:(a)电路

Ω

=+==?++==18108V 2882390OC R U U ab

(b)电路

Ω=+?=

=?==+==+=26

36

3V

919936A

13

690OC R I I I U I

2.9 分别用叠加定理和戴维南定理求解图2.17所示各电路中的电流I 。

解:①用叠加定理求解(a )图电路中I 。当125V 电源单独作用时

A 25.136

6060

60//3640125'=+?+=I 当120V 电源单独作用时

图2.16 习题8电路

9V - 6Ω

- +

I

b

(b) 习题2.8电路二

40

A 75.0)2(25.1'''A

2603640//6060

60//]3660//40[120''-=-+=+=-=++?+-

=I I I I

②用叠加定理求解(b )图电路中I 。当10V 电压源单独作用时

A 769.04

910'≈+=I 当3A 电流源单独作用时

A 154.0)923.0(769.0'''A 923.09

44

3

''-≈-+=+=-=+-=I I I I

③用戴维南定理求解(a )图电路中I 。

A

75.036

2445

2460//40V

45120406060

125O OC -=+-=

Ω==-=-+?=

I R U

④用戴维南定理求解(b )图电路中I 。

A 154.09

42

4V 24310O OC -≈+-=

Ω=-=?-=I R U

2.10 用戴维南定理求图2.18所示电路中的图2.17 习题2.9电路

+ 125V -

40Ω + -

60Ω

60Ω

36Ω I

(a) 习题2.9电路一

3A 6Ω

(b) 习题2.9电路二

I 2

I + 10V -

2I

1

3A

2V -

U

I 1

41

电压U 。

解: V

81333V

134

2

2200C =-?=Ω=-=?-=U R U

《电路分析基础》作业参考解答

《电路分析基础》作业参考解答 第一章(P26-31) 1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。 (a )解:标注电压如图(a )所示。 由KVL 有 故电压源的功率为 W P 302151-=?-=(发出) 电流源的功率为 W U P 105222=?=?=(吸收) 电阻的功率为 W P 20452523=?=?=(吸收) (b )解:标注电流如图(b )所示。 由欧姆定律及KCL 有 A I 35 152==,A I I 123221=-=-= 故电压源的功率为 W I P 151151511-=?-=?-=(发出) 电流源的功率为 W P 302152-=?-=(发出) 电阻的功率为 W I P 459535522 23=?=?=?=(吸收) 1-8 试求题1-8图中各电路的电压U ,并分别讨论其功率平衡。 (b )解:标注电流如图(b )所示。 由KCL 有 故 由于电流源的功率为 电阻的功率为 外电路的功率为 且 所以电路的功率是平衡的,及电路发出的功率之和等于吸收功率之和。 1-10 电路如题1-10图所示,试求: (1)图(a )中,1i 与ab u ; 解:如下图(a )所示。 因为 所以 1-19 试求题1-19图所示电路中控制量1I 及电压0U 。 解:如图题1-19图所示。 由KVL 及KCL 有 整理得 解得mA A I 510531=?=-,V U 150=。

题1-19图 补充题: 1. 如图1所示电路,已知 , ,求电阻R 。 图1 解:由题得 因为 所以 2. 如图2所示电路,求电路中的I 、R 和s U 。 图2 解:用KCL 标注各支路电流且标注回路绕行方向如图2所示。 由KVL 有 解得A I 5.0=,Ω=34R 。 故 第二章(P47-51) 2-4 求题2-4图所示各电路的等效电阻ab R ,其中Ω==121R R ,Ω==243R R ,Ω=45R ,S G G 121==, Ω=2R 。 解:如图(a )所示。显然,4R 被短路,1R 、2R 和3R 形成并联,再与5R 串联。 如图(c )所示。 将原电路改画成右边的电桥电路。由于Ω==23241R R R R ,所以该电路是一个平衡电桥,不管开关S 是否闭合,其所在支路均无电流流过,该支路既可开路也可短路。 故 或 如图(f )所示。 将原电路中上边和中间的两个Y 形电路变换为?形电路,其结果如下图所示。 由此可得 2-8 求题2-8图所示各电路中对角线电压U 及总电压ab U 。 题2-8图 解:方法1。将原电路中左边的?形电路变换成Y 形电路,如下图所示: 由并联电路的分流公式可得 A I 14 12441=+?=,A I I 314412=-=-= 故 方法2。将原电路中右边的?形电路变换成Y 形电路,如下图所示: 由并联电路的分流公式可得 A I 2.16 14461=+?=,A I I 8.22.14412=-=-= 故 2-11 利用电源的等效变换,求题2-11图所示各电路的电流i 。 题2-11图 解:电源等效变换的结果如上图所示。 由此可得 V U AB 16=A I 3 2=

《电路分析基础》第一章~第四章同步练习题

《电路分析基础》第一章~第四章练习题 一、基本概念和基本定律 1、将电器设备和电器元件根据功能要求按一定方式连接起来而构成的集合体称为。 2、仅具有某一种确定的电磁性能的元件,称为。 3、由理想电路元件按一定方式相互连接而构成的电路,称为。 4、电路分析的对象是。 5、仅能够表现为一种物理现象且能够精确定义的元件,称为。 6、集总假设条件:电路的??电路工作时的电磁波的波长。 7、电路变量是的一组变量。 8、基本电路变量有四个。 9、电流的实际方向规定为运动的方向。 10、引入后,电流有正、负之分。 11、电场中a、b两点的称为a、b两点之间的电压。 12、关联参考方向是指:。 13、电场力在单位时间内所做的功称为电功率,即。 p=,当0?p时,说明电路元件实际 14、若电压u与电流i为关联参考方向,则电路元件的功率为ui 是;当0?p时,说明电路元件实际是。 15、规定的方向为功率的方向。 16、电流、电压的参考方向可。 17、功率的参考方向也可以。 18、流过同一电流的路径称为。 19、支路两端的电压称为。 20、流过支路电流称为。 21、三条或三条以上支路的连接点称为。 22、电路中的任何一闭合路径称为。 23、内部不再含有其它回路或支路的回路称为。 24、习惯上称元件较多的电路为。 25、只取决于电路的连接方式。 26、只取决于电路元件本身电流与电压的关系。 27、电路中的两类约束是指和。

28、KCL指出:对于任一集总电路中的任一节点,在任一时刻,流出(或流进)该节点的所有支路电 流的为零。 29、KCL只与有关,而与元件的性质无关。 30、KVL指出:对于任一集总电路中的任一回路,在任一时刻,沿着该回路的代 数和为零。 31、求电路中两点之间的电压与无关。 32、由欧姆定律定义的电阻元件,称为电阻元件。 33、线性电阻元件的伏安特性曲线是通过坐标的一条直线。 34、电阻元件也可以另一个参数来表征。 35、电阻元件可分为和两类。 36、在电压和电流取关联参考方向时,电阻的功率为。 37、产生电能或储存电能的设备称为。 38、理想电压源的输出电压为恒定值,而输出电流的大小则由决定。 39、理想电流源的输出电流为恒定值,而两端的电压则由决定。 40、实际电压源等效为理想电压源与一个电阻的。 41、实际电流源等效为理想电流源与一个电阻的。 42、串联电阻电路可起作用。 43、并联电阻电路可起作用。 44、受控源是一种双口元件,它含有两条支路:一条是支路,另一条为支路。 45、受控源不能独立存在,若为零,则受控量也为零。 46、若某网络有b条支路,n个节点,则可以列个KCL方程、个KVL方程。 47、由线性元件及独立电源组成的电路称为。 48、叠加定理只适用于电路。 49、独立电路变量具有和两个特性。 50、网孔电流是在网孔中流动的电流。 51、以网孔电流为待求变量,对各网孔列写KVL方程的方法,称为。 52、网孔方程本质上回路的方程。 53、列写节点方程时,独立方程的个数等于的个数。 54、对外只有两个端纽的网络称为。 55、单口网络的描述方法有电路模型、和三种。 56、求单口网络VAR关系的方法有外接元件法、和。

最新电路分析基础(周围主编)第二章答案资料

2-2(1).求图示电路在开关K 断开和闭合两种状态下的等效电阻ab R 。 解:先求开关K 断开后的等效电阻: ()()Ω=++=9612//126ab R 再求开关K 闭合后的等效电阻: ()()Ω=+=86//1212//6ab R 2-2(2).求图示电路在开关K 断开和闭合两种状态下的等效电阻ab R 。 解:先求开关K 断开后的等效电阻: ()Ω=+=384//4ab R 再求开关K 闭合后的等效电阻: Ω==24//4ab R 2-3.试求题图2-3所示电路的等效电阻ab R 。 (a ) 解: 题图2-3(a ) a Ω Ωa Ω Ω a 题图2-2(1) 题图2-2(2) a b Ω 4Ω 8

240//360144ab R =ΩΩ=Ω (b ) 解: 40ab R =Ω 题图2-3(b ) a b a b 20Ω60 Ω a 40 Ω a b 20 Ω60 Ω a 20ΩΩ a Ω Ω a a a a Ω

2-25(1). 求图示电路a 、b 两点间的等效电阻ab R 。 解:在图中画一条垂线,使左右两边对称,参见图中虚线所示。显然虚线为等位线,没有电流流过,故图中电阻0R 可去掉,其等效电阻为: ()()[]Ω=++=48//88//88ab R 2-25(2). 求图示电路a 、b 两点间的等效电阻ab R 。 解:此题与上题相同,只是其中电阻的阻值不同,但仍保持其对称性。采用同样的方法处理,有: ()()[]Ω=++=7 12 4//22//66ab R 2-25(3). 求图示电路a 、b 两点间的等效电阻ab R 。 解:在图中画一条垂线,使左右两边对称,参见图中虚线所示。显然虚线为等位线,没有电流流过,故可将图中c 点分开,参见其等效图(题图2-25(3-1))所示,其等效电阻为: ()[]R R R R R R R ab 9 10 2//2//2//2= += 2-8.求图示电路的等效电压源模型。 (1)解:等效电压源模型如题图2-8(1-1)所示。 题图2-25(1) 题图2-25(2) 题图2-8(1) a b V 10题图2-8(1-1) 题图2-25(3) 题图2-25(3-1) R

电路分析基础[周围主编]第一章答案解析

1-9.各元件的情况如图所示。 (1)若元件A 吸收功率10W ,求:U a =? 解:电压电流为关联参考方向,吸收功率: V A W I P U I U P a a 10110=== →= (2)若元件B 吸收功率10W ,求:I b =? 解:电压电流为非关联参考方向,吸收功率: A V W U P I UI P b b 11010-=-=- =→-= (3)若元件C 吸收功率-10W ,求:I c =? 解:电压电流为关联参考方向,吸收功率: A V W U P I UI P c c 11010-=-== →= (4)求元件D 吸收功率:P=? 解:电压电流为非关联参考方向,吸收功率: W mA mV UI P 61020210-?-=?-=-= (5)若元件E 输出的功率为10W ,求:I e =? 解:电压电流为关联参考方向,吸收功率: A V W U P I UI P e e 11010-=-== →= (6)若元件F 输出功率为-10W ,求:U f =? 解:电压电流为非关联参考方向,吸收功率: V A W I P U I U P f f 10110-=-=- =→-= (7)若元件G 输出功率为10mW ,求:I g =? 解:电压电流为关联参考方向,吸收功率: mA V mW U P I UI P g g 11010-=-== →= (8)试求元件H 输出的功率。 解:电压电流为非关联参考方向,吸收功率: mW mA V UI P 422-=?-=-= 故输出功率为4mW 。

1-11.已知电路中需要一个阻值为390欧姆的电阻,该电阻在电路中需承受100V 的端电压,现可供选择的电阻有两种,一种是散热1/4瓦,阻值390欧姆;另一种是散热1/2瓦,阻值390欧姆,试问那一个满足要求? 解:该电阻在电路中吸收电能的功率为: W R U P 64.25390 10022=== 显然,两种电阻都不能满足要求。 1-14.求下列图中电源的功率,并指出是吸收还是输出功率。 解:(a )电压电流为关联参考方向,吸收功率为:W A V UI P 623=?==; (b )电压电流为非关联参考方向,吸收功率为:W A V UI P 623-=?-=-=, 实际是输出功率6瓦特; (c )电压电流为非关联参考方向,吸收功率为:W A V UI P 623-=?-=-=, 实际是输出功率6瓦特; (d )电压电流为关联参考方向,吸收功率为:W A V UI P 623=?==. 1-19.电路如图示,求图中电流I ,电压源电压U S ,以及电阻R 。 解: 1.设流过电压源的12A 电流参考方向由a 点到d 点,参见左图所示。 (1) 求电流I: A A A I 156=-= (2) 求电压U S : A A A I ba 14115=-= 对a 点列写KCL 方程: V 3) (a V 3) (b V 3) (c V 3) (d 题图1-14 题图1-19(1)

《电路分析基础》课程练习试题和答案

电路分析基础 第一章 一、 1、电路如图所示, 其中电流I 1为 答( A ) A 0.6 A B. 0.4 A C. 3.6 A D. 2.4 A 3Ω 6Ω 2、电路如图示, U ab 应为 答 ( C ) A. 0 V B. -16 V C. 0 V D. 4 V 3、电路如图所示, 若R 、U S 、I S 均大于零,, 则电路的功率情况为 答( B ) A. 电阻吸收功率, 电压源与电流源供出功率 B. 电阻与电流源吸收功率, 电压源供出功率 C. 电阻与电压源吸收功率, 电流源供出功率 D. 电阻吸收功率,供出功率无法确定

U I S 二、 1、 图示电路中, 欲使支路电压之比 U U 1 2 2=,试确定电流源I S 之值。 I S U 解: I S 由KCL 定律得: 2 23282 22U U U ++= U 248 11 = V 由KCL 定律得:04 2 2=+ +U I U S 11 60 - =S I A 或-5.46 A 2、用叠加定理求解图示电路中支路电流I ,可得:2 A 电流源单独作用时,I '=2/3A; 4 A 电流源单独作用时, I "=-2A, 则两电源共同作用时I =-4/3A 。

3、图示电路ab 端的戴维南等效电阻R o = 4 Ω;开路电压U oc = 22 V 。 b a 2 解:U=2*1=2 I=U+3U=8A Uab=U+2*I+4=22V Ro=4Ω 第二章 一、 1、图示电路中,7 V 电压源吸收功率为 答 ( C ) A. 14 W B. -7 W C. -14 W D. 7 W

第1章教案电路分析基础

第1章电路分析基础 本章要求 1、了解电路的组成和功能,了解元件模型和电路模型的概念; 2、深刻理解电压、电流参考方向的意义; 3、掌握理想元件和电压源、电流源的输出特性; 4、熟练掌握基尔霍夫定律; 5、深刻理解电路中电位的概念并能熟练计算电路中各点电位; 6、深刻理解电压源和电流源等效变换的概念; 7、熟练掌握弥尔曼定理、叠加原理和戴维南定理; 8、理解受控电源模型, 了解含受控源电路的分析方法。 本章内容 电路的基本概念及基本定律是电路分析的重要基础。电路的基本定律和理想的电路元件虽只有几个,但无论是简单的还是复杂的具体电路,都是由这些元件构成,从而依据基本定律就足以对它们进行分析和计算。因而,要求对电路的基本概念及基本定律深刻理解、牢固掌握、熟练应用、打下电路分析的基础。依据欧姆定律和基尔霍夫定律,介绍电路中常用的分析方法。这些方法不仅适用于线性直流电路,原则上也适用于其他线性电路。为此,必须熟练掌握。 1.1电路的基本概念 教学时数1学时 本节重点1、理想元件和电路模型的概念 2、电路变量(电动势、电压、电流)的参考方向; 3、电压、电位的概念与电位的计算。 本节难点参考方向的概念和在电路分析中的应用。

教学方法通过与物理学中质点、刚体的物理模型对比,建立起理想元件模 型的概念,结合举例,说明电路变量的参考方向在分析电路中的重要性。通过例题让学生了解并掌握电位的计算过程。 教学手段传统教学手法与电子课件结合。 教学内容 、、实际电路与电路模型 1、实际电路的组成和作用 2、电路模型: 3、常用的理想元件: 、、电路分析中的若干规定 1、电路参数与变量的文字符号与单位 2、电路变量的参考方向 变量参考方向又称正方向,为求解变量的实际方向无法预先确定的复杂电 路,人为任意设定的电路变量的方向,如图(b)所示。 参考方向标示的方法: ①箭头标示;②极性标示;③双下标标示。 注意: ①参考方向的设定对电路分析没有影响; ②电路分析必须设定参考方向; ③按设定的参考方向求解出变量的值为正,说明实际方向和参考方向相同,为负则相反。 关联参考方向和非关联参考方向的概念: 一个元件或一段电路上,电流与电压的参考方向一致时称为关联参考方向,反之为非关联参考方向。 3、功率 规定:吸收功率为正,发出功率为负。

(完整word版)第1章教案电路分析基础.doc

第 1 章电路分析基础 本章要求 1、了解电路的组成和功能,了解元件模型和电路模型的概念; 2、深刻理解电压、电流参考方向的意义; 3、掌握理想元件和电压源、电流源的输出特性; 4、熟练掌握基尔霍夫定律; 5、深刻理解电路中电位的概念并能熟练计算电路中各点电位; 6、深刻理解电压源和电流源等效变换的概念; 7、熟练掌握弥尔曼定理、叠加原理和戴维南定理; 8、理解受控电源模型 , 了解含受控源电路的分析方法。 本章内容 电路的基本概念及基本定律是电路分析的重要基础。电路的基本定律和理想的电路元件虽只有几个,但无论是简单的还是复杂的具体电路,都是由这些元件构成,从而依 据基本定律就足以对它们进行分析和计算。因而,要求对电路的基本概念及基本定律深 刻理解、牢固掌握、熟练应用、打下电路分析的基础。依据欧姆定律和基尔霍夫定律, 介绍电路中常用的分析方法。这些方法不仅适用于线性直流电路,原则上也适用于其他 线性电路。为此,必须熟练掌握。 1.1 电路的基本概念 教学时数 1 学时 本节重点 1 、理想元件和电路模型的概念 2、电路变量(电动势、电压、电流)的参考方向;

3、电压、电位的概念与电位的计算。本 节难点参考方向的概念和在电路分析中的应用。 教学方法通过与物理学中质点、刚体的物理模型对比,建立起理想元件模 型的概念,结合举例,说明电路变量的参考方向在分析电路中的重要性。通过例题让学生了解并掌握电位的计算过程。 教学手段传统教学手法与电子课件结合。 教学内容 一、实际电路与电路模型 1、实际电路的组成和作用 2、电路模型: 3、常用的理想元件: 二、电路分析中的若干规定 1 、电路参数与变量的文字符号与单位 2 、电路变量的参考方向 变量参考方向又称正方向,为求解变量的实际方向无法预先确定的复杂电 路,人为任意设定的电路变量的方向,如图(b)所示。 参考方向标示的方法: ① 箭头标示;② 极性标示;③ 双下标标示。 注意: ①参考方向的设定对电路分析没有影响;②电路分析必须设定参考方向; ③ 按设定的参考方向求解出变量的值为正,说明实际方向和参考方向相同,为负则相反。

电路分析基础 上海交通大学出版社 习题答案第一章

1.1解:频率为108MHz 周期信号的波长为 m m F c 78.2101081036 8 =??==λ 几何尺寸d ﹤﹤2.78m 的收音机电路应视为集总参数电路。 1.2解:(1)图(a )中u ,i 参考方向一致,故为关联参考方向。 图(b )中u ,i 参考方向不一致,故为非关联参考方向。 (2)图(a )中ui 乘积表示吸收功率。 图(b )中ui 乘积表示发出功率。 (3)如果图(a )中u ﹥0,i ﹤0,则P 吸=ui ﹤0,实际发出功率。 如果图(b )中u ﹥0,i ﹥0,则P 发=ui ﹥0,实际发出功率。 1.3解:因元件上电压、电流取关联参考方向,故可得 [])200sin(595)200sin(71702 1 )100sin(7)100cos(170)100sin(7)90100sin(170t t t t t t ui P o ππππππ=?= ?=?+==吸 (1) 该元件吸收功率的最大值为595W 。 (2) 该元件发出功率的最大值为595W 。 1.4解:二端元件的吸收功率为P=ui ,已知其中任两个量,可以求得第三个量。 A :mW W W UI P 51051 105-3-3 =?=??==吸 B :W W W UI P μ5105101105-6-3-3-=?-=???-=-=吸 C :KV V I P U 21012 3=?== - D :V V I P U 21 2 =-- =-= E :mA A U P I 110110101033=?=?==-- F :mA A U P I 110110 101033 -=?-=?-==-- G :tA t t t t t u P i cos 2sin cos sin 2sin )2sin(-=-=-=- = H :W e W e ui P t t --=?==422 1.5解:根据KVL 、KCL 和欧姆定律可以直接写出U ,I 关系式。 (a )RI E U +-= (b )RI E U +-=

电路分析基础第一章习题答案

§1-1电路和电路模型 l -1晶体管调频收音机最高工作频率约108MHz 。问该收音机的电路是集中参数电路还是分布参数电路 解:频率为108MHz 周期信号的波长为 m 78.2101081036 8 =??==f c λ 几何尺寸d <<2.78m 的收音机电路应视为集中参数电路。 说明:现在大多数收音机是超外差收音机,其工作原理是先将从天线接收到的高频信号变换为中频信号后再加以放大、然后再进行检波和低频放大,最后在扬声器中发出声音。这种收音机的高频电路部分的几何尺寸远比收音机的几何尺寸小。 §1-2电路的基本物理量 l -2题图 l -2(a)表示用示波器观测交流电压的电路。若观测的正弦波形如图(b)所示。试确定电压u 的表达式和 s 1 s 5.0、=t 和s 5.1时电压的瞬时值。

题图 l —2 解: V 1V )270sin(V )1.5πsin()s 5.1(V 0V )018sin(V )1πsin()s 1(V 1V )90sin(V )5.0πsin()s 5.0(V πsin )(-==?===?===?== u u u t t u 1-3各二端元件的电压、电流和吸收功率如题图1-3所示。试确定图上指出的未知量。 题图 l —3 解:二端元件的吸收功率为p =ui ,已知其中任两个量可以求得第三个量。

W e 4e 22 H,A cos 2sin cos sin 2sin 2sin G,mA 1A 10110 1010 F, mA 1A 101101010 E,V 21 2 D, kV 2V 1021012 C,W μ5W 105101105 B,mW 5W 1051105 ,A 33 333363333t t ui p t t t t t t u p i u p i u p i i p u i p u ui p ui p -------------=?-=-======?=?--=-==?=?===--=-==?=?== -=?-=???-=-==?=??==吸吸吸§1-3基尔霍夫定律 l -4题图 l -4表示某不连通电路连接关系的有向图。试对各节点和封闭面列出尽可能多的KCL 方程。 题图 l —4 解:对节点1,2,3,5,7,可以列出以下KCL 方程 0 ,0 ,0 ,0 ,0875*******=-=+=---=+=i i i i i i i i i i 根据图示封闭面可以列出以下KCL 方程 00 65365264265216421=+-=-+=--=+--=+--i i i i i i i i i i i i i i i i i

第二章放大电路分析基础

第二章放大电路分析基础 本章介绍三极管的三种基本组态放大电路的分析方法,为分析其他复杂电路打下基础。 本章内容: 2.1、放大电路工作原理 2.2、放大电路的直流工作状态 2.3、放大电路的动态分析 2.4、静态工作点的稳定及其偏置电路 2.5、多级放大电路 本章要点: 1、放大电路直流状态的解析法和图解法 2、放大电路交流状态的图解法和微变等效电路法 3、三种基本组态放大电路的分析方法 4、多级放大电路的耦合方式及其分析方法 电子课件二:放大电路分析基础

课时授课教案 一授课计划 批准人:批准日期:课序:4授课日期:授课班次:课题:第二章第2.1节:放大电路工作原理 目的要求: 1、掌握基本放大电路的组成原则 2、掌握放大电路的直流通路和交流通路 3、理解放大电路的工作原理 重点:放大电路的工作原理 难点:放大电路的交流通路 教学方法 手段:结合电子课件讲解 教具:电子课件、计算机、投影屏幕 复习提问: 1、三极管的类型及外部工作条件? 2、三级管的特性曲线有何规律? 课堂讨论: 1、如何画放大电路的直流通路和交流通路? 2、放大电路中三极管各极电流和极间电压如何变化?布置作业: 课时分配:

二、授课内容 引言 放大电路的任务是不失真地把微小信号放大到所需要的程度。本节首先分析放大电路的组成原则及工作原理。 2.1、放大电路工作原理 2.2.1、放大电路的组成 一、电路组成 基本共发射极放大电路如图2一1所示。 V──放大三级管 V CC──主电源、能源 V BB ──发射结偏置电源 R C ──直流负载电阻,用来确定直流工作点 R B ──发射结偏置电阻 R L ──负载电阻 R S 、u s ──信号源的电压和内阻 C 1、C 2 ──耦合电容 二、工作条件 1、三极管应处于放大状态。即发射结正偏,集电结反偏。 2、能够输入和输出信号。 3、不失真地放大信号。 为了方便起见通常把V CC及V BB合并为一个直流电源,如图2一2所示。 2.1.2 直流通路和交流通路 一、直流通路 当交流输入信号为零时,电路中只有直流电流和电压,叫直流通路,又叫直流状态。此时,可把耦合电容视为开路。如图2一3(a)所示直流状态又叫静态。分析直流电路,叫直流分析,也叫静态分析。目的在 于分析直流工作点,即求解:I BQ 、U BEQ 、I CQ 、U CEQ 。

第二章 放大电路分析基础

第二章 放大电路分析基础 〖本章主要内容〗 本章重点讲述基本放大电路的组成原理和分析方法,三种组态基本放大电路的特点和应用场合。多级放大电路的耦合方式和分析方法,差动放大器的分析方法。 首先介绍基本放大电路的组成原则。三极管的低频小信号模型。固定偏置共射放大电路的图解法和等效电路法静态和动态分析,最大不失真输出电压和波形失真分析。分压式偏置共射放大电路的分析以及稳定静态工作点的方法。共集和共基放大电路的分析,由BJT 构成的三种组态放大电路的特点和应用场合。然后介绍多级放大电路的两种耦合方式、直接耦合多级放大电路的静态偏置以及多级放大电路的静态和动态分析,差动放大器的分析方法。通过习题课掌握放大电路的静态偏置方法和性能指标的分析计算方法。 〖学时分配〗 本章有6讲,每讲两个学时。 第四讲 放大电路的工作原理 一、主要内容 1、放大的概念 在电子电路中,放大的对象是变化量,常用的测试信号是正弦波。放大电路放大的本质是在输入信号的作用下,通过有源元件(BJT 或FET )对直流电源的能量进行控制和转换,使负载从电源中获得输出信号的能量,比信号源向放大电路提供的能量大的多。因此,电子电路放大的基本特征是功率放大,表现为输出电压大于输入电压,输出电流大于输入电流,或者二者兼而有之。 在放大电路中必须存在能够控制能量的元件,即有源元件,如BJT 和FET 等。放大的前提是不失真,只有在不失真的情况下放大才有意义。 2、电路的主要性能指标 1) 输入电阻 i R :从输入端看进去的等效电阻,反映放大电路从信号源索取电流的大 小。 2) 输出电阻o R :从输出端看进去的等效输出信号源的内阻,说明放大电路带负载的 能力。 3) 放大倍数(或增益):输出变化量幅值与输入变化量幅值之比。或二者的正弦交流 值之比,用以衡量电路的放大能力。根据放大电路输入量和输出量为电压或电流的不同,有四种不同的放大倍数:电压放大倍数、电流放大倍数、互阻放大倍数和互导放大倍数。

相关文档
最新文档