“信号与系统”课程逆Z变换的两个问题

“信号与系统”课程逆Z变换的两个问题
“信号与系统”课程逆Z变换的两个问题

实验二-离散时间信号与系统的Z变换分析

实验二离散时间信号与系统的Z变换分析 一、实验目的 1、熟悉离散信号z变换的原理及性质 2、熟悉常见信号的Z变换 3、了解正/反Z变换的MATLAB实现方法 4、了解离散信号的Z变换与其对应的理想抽样信号的傅氏变换和拉氏变换Z间的关系 5、了解利用MATLAB实现离散系统的频率特性分析的方法 二、实验原理 1、正/反Z变换 Z变换分析法是分析离散时间信号与系统的重要手段。如果以时间间隔Ts对连续时间信号f(t)进行理想抽样,那么,所得的理想抽样信号 f (t)为: 理想抽样信号f (t)的双边拉普拉斯变换 F (s)为: F(s)f(t广 k (t kTs) e st dt f (kTs)e ksT s k 若令f (kTs)f(k),z esTi,那么f (t)的双边拉普拉斯变换F(s)为: F(s)f(k)z k FOzesI 则离散信号f(k)的Z变换定义为: F(z) f(k)z f (t) 惟广Ts(t) f (t) 从上面关于Z变换的推导过程中可知,离散信号 f (k)的Z变换F(z)与其对应的理想抽样信号 f (t)的

拉氏变换F (s)之间存在以下关系: F (s) F(z) f⑴的傅里叶变换之间的尖系为同理,可以推出离散信号f(k)的Z变换F(z)和它对应的理想抽样信号 F(j ) F(z)

MATLAB 程序如下: syms k z Fz=2* z/(2*z-1); fk=iztra ns(F z,k) 运行结果如下: fk = 例③:求序列f (k) clc;clear all syms n hn=sym( ' kroneckerDelta(n, 1) + kroneckerDelta(n, 2) + kroneckerDelta(n, 3)' 如果已知信号的Z 变换F(z),要求出所对应的原离散序列 f (k),就需要进行反Z 变换, f(k) 2〔j?F ⑵ Zk 1 dz 其屮,C 为包围F (z)z kl 的所有极点的闭合积分路线。 在MATLAB 语言1+1 有专门对信号进行正反 Z 变换的函数ztrans ()和itransO 下: F=ztrans ( f )对f(n)进行Z 变换,其结果为F(z) F=ztrans (f, v)对f(n)进行Z 变换,其结果为 F(v) F=ztrans (f, u, v)对f(u)进行Z 变换,其结果为 F(v) f=itrans ( F )对F(z)进行Z 反变换,其结果为 f (n) f=itrans (F, u)对 F(z)进行 Z 反变换,其结果为 f(u) f=itrans(F, v, u )对 F(v)进 行Z 反变换,其结果为f(u) 注意:在调用函数ztranO 及iztran()之前,要用syms 命令对所有需要用到的变量 行说明,即要将这些变量说明成符号变量。 反Z 变换的定义为: 其调用格式分别如 t,u,v,w )等进 例①.用MATLAB 求出离散序列f (k) (0. 5) (k)的Z 变换 MATLAB 程序如下: syms k z f 二0.5%; %定义离散信号 Fz=ztra %对离散信号进行Z 变换 ns(f) Fz 二 2*z/(2*z-l) 例②?已知一离散信号的 z 变换式为F(z) 2z 2z 1 ,求出它所对应的离散信号 f(k) %定义Z 变换表达式 %求反Z 变换

信号与系统重要资料概念公式定理情况总结

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为 复数的辐角。(复平面) 2.欧拉公式: wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n Λ= 如果满足: n i K dt t f j i dt t f t f i T T i T T j i Λ2,1)(0)()(2 1 2 12 ==≠=? ? 则称集合F 为正交函数集 如果n i K i Λ,2,11==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为: n i K dt t f t f j i dt t f t f i T T i i T T j i Λ2,1)()(0)()(2 1 2 1* *==?≠=?? ? 其中)(* t f i 为 )(t f i 的复共轭。 2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数

信号与系统常用公式

1 信号与系统常用公式 一、周期信号的傅里叶级数 1.三角函数形式的傅里叶级数:0111()[cos()sin()]n n n f t a a n t b n t ωω∞ ==++∑,其中 01 011()t T t a f t dt T += ?,010112()cos()t T n t a f t n t dt T ω+=?,010112()sin()t T n t b f t n t dt T ω+=?。 2.指数形式的傅里叶级数:11()()jn t n f t F n e ωω∞ =-∞ =∑ ,其中0110 111()()t T jn t t F n f t e dt T ωω+-= ?。 二、傅里叶变换 1.傅氏正变换:()[()]()j t F F f t f t e dt ωω∞ --∞ ==? 2.傅氏逆变换:11()[()]()2j t f t F F F e d ωωωωπ ∞ --∞ ==? 3 1.拉氏正变换:0 ()[()]()st F s L f t f t e dt ∞ -==? 2.拉氏逆变换:11()[()]()2j st j f t L F s F s e ds j σσπ+∞ --∞ ==?

2 3 四、z 变换 1.z 正变换:0 ()[()]()k k X z Z x k x k z ∞ -===∑ 2.z 逆变换:111 ()[()]()2k C x k Z X z X z z dz j π--==? 3.z 变换的基本性质: 1.连续时间信号的卷积:121221()()()()()()f t f t f f t d f f t d ττττττ∞ ∞ -∞ -∞ *=-=-?? 2.离散时间信号的卷积:()()()()()()n n x k h k x n h k n h n x k n ∞ ∞ =-∞ =-∞ *=-=-∑∑ 3.卷积定理: (1)1212[()()]()()F f t f t F F ωω*=? (2)12121[()()]()()2F f t f t F F ωωπ?=* (3)1212[()()]()()L f t f t F s F s *=? (4)12121[()()]()()2L f t f t F s F s j π?=* (5)[()()]()()Z x k h k X z H z *= (6)1 [()()]()()2C z dv Z x k h k X v H j v v π?=?

离散信号与系统的Z变换分析.doc

一.实验目的 1.学会使用MATLAB 表示信号的方法并绘制信号波形 2.掌握使用MATLAB 进行信号基本运算的指令 二.实验内容 1. 求出下列离散序列的Z 变换 ① 1122()()cos()()k k f k k πε= ② 223()(1)()() k f k k k k ε=- ③ 3()()(5)f k k k εε=-- ④ []4()(1)()(5)f k k k k k εε=--- 2.已知下列单边离散序列的z 变换表达式,求其对应的原离散序列。 ①2121()2z z F z z z ++=+- ②22341111()1F z z z z z =++++ ③2342(36)()z z F z z ++= ④ 24(1)()(1)(2)(3)z z z F z z z z ++=+-+ 3. 已知离散系统的系统函数H (z)如下,请绘出系统的幅频和相频特性曲线,并说明系统的作用 ① 122344()()()z H z z z +=++ ② 221()0.81 z H z z -=+ 4. 已知描述离散系统的差分方程为: () 1.2(1)0.35(2)()0.25(1)y k y k y k f k f k --+-=+- 请绘出系统的幅频和相频特性曲线,并说明系统的作用。

三.程序及仿真分析 2(1) syms k z Fz=(z^2+z+1)/(z^2+z-2); %定义Z变换表达式 fk=iztrans(Fz,k) %求反Z变换 fk = -1/2*charfcn[0](k)+1/2*(-2)^k+1 (2) syms k z Fz=1+1/z+1/z^2+1/z^3+1/z^4; %定义Z变换表达式 fk=iztrans(Fz,k) %求反Z变换 fk = charfcn[2](k)+charfcn[1](k)+charfcn[0](k)+charfcn[3](k)+charfcn[4](k) (3) syms k z Fz=(2*(z^2+3*z+6))/(z^4); %定义Z变换表达式 fk=iztrans(Fz,k) %求反Z变换 fk = 12*charfcn[4](k)+6*charfcn[3](k)+2*charfcn[2](k) (4) syms k z Fz=(z*(z^2+z+1))/((z+1)*(z-2)*(z+3)); %定义Z变换表达式 fk=iztrans(Fz,k) %求反Z变换 fk = -1/6*(-1)^k+7/15*2^k+7/10*(-3)^k 3. (1) A=[1 7/6 1/3]; B=[4 0 4]; [H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值 HX=angle(H); %求出相频特性值 subplot(2,1,1);plot(w,HF) %画出幅频特性曲线 title('幅频特性曲线') subplot(2,1,2);plot(w,HX) %画出相频特性曲线 title('相频特性曲线')

张宇-信号与系统各章内容整理48学时

第一章 信号与系统 主要内容 重点 难点 1.信号的描述x[n]、x (t ),两者不同之处 2.【了解】 信号的功率和能量 3.【掌握】自变量变换(计算题目)、理解变换前后图片的缩放或信号的变化 4.【了解】 常见信号:指数(j t j n e e w w 、)、正弦(cos cos t n w w 、)、单位冲激(()[]t n d d 、)、单位阶跃(()[]u t u n 、) 5.【掌握】用阶跃函数表示矩形函数;冲激与阶跃信号的关系;冲激信号的提取作用;指数信号和正弦信号的周期性。 6.【了解】系统互联 7.【掌握】系统的基本性质:记忆与无记忆性、可逆性、因果性、稳定性、时不变与线性。对已知系统进行性质判断(掌握) 1.3、5、7 1.0 0cos j n n e w w 、的周期性判断,是周期的条件,若是周期的,则周期: 2.00cos j t t e w w 、的周期: 自变量变换的量值 确定 0cos j n n e w w 、的周期 性和频率逆转性。 系统的时不变性与线性等性质的证明 2T ωπ = 2N m ωπ =

第二章 线性时不变系统 第三章 周期信号的傅里叶级数表示FS 本章内容安排基本思路: 主要内容 难点 ? 系统的单位冲激响应容易求出:令 ()()x t t d =,对应的输出即为单位 冲激响应() h t ; ? 将任意信号分解为冲激信号()[]t n d d 、的线性组合 [][][]; ()()()k x n x k n k x t x t d d t d t t ¥ ¥ - =- = -= -? ò ? 利用LTI 系统的线性和时不变性,在单位冲激响应[]() h t h n 、 已知的情况下,推导连续时间和离散时间系统对任意输入x 的响应: [][][]y n =x n * h n ; y(t)=x(t)* h(t) ? 利用输入输出的卷积关系,根据单位冲激响应[]() h t h n 、 ,判断ITI 系统的性质 1.【掌握】卷积和 2.【掌握】卷积积分 3.【掌握】用[]() h t h n 、 判断LTI 的性质 4.【理解】 初始松弛 5. 【掌握】任意信号与冲 激信号、阶跃函数的卷积性质(对比1章冲激信号抽取作用) 卷积运算中,求和或者求 积时,上下限的确定 本章内容安排基本思路: 主要内容 难点

初学者-从信号与系统角度浅谈傅里叶变换,拉氏变换,Z变换三者之间的关系

初学者-从信号与系统角度浅谈傅里叶变换,拉氏变换,Z 变换三者之间的关系 一 傅里叶级数展开与傅里叶变换 之所以要将一个信号f(t)进行傅里叶级数展开或傅里叶变换是因为一般自然界信号都非常复杂,且表面上并不能直观的表现出频率与幅值的关系,而一个信号的大部分有效信息恰藏于其频谱上,即其幅频关系和相频关系上。通过傅里叶级数展开或傅里叶变换,可将自然界中复杂的信号分解成简单的,有规律的基本信号之和或积分的形式,并且可以明确表达出周期信号的离散频谱和非周期信号的连续频谱函数。 傅里叶级数展开是对于周期信号而言,如果该周期信号满足狄利克雷条件(在电子和通讯中大部分周期信号均满足),周期信号就能展开成一组正交函数的无穷级数之和,三角函数集在一个周期内是完备的正交函数集,使用三角函数集的周期函数展开就是傅里叶级数展开,而欧拉公式是将三角函数和复指数连接了起来,所以傅里叶级数可展开成三角函数或复指数两种形式,此时就可画出信号的频谱图,便可直观的看到频率与幅值和相位的关系。 既然是级数和展开,则上述频谱图中横轴表示n 倍的角频率,是一个离散频谱图,那么由离散频谱的间隔与周期的反比关系知当f(t)的周期T 趋近于无穷大时,周期信号变成了非周期信号,谱线间隔趋近于无穷小,谱线无限的密集而变成为连续频谱,该连续频谱即为频谱密度函数,简称频谱函数,该表达式即是我们熟悉的傅里叶变换,傅里叶变换将信号的时间函数变为频率函数,则其反变换是将频率函数变为时间函数,所以傅里叶变换建立了信号的时域与频域表示之间的关系,而傅里叶变换的性质则揭示了信号的时域变换相应地引起频域变换的关系。 二 傅里叶变换与拉氏变换 上述的傅里叶变换必须是在一个信号满足绝对可积的条件下才成立,那么对于不可积的信号,我们要将它从时域移到频域上,就要将原始信号乘上一个衰减信号将其变为绝对可积信号再做傅里叶变换,即为 f t e ?σt e ?j ωt ∞?∞dt = f(t)e ?(σ+j ω)t dt ∞?∞= f(t)e ?st ∞ ?∞ dt s=σ+j ω 变为拉氏变换,如令σ=0则拉氏变换就变成了傅里叶变换,所以傅里叶变换是S 域仅在虚轴上取值的拉氏变换,拉氏变换是傅里叶的推广,拉氏变换的收敛域就是f t e ?σt 满足绝对可积条件的σ值的范围,在收敛域内可积,拉氏变换存在,在收敛域外不可积,拉氏变换不存在。拉氏变换针对于连续时间信号,主要用于连续时间系统的分析中,对一个线性微分方程两边同时进行拉氏变换,可将微分方程转化成简单的代数运算,可方便求出系统的传递函数,简化了运算。

《信号与系统》题型总结

《信号与系统》题型总结(按内容) 答题时注意审题 一、计算题 (大题) 1 求信号的单双边LT ,单双边ZT, FT ,FS, 单双边ILT ,单双边IZT,IFT (1)定义,(2)性质 2 求卷积、卷积和 3 求系统状态跳跃 (1)物理分析法,(2)冲激函数匹配法 4 时域法求连续或离散系统自由响应、强迫响应、零输入响应、零状态响应、冲激响应、阶跃响应、完全响应 5 变换域法求连续或离散系统自由响应、强迫响应、零输入响应、零状态响应、冲激响应、阶跃响应、完全响应 6 求系统函数,求解卷积 (小题) 1 求信号直流、交流分量,信号能量,信号功率 2 用冲激信号的抽样性、乘积运算、卷积性化简 3 求可逆系统,用LTI 系统的性质进行运算 4 FT,LT,ZT 性质的运用(F(s),X(z)求时域信号的极限) 5 求信号带宽 6 求抽样频率与抽样间隔,连续信号的奈奎斯特频率和间隔 7 求系统的稳态响应、瞬态响应 9 基本公式的应用 000(t ) 1 (t-t )0(t t )t d t δδ∞ -∞-==≠? 000()()()()f t t t f t t t δδ-=- 000()0()()(0)0t t t t t δδδ=-≠=, 00()(),()()t t t t t t δδδδ--无意义 δ(t)的抽样性性质 00()()()f t t t dt f t δ+∞-∞-=? ()()t d u t δττ-∞=?()du t t dt δ=()()()dr t u t dt = 00()()()f t t t dt f t δ+∞ -∞''-=-? ()()t t δδ-= 信号功率=直流功率+交流功率 ()()2e f t f t f t +-=()()()2o f t f t f t --=() **11()[()()]()[()()]22r i f t f t f t f t f t f t j =+=-

信号系统Z变换习题讲解

信号系统Z 变换习题讲解 7-1 分别绘出下列各序列的图形。 (1)[](1/2)[]n x n u n = (2)[]2[]n x n u n = (3)[](1/2)[]n x n u n =- (4)[](2)[]n x n u n =- 解: 7-2 分别绘出下列各序列的图形。 (1)[][]x n nu n =-- (2)[]2[]n x n u n -= (3)[](1/2)[]n x n u n -=- (4)[](1/2)[]n x n u n =-- 解: 01 23 4 n (1) 01234 n (2) (3) 01234 n [n ] -1 -4 n (2) (1) (4)

7-3 分别绘出下列各序列的图形。 (1) []sin 5n x n π??= ??? (2)[]cos 105n x n ππ?? =- ??? 解: 7-5 序列x [n ]如图题7-5所示,把x [n ]表示为δ[n ]的加权与延迟之线性组合。 图 题7-5 解: []2[3][]3[1]2[3]x n n n n n δδδδ=-+-+-+- 7-7 求下列序列的z 变换X (z ),并注明收敛域,绘出X (z )的零极点图。 (1)(1/2)n u [n ] +δ [n ] (4)(1/2)n {u [n ] - u [n -8]} (5)δ [n ] -1 5δ [n -2] 解:1 1 1 (1)()[()[][]]()[]2212121112 2 2 n n n n n n n X z u n n z z n z z z z z z δδ∞ ∞ ∞ ---=-∞ ==-∞ = += + -=+= > - - ∑∑∑ (2)

信号与系统知识点总结

ε(k )*ε(k ) = (k+1)ε(k ) f (k)*δ(k) = f (k) , f (k)*δ(k – k0) = f (k – k0) f (k)*ε(k) = f 1(k – k1)* f 2(k – k2) = f (k – k1 – k2) ?[f 1(k)* f 2(k)] = ?f 1(k)* f 2(k) = f 1(k)* ?f 2(k) f1(t)*f2(t) = f(t) 时域分析: 以冲激函数为基本信号,任意输入信号可分解为一系列冲激函数之和,即 而任意信号作用下的零状态响应yzs(t) yzs (t) = h (t)*f (t) 用于系统分析的独立变量是频率,故称为频域分析。 学习3种变换域:频域、复频域、z 变换 ⑴ 频域:傅里叶表变换,t →ω;对象连续信号 ⑵ 复频域:拉普拉斯变换,t →s ;对象连续信号 ⑶ z 域:z 变换,k →z ;对象离散序列 设f (t)=f(t+mT)----周期信号、m 、T 、 Ω=2π/T 满足狄里赫利Dirichlet 条件,可分解为如下三角级数—— 称为f (t)的傅里叶级数 注意: an 是n 的偶函数, bn 是n 的奇函数 式中,A 0 = a 0 可见:A n 是n 的偶函数, ?n 是n 的奇函数。a n = A ncos ?n , b n = –A nsin ?n ,n =1,2,… 傅里叶级数的指数形式 虚指数函数集{ej n Ωt ,n =0,±1,±2,…} 系数F n 称为复傅里叶系数 欧拉公式 cos x =(ej x + e –j x )/2 sin x =(ej x - e –j x )/2j 傅里叶系数之间关系 n 的偶函数:a n , A n , |F n | n 的奇函数: b n ,?n 常用函数的傅里叶变换 1.矩形脉冲 (门函数) 记为g τ(t) ? ∞ ∞--=ττδτd )()()(t f t f ∑ ∑∞=∞ =Ω+Ω+=1 10)sin()cos(2)(n n n n t n b t n a a t f ∑∞=+Ω+=10)cos(2)(n n n t n A A t f ?2 2n n n b a A +=n n n a b arctan -=? e )(j t n n n F t f Ω∞-∞ =∑= d e )(122 j ?-Ω-=T T t n n t t f T F )j (21e 21e j n n n j n n b a A F F n n -===??n n n n A b a F 212122=+=??? ??-=n n n a b arctan ?n n n A a ?cos =n n n A b ?sin -=

信号与系统重点概念公式总结

信号与系统重点概念公 式总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复 数的辐角。(复平面) 2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(2 1 21 2==≠=?? 则称集合F 为正交函数集 如果n i K i ,2,11==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为:n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(21 21* * ==?≠=???

其中)(*t f i 为)(t f i 的复共轭。2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

信号与系统常用公式

常用 公式 第一章 判断周期信号方法 两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。 2/2/2/(2/),/N N M M N πβπβ πβπβπβ==仅当为整数时正弦序列才具有周期当为有理数时 正弦序列仍具有周期性, 其周期为取使为整数的最小整数当2为无理数时 正弦序列不具有周期性, 1、连续正弦信号一定是周期信号,而正弦序列不一定是周期序列。 2、两连续周期信号之和不一定是周期信号,而两周期序列之和一定是周期序列。 信号的能量 def 2 ()E f t dt +∞ -∞=? 信号的平均功率 def 2 /2 /2 1lim ()T T T P f t dt T +-→∞=? 冲激函数的特性 '''()()(0)()(0)()f t t f t f t δδδ=- ()()(0)()f t t f t δδ= ()()()()f t t a f a t a δδ-=- ()()(0),f t t dt f δ∞ -∞ =? ()()()f t t a dt f a δ∞ -∞ -=? ()()11()()n n n at t a a δδ= g 001 ()()t at t t a a δδ-=- 000()()()()f k k k f k k k δδ-=- ()()()()(1)(0)n n n t f t dt f δ∞ ∞ =-? - ''()()(0)t f t dt f δ∞ ∞ =-?- 动态系统是线性系统的条件 可分解性 {}{}{}{}()()()0,()(0),0f x y y y T f T x ?=?+?=?+???????? 零状态线性 {}{}{}{}{}{}12120,()()0,()0,()T af t bf t aT f bT f +=?+????????????? 零输入线性 {}{}{}{}{}{}1212(0)(0),0(0),0(0),0T ax bx aT x bT x +=+???????????? 判断系统时不变、因果、稳定的方法。 线性时不变的微分和积分特性。 第二章

信号与系统 实验报告 实验六 离散信号与系统的Z变换分析

实验六 离散信号与系统的Z 变换分析 学院 班级 姓名 学号 一、 实验目的 1、熟悉离散信号Z 变换的原理及性质 2、熟悉常见信号的Z 变换 3、了解正/反Z 变换的MATLAB 实现方法 4、了解离散信号的Z 变换与其对应的理想抽样信号的傅氏变换与拉氏变换之间的关系 5、了解利用MATLAB 实现离散系统的频率特性分析的方法 二、 实验原理 1、 正/反Z 变换 Z 变换分析法就是分析离散时间信号与系统的重要手段。如果以时间间隔s T 对连续时间信号f (t)进行理想抽样,那么,所得的理想抽样信号()f t δ为: ()()*()()*()Ts s k f t f t t f t t kT δδδ∞ =-∞==-∑ 理想抽样信号()f t δ的双边拉普拉斯变换F (s)为: ()()*()()s ksT st s s k k F s f t t kT e dt f kT e δδ∞∞∞ ---∞=-∞=-∞??=-=????∑∑? 若令()()s f kT f k = ,sTs z e =,那么()f t δ的双边拉普拉斯变换F (s)为: ()()()sTs k z e k F s f k z F z δ∞ -==-∞= =∑ 则离散信号f (k )的Z 变换定义为: ()()k k F z f k z ∞-=-∞= ∑ 从上面关于Z 变换的推导过程中可知,离散信号f (k )的Z 变换F(z)与其对应的理想抽样信号()f t δ的拉氏变换F (s)之间存在以下关系: ()()sTs z e F s F z δ==

同理,可以推出离散信号f (k )的Z 变换F(z)与它对应的理想抽样信号()f t δ的傅里叶变换之间的关系为 ()()j Ts z e F j F z ωδω== 如果已知信号的Z 变换F(z),要求出所对应的原离散序列f (k ),就需要进行反Z 变换,反Z 变换 的定义为: 11 ()()2k f k F z z dz j π-=? ? 其中,C 为包围1()k F z z -的所有极点的闭合积分路线。 在MATLAB 语言中有专门对信号进行正反Z 变换的函数ztrans( ) 与itrans( )。其调用格式分别如下: F=ztrans( f ) 对f(n)进行Z 变换,其结果为F(z) F=ztrans(f,v) 对f(n)进行Z 变换,其结果为F(v) F=ztrans(f,u,v) 对f(u)进行Z 变换,其结果为F(v) f=itrans ( F ) 对F(z)进行Z 反变换,其结果为f(n) f=itrans(F,u) 对F(z)进行Z 反变换,其结果为f(u) f=itrans(F,v,u ) 对F(v)进行Z 反变换,其结果为f(u) 注意: 在调用函数ztran( )及iztran( )之前,要用syms 命令对所有需要用到的变量(如t,u,v,w)等进行说明,即要将这些变量说明成符号变量。 例① 用MATLAB 求出离散序列()(0.5)()k f k k ε= 的Z 变换。 MATLAB 程序如下: syms k z f=0、5^k; %定义离散信号 Fz=ztrans(f) %对离散信号进行Z 变换 运行结果如下: Fz = 2*z/(2*z-1) 例② 已知一离散信号的Z 变换式为2()21 z F z z =- ,求出它所对应的离散信号f (k)。 MATLAB 程序如下: syms k z Fz=2* z/(2*z-1); %定义Z 变换表达式 fk=iztrans(Fz,k) %求反Z 变换 运行结果如下: fk = (1/2)^k 2、离散系统的频率特性 同连续系统的系统函数H (s)类似,离散系统的系统函数H (z )也反映了系统本身固有的特性。对于离散系统来说,如果把其系统函数H (z )中的复变量z 换成j T e ω,那么所得的函数()j T H e ω就就是此离散系统的频率响应特性,即离散时间系统的频率响应为:

吴大正-信号与系统公式

第一章 信号与系统 信号的分类 确定信号 周期信号 连续时间信号 能量信号 随机信号 非周期信号 离散时间信号 功率信号 信号的时域运算 (1)移位 ()为常数00,t t t f + 00>t ,()0t t f +为()t f 波形在t 轴上左移0t ; 00a ,()at f 波形为()t f 的波形在时间轴上压缩为原来的a 1 ; 10<

0,0t (2)冲激函数 0,0)(≠=t t δ Dirac 定义 1)(=? ∞ ∞ -dt t δ (3)阶跃函数与冲激函数的关系 ()dt t d t εδ= )( dx x t t ?∞ -=)()(δε (4)阶跃函数的积分)(t r 斜坡函数=== ? ∞ -)()()(t t dx x t r t εε ,0,0>

信号系统Z变换习题讲解

信号系统Z变换习题讲解 7-1 分别绘出下列各序列的图形。 (1)x[n] (1/2)n u[n] ( 2)x[n] 2n u[n] 解: 7-2 分别绘出下列各序列的图形 (3)x[n] ( 1/2) n u[n] (4)x[n] (1/2)n u[ n] 解: t x[n] t x[n] 1 u 0 1 2 3 4 n 1 ■ b X[n] z* X*' 1 / / F k …1 3 0 Jf1 2 4n f x[n] -4 -3 -2 -1 0 n (3)x[n] ( 1/2)n u[n] (4)x[n] ( 2)n u[n] (1)x[n] nu[ n] (2) x[n] 2 n u[n]

7-3 分别绘出下列各序列的图形 17 7-5 序列x [n ]如图题7-5所示,把x [n ]表示为[n ]的加权与延迟之线性组合。 图题7-5 解: x[n] 2 [n 3] [n] 3 [n 1] 2 [n 3] (1) x[n] sin n (2) x[n] cos 10 解: f x[n] Ji -5 (1) t x[n] 10 —>

7-7 求下列序列的z变换X(z),并注明收敛域,绘出X(z)的零极点图 (1) (1/2)n u[n] + [n] (4)(i/2)n{u[ n] u[n 8]} [n] [n 2] 解:(1) X(z) 1 [( 2 ) n u[n][n]]z / 1 1 \ n ( 2 z ) n 0 2 [n]z ⑷ X (z) 1 _2 1 z — 2z z 1)8 (” z8(” 2 7 / 1 \ z (z T)

实验二 离散时间信号与系统的Z变换分析

实验二 离散时间信号与系统的Z 变换分析 一、 实验目的 1、熟悉离散信号Z 变换的原理及性质 2、熟悉常见信号的Z 变换 3、了解正/反Z 变换的MATLAB 实现方法 4、了解离散信号的Z 变换与其对应的理想抽样信号的傅氏变换和拉氏变换之间的关系 5、了解利用MATLAB 实现离散系统的频率特性分析的方法 二、 实验原理 1、正/反Z 变换 Z 变换分析法是分析离散时间信号与系统的重要手段。如果以时间间隔s T 对连续时间信号f (t)进行理想抽样,那么,所得的理想抽样信号()f t δ为: ()()*()()*()Ts s k f t f t t f t t kT δδδ∞ =-∞ ==-∑ 理想抽样信号()f t δ的双边拉普拉斯变换F δ (s)为: ()()*()()s ksT st s s k k F s f t t kT e dt f kT e δδ∞∞∞ ---∞=-∞=-∞??=-=????∑∑? 若令()()s f kT f k = ,s sT z e = , 那么()f t δ的双边拉普拉斯变换F δ (s)为: ()()()sT s k z e k F s f k z F z δ∞-==-∞= =∑ 则离散信号f (k )的Z 变换定义为: ()()k k F z f k z ∞-=-∞= ∑ 从上面关于Z 变换的推导过程中可知,离散信号f (k )的Z 变换F(z)与其对应的理想抽样信号()f t δ的拉氏变换F δ (s)之间存在以下关系: ()()sT s z e F s F z δ== 同理,可以推出离散信号f (k )的Z 变换F(z)和它对应的理想抽样信号()f t δ的傅里叶变换之间的关系为 ()()j Ts z e F j F z δωΩ== 如果已知信号的Z 变换F(z),要求出所对应的原离散序列f (k ),就需要进行反Z 变换,反Z 变换的定义为: 11()()2k f k F z z dz j π-=? 其中,C 为包围1()k F z z -的所有极点的闭合积分路线。 在MATLAB 语言中有专门对信号进行正反Z 变换的函数ztrans( ) 和itrans( )。其调用格式分别 如下: F=ztrans( f ) 对f(n)进行Z 变换,其结果为F(z)

信号与系统概念公式总结

信号与系统概念,公式集: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。(复平面) 2.欧拉公式: wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n Λ= 如果满足: n i K dt t f j i dt t f t f i T T i T T j i Λ2,1)(0)()(2 1 2 12 ==≠=? ? 则称集合F 为正交函数集 如果n i K i Λ,2,11 ==,则称F 为标准正交函数集。 如果F 中的函数为复数函数

条件变为: n i K dt t f t f j i dt t f t f i T T i i T T j i Λ2,1)()(0)()(2 1 2 1* *==?≠=?? ? 其中)(*t f i 为)(t f i 的复共轭。 2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n Λ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

离散信号与系统的Z变换分析

一.实验目的 1.学会使用MATLAB 表示信号的方法并绘制信号波形 2.掌握使用MATLAB 进行信号基本运算的指令 二.实验内容 1. 求出下列离散序列的Z 变换 ① 1122()()cos()()k k f k k πε= ② 223()(1)()() k f k k k k ε=- ③ 3()()(5)f k k k εε=-- ④ []4()(1)()(5)f k k k k k εε=--- 2.已知下列单边离散序列的z 变换表达式,求其对应的原离散序列。 ①2121()2z z F z z z ++=+- ②22341111 ()1F z z z z z =++++ ③234 2(36) ()z z F z z ++= ④ 24(1)()(1)(2)(3)z z z F z z z z ++=+-+ 3. 已知离散系统的系统函数H (z)如下,请绘出系统的幅频和相频特性曲线,并说明系统的 作用 ① 12 2344 ()()()z H z z z +=++ ② 221()0.81 z H z z -=+ 4. 已知描述离散系统的差分方程为: () 1.2(1)0.35(2)()0.25(1)y k y k y k f k f k --+-=+- 请绘出系统的幅频和相频特性曲线,并说明系统的作用。

三.程序及仿真分析 2(1) syms k z Fz=(z^2+z+1)/(z^2+z-2); %定义Z变换表达式 fk=iztrans(Fz,k) %求反Z变换 fk = -1/2*charfcn[0](k)+1/2*(-2)^k+1 (2) syms k z Fz=1+1/z+1/z^2+1/z^3+1/z^4; %定义Z变换表达式 fk=iztrans(Fz,k) %求反Z变换 fk = charfcn[2](k)+charfcn[1](k)+charfcn[0](k)+charfcn[3](k)+charfcn[4](k) (3) syms k z Fz=(2*(z^2+3*z+6))/(z^4); %定义Z变换表达式 fk=iztrans(Fz,k) %求反Z变换 fk = 12*charfcn[4](k)+6*charfcn[3](k)+2*charfcn[2](k) (4) syms k z Fz=(z*(z^2+z+1))/((z+1)*(z-2)*(z+3)); %定义Z变换表达式 fk=iztrans(Fz,k) %求反Z变换 fk = -1/6*(-1)^k+7/15*2^k+7/10*(-3)^k 3. (1) A=[1 7/6 1/3]; B=[4 0 4]; [H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值 HX=angle(H); %求出相频特性值 subplot(2,1,1);plot(w,HF) %画出幅频特性曲线 title('幅频特性曲线') subplot(2,1,2);plot(w,HX) %画出相频特性曲线 title('相频特性曲线')

相关文档
最新文档