霄云煤矿轨道上山上车场绞车房支护设计

霄云煤矿轨道上山上车场绞车房支护设计
霄云煤矿轨道上山上车场绞车房支护设计

煤矿井底车场硐室设计规范标准

中华人民共和国行业标准 MT MT/T 5026-1999 煤矿矿井井底车场硐室设计规范 Code for design of chambers around pit-bottom of coal mine 1999-01-11 发布 1999-08-01 实施 国家煤炭工业局发布 中华人民共和国行业标准 煤矿矿井井底车场硐室设计规范 Code for design of chambers around pit-bottom of coal mine MT/T 5026-1999 主编单位:煤炭工业部武汉设计研究院

批准部门:国家煤炭工业局 施行日期:1999年8月1日 前言 本规范是根据国家计委计综合(19如)30号文的要求,由煤炭工业部武汉设计研究院编制而成。 在编制过程中,规范编制组进行了广泛调查研究,认真总结原“煤矿矿井井底车场砌室设计技术规定”执行以来的经验,吸取了近年来成熟的科研成果和新技术,广泛征求了有关单位的意见,最后由煤炭工业部组织审查定稿。 本规范共分8章,主要内容有:总则、基本规定、主排水系统硐室、主变电所、运输系统硐室、井下爆破材料硐室、安全设施铜室、其他硐室。 本规范由煤炭工业部武汉设计研究院负责解释。 主编单位:煤炭工业部武汉设计研究院 主要起草人:蔡晓川章立本严建川施鹤筹 目次 1、总则 (109) 2、基本规定 (110) 3、主排水系统硐室 (111)

3.l 主排水泵嗣室 (111) 3.2 管子道 (112) 3.3 水仓 (112) 4、主变电所 (114) 5、运输系统硕室 (115) 5.1 井下架线式电机车修理间及变流室 (115) 5.2 井下蓄电池式电机车修理问及充电室、变流室 (115) 5.3 井下防爆柴油机车修理间及加油(水)站 (116) 5.4 报车机及翻车机硐室 (116) 5.5 自卸矿车卸载站硐室 (117) 5.6井下调度室 (117) 6、井下爆炸材料硐室 (118) 6.1 井下爆炸材料库 (118) 6.2井下爆炸材料发放硐室 (120) 7、安全设施硐室 (122)

绞车选型计算

十矿斜坡运输绞车选型计算 一、说明: 1.根据我矿实际情况,现所使用1.6米以下绞车型号一般为JD-11.4、JD-25、JD-40和JD-55四种。 2.根据提升能力一般提升矿车数量为: 根据实际情况,我矿所使用载重工具一般为1吨矿车,车轮直径Φ300mm,轨距600mm,轴距550mm,外型尺寸2050×880×1150mm,重量638kg,则根据公式计算绳端荷重为: Q0=Q车+Q载 可得各型号绞车绳端载重量 型号JD11.4 JD25 JD40 JD55 数量(辆) 1 1/2 2 2 二、相关参数: 使用地点相关参数: 使用地点: 使用地点斜巷最大倾角(α)度,斜巷长度(L)m; 绞车绳端载荷(矿车自身重量+载荷的质量)(G)kg; 三、选型计算 1、实际提升时最大静拉力 Q j =n·G·g(sinα+f1cosα)+P·L·g(sinα+f2cosα) 式中: n:串车的数量 G:绳端载荷(矿车自身重量+载荷的质量),kg

g :重力加速度,9.8m/s 2 a :斜巷最大倾角, f 1:提升容器在轨道上运行时的实测阻力系数,f 1=0.01~0.02; f 2:钢丝绳在运行中的实测阻力系数,f 2=0.15~0.2; P :钢丝绳单位长度的质量,Kg/m ; L :使用地点斜巷长度,m 。 2.选择斜井提升钢丝绳的型号为 012(sin cos )(sin cos ) b Q f P L f g m θθσθθρ +≥ -+ 式中 P: 钢丝绳每米重量(kg/m ); Q 0: 绳端荷重; Θ: 坡度; f 1: 提升容器运动的阻力系数:(f1=0.01-0.02); f 2: 钢丝绳与底板和托辊间的摩擦系数:(f2=0.15-0.2); b σ: 钢丝绳钢丝的公称抗拉强度; g: 重力加速度:g=9.8m/s 2 ; m: 钢丝绳的安全系数; ρ: 钢丝绳的密度;(注:我矿一般使用的是6×19的钢丝绳,其密度为9450kg/m3) L: 钢丝绳的倾斜长度; 四、绞车选型验算: 1、绞车牵引力:

煤矿车场设计方案

矿井采区车场设计方案 编制: 日期:

采区车场设计方案说明 一概述 伊宁市财荣煤业为0.6Mt/a机械化改造矿井,矿井共分为两个区段进行采煤。为了满足矿井运输要求,分别布置+646m、+612m两个采区车场和+580m矿井底部车场, 二设计步骤 1.轨道与轨型 2 .道岔选择 选择原则: (1)与基本规矩相适应; (2)与基本轨型相适应; (3)与行驶车辆类别相适应; (4)与行车车速相适应 道岔选型表 3.轨距与线路中心距 目前我国矿井采用的标准轨距为600 mm、762 mm和900 mm三种,其中以600 mm、和900 mm轨距最为常见。1t固定式矿车、3t 底卸式矿车和10t架线电机车均采用600mm轨距。 为了设计和施工方便,双轨线路有1200 mm、1300mm、1400mm、

1600mm和1900mm等几中标准中心距。一般情况下不选用非标准值。但在双轨曲线巷道(即弯道)中,由于车辆运行时发生外伸和内伸现象,线路中心距一般比直线巷道还加宽一定数值。 线路中心距 2曲线半径 3.线路长度确定 空、重车线宜为1.0——1.5倍列车长,此处取1.2倍 L=1.2(mn L K)+ NL j 式中:L——副井空、重车线,m; m ——列车数目,1列; n——每列车的矿车数,8辆; L K——每辆矿车带缓冲器的长度,缓冲器长取0.3m ; N——机车数,1台; L j——每台机车的长度,m; 所以:L=1.2×8×(2+0.3)+4.5 =26.58m 取L=20m (2)材料车线有效长度 材料车线并列布置在副井空车线一侧长度按列材料车长度确定 L=mn L K+ NL j 式中:L——材料车线有效长度,m; n c——材料车数,10辆;

绞车设计计算

运河煤矿暗斜井绞车提升电控改造 设计计算书 天津民益电气有限公司 2009年3月2日

暗斜井绞车提升电控改造设计计算 一、设计依据 提升倾角:20度 矸石的散体容重:r=18KN/m3 一次提升重量:Q矸=108000N Q煤=80000N 提升容器自重:Q Z=37800N Q人行车=22000N 提升机 型号:JK—2.5/20E 最大静张力【Fjm】=90000N 最大静张力差【Fjc】=90000N 提升机变位重量(包括减速箱):Gj=132000N 减速机型号及速比:XL-30 i=20 钢丝绳每米重量:p=32.14 N/m 钢丝绳全厂:L p=900m 4、电动机 型号:YRKS450--10 额定功率Pe: 355kw 额定转速ne: 585r/min 过载系数λm:2.2 电动机转子的变位重量:158720N 定子额定电压:Ve:6000V 定子额定电流:Ie:46.7A 转子额定电压:V2e: 809V 转子额定电流:I2e:270.3A

绝缘等级F 接法:Y/Y 生产厂上海电机厂 二、设备选择: 1、变频装置容量: U out=480V P= 1.732U out I A=1.732*480*456=379.1KW 查西门子6SE70传动手册,可选P=500KW、U OUT=480V的4象限全数字变频传动装置6SE7036-0T560-0可以满足要求。2、整流回馈装置 由以上变频装置容量, 可选与之匹配的整流回馈装置 P=500KW、U SET=480V的4象限全数字整流回馈装置 6SE7038-2EH85-0可以满足要求。 3、整流变压器 整流变压器为单独变压器向整流回馈装置供电,容量为S T。 S T=1.4P=1.4x355KW=497KV A 实际可取S=500KV A U2= 480V 变压器的组别为:D/d0 阻抗压降为6%,有利于整流系统的保护。 变压器采用干式树脂,强风冷结构,有利于维护。 4、整流回馈自耦变压器 整流回馈自耦变压器向整流回馈装置供电,容量为S T。 S T=1.1P=1.1x355KW=390KV A 实际可取S=400KV A U2= 480/580V 与整流回馈装置匹配

采区下部车场设计

黑龙江科技大学 采区下部车场专题设计 课程名称:矿山规划与设计 专业:采矿工程 班级:采矿10-5班 姓名:XXX 学号:2012030129

矿业工程学院 采区下部车场专题设计 一、专题设计目的 1.通过上机进行采区的下部车场的施工图设计,可以使学生更好的掌握采区设计,并增加计算机绘图能力,为课程设计、毕业设计打下良好基础。 2.加强计算机在煤矿的普及应用,从而提高利用计算机和系统的观点解决实际问题的综合能力。 二、专题设计原理 以采区设计中采区下部车场及硐室的设计原则、步骤和方法为基本原理。 三、专题设计学时 4学时 四、专题设计仪器设备 计算机及CAD绘图软件。 五、专题设计要求 1.根据学生自主提出的设计已知条件进行采区下部车场线路设计计算,并利用计算机绘制出采区下部车场设计施工图。 2.弄清采区下部车场的作用、形式及施工图的绘制要求。 六、专题设计内容及结果 1.叙述专题设计内容(包括学生在教师的指导下自主设计的已知条件和车场设计的计算过程)。 2.专题设计结果(车场设计施工图)。

采区下部车场设计 石门装车式顶板绕道下部车场线路设计 煤层倾角为17°,运输上山和轨道上山均开掘在煤层内且沿真倾斜布置,运输上山中心线到轨道上山中心线间距为30米。运输大巷位于煤层底板岩石内,大巷中心线处轨面水平至煤层底板垂直距离为20米,,采区不在井田边界。 大巷、石门、轨道上山均采用600㎜轨距,一顿矿车,大巷石门用十吨架线式电机车牵引列车由30个矿车组成。上山辅助运输由绞车完成。车场和大巷通过线段铺设22㎏/m钢轨,其他的铺设15㎏/m钢轨。(声明以下如不特殊说明单位都是毫米) 一装煤车场设计 根据给定条件,装煤车场应为石门式装车,并设计成通过式,绘石门装车式草图如下。 石门轨中心距离为1900㎜,渡线道岔选用DX622-4-1216,α=14°02′10″,a = 3462㎜,b = 3588㎜,则渡线道岔线路连接长度l4 = 17713㎜。 L3 = 4500 + 0.5 × 2020 = 5510 l1 = L1 + n Lm +(3-5)m = 68100-70100取 69000 l2 = n × Lm = 60600 取 61000 L = l1 + l2 + l3 + 3l4 = 69000 + 61000 + 5510 + 3 × 17713 =188648 二辅助提升车场设计 1. 甩车道线路设计 辅助提升车场在竖曲线以后25°坡度直接见煤 斜面线路采用DC622-3-15对称道岔分车,上山改铺15㎏/m钢轨,DC622-3-15道岔,α= 18°26′06″,a = 2200,b = 2800,L = 4964 ,为了简化计算双道中心线间距为1900㎜,(连接半径取12000) 对称道岔线路连接长度为:

(完整版)绞车提升能力计算

七采区1510 JD-25KW绞车提升能力核算 一、已知条件 1、使用地点:七采区1510进风材上 使用地点斜巷最大倾角(α)25度,使用地点斜巷长度(L) 22.5m; 绞车钢丝绳端载荷(包括提升容器自身重量)(W)4000kg; 2、绞车性能参数: 绞车型号:JD-25KW;绞车额定牵引力(F):16KN; 电动机功率:25KW 最大绳速:1.20m/s 电动机转速:1470r/min 重量:1470kg 容绳量:400m 钢丝绳直径:16mm 钢丝绳直径(φ):18.5mm;传动比:35.2 绞车用钢丝绳每米重量(q):1.11Kg; 绞车用钢丝绳最小总破断力(Q):158KN。 二、提升能力验算 1、实际提升时最大静拉力 Pmax=Wg(sinα+f1cosα)+qLg(sinα+f2cosα) =4000*9.8*(sin25°+0.015cos25°)+1.11*22.5*9.8 (sin25°+0.5cos25°) =17.314KN 式中W:绳端载荷(提升容器自身重量+载荷的质量),kg g:重力加速度,9.8m/S2 α:斜井中产生最大拉力处的倾角25度(应根据斜井坡度 图逐点计算后确定) f1:提升容器在轨道上运行时的实测阻力系数,采用0.015; f2:钢丝绳在运行中的实测阻力系数,采用0.5;

q:钢丝绳单位长度的质量,Kg/m; L:使用地点斜巷长度,m。 2、钢丝绳安全系数 K=Q(钢丝绳最小总破断力)/Pmax(实际提升时的最大静力) =158/17.314=9.13 3、判断 F(绞车额定牵引力)<Pmax(实际提升时的最大静力) K(钢丝绳安全系数)9.13>6.5(提物时) 4、判断结果 由于绞车额定牵引力小于绞车实际提升的最大静力,所以JD-25KW绞车不能进行2个渣车的提升运输。 三、绞车最大提升能力计算 根据P=Wg(sinα+f1cosα)+qLg(sinα+f2cosα)公式可得提升绞车绳端载荷 W=P/ 〔g(sinα+f1cosα)+qLg(sinα+f2cosα)〕 =16000/〔9.8*(sin25°+0.015cos25°)+1.11*22.5*9.8(sin25°+0.5cos25°)〕 =3799kg 所以该绞车最大绳端载荷为3799kg。

采区中部车场设计

前言 通过在辽源职业技术学院内为期两年的学习,对“煤矿开采技术”这一专业有了一定的认识,对井下生产一线的综采工作面有了进一步了解,在此基础上通过查阅资料和指导老师张老师的指导下做了本次设计。 本次毕业设计是为了让我们更清楚地理解怎样确定综采工作面的系统,为我们即将走上工作岗位的毕业生打基础。通过对综采工作面的系统更加深入的了解和掌握,不断提高技术和工作能力,才能更好的解决好综采工作面设备使用者面临的主要问题,管理好综采工作面的系统。当系统出现问题时能找出引起系统故障真正的原因 由于设计者所学专业知识不够精深,加之时间仓促,在设计中缺漏和不妥之处,恳请评阅人批评指正。

目录 第一章采区车场轨道线路设计 (03) 第二章采区中部车场形式 (18) 第三章采区中部车场设计及计算 (35) 第一章采区车场轨道线路设计

一、采区车场轨道设计 (一)采区轨道线路及线路连接 采区轨道线路包括由采区上部、中部、下部车场组成的车场线路和与之相连接的轨道路线。轨道设计必须与采区运输方式和生产能力相适应;必须保证采区调车方便、可靠;操作简单、安全;作效率和尽可能减少车场的开掘及维护工作量。 平面线路的连接线路包括曲线及道岔的连接,斜面间或斜面与平面间的线路连接都是由竖直面上的曲线连接的。 (二)线路设计的内容和步骤 车场线路设计的内容包括线路总平面布置设计及线路坡度设计。采区车场设计最主要的是车场内轨道线路设计。轨道线路设计必须与采区运输方式和生产能力相适应;必须保证车场内调车方便、可靠;操作简单、安全;提高工作效率和尽可能减少车场的开掘及维护工程量。 1、设计平面线路 确定车场形式—绘制线路总平面布置草图—进行连接点线路设计计算线路平面布置总尺寸,做出线路布置的平面图。 2、线路坡地设计 沿有关线路作一个或数个剖面图,并用文字表示出每一坡度范围内线路的长度及坡度。 一、采区轨道线路设计基础知识 (轨道、道岔、曲线、线路施工、线路联接点) 采区车场轨道线路设计(采区下部、中部、上部车场) 二、轨道线路设计基本知识 (一)采区轨道线路分类 1、线路位置与作用 (1)轨道上山 (2)采区车场

主斜井井底车场掘进作业规程[1]

山西吕梁离石炭窑坪煤业公司 张家庄煤矿主斜井井底车场 施工作业规程 编制人: 施工负责人: 项目部经理: 批准日期:年月日 执行日期: 年月日

审批意见一、矿长 二、总工程师

主斜井井底车场施工作业规程审批表

目录 第一章工程概况 (5) 第二章水文地质条件 (6) 第三章施工巷道规格及支护要求 (10) 第四章施工工艺 (13) 第五章运输系统及管理 (19) 第六章生产系统 (22) 第七章劳动组织及主要技术经济指标 (28) 第八章质量标准化管理 (31) 第九章文明生产要求 (33) 第十章安全技术措施 (34) 第十一章灾害应急措施及避灾路线 (55)

第一章概况 第一节工程概况 位置及交通 山西吕梁离石炭窑坪煤业有限责任公司张家庄矿位于离石区滨河街道办张家庄村东部沟内。距离离石区2KM,距高速公路口约3KM,距孝柳铁路离石发运站约7KM,交通便利。 炭窑坪煤业有限公司重组整合后,山西省国土资源厅发放的采矿许可证编号为C1400002009111220046087,批准井田范围由以下11个坐标拐点连线圈定: 1、X=4151410.00 Y=19510000. 00 2、X=4151410.00 Y=19510830.00 3、X=4152190.00 Y=19511260.00 4、X=4152190.00 Y=19514128.00 5、X=4151890.00 Y=19514200.00 6、X=4151890.00 Y=19515420.00 7、X=4150020.00 Y=19515280.00 8、X=4148540.00 Y=19514925.00 9、X=4148500.00 Y=19513800.00 10、X=4149600.00 Y=19513800.00 11、X=4149600.00 Y=19510000.00

运输设备选型计算

盘县石桥老洼地煤矿 运输设备设计选型计算书

二零一四年 运输设备设计选型计算 一、概述 1、矿井设计生产能力 矿井设计生产能力为30t/年;主干系统包括通风、提升、运输。 2、井下运输 112运输石门和113运输石门用CDXT-2.5T型特殊防爆型蓄电池机车牵引1t固定箱式矿车运煤和矸石。其他运输为皮带、溜子运输。 运输方式的选择 一、运输方式

本矿井为高瓦斯突出矿井,112运输石门和113运输石门选用2.5t 特殊防爆型蓄电池机车牵引运输。煤、矸石采用2.5t固定式矿车装载,设备、材料用平板车或材料车装载,蓄电池机车牵引运输。 二、主要运输巷道断面、支护方式、坡度及钢轨型号 1、矿井巷道断面及支护方式 矿井下元炭煤层运输大巷采用料石砌碹支护方式,大白炭煤层运输大巷采用料石砌碹支护方式。 2、坡度 矿井主要运输巷道和石门的轨道运输坡度,均取千分之三的坡度。 3、钢轨型号 矿井主要运输斜井及石门敷设22㎏/m钢轨,600㎜轨距,木料轨枕。主平硐敷设30㎏/m钢轨,600㎜轨距,石料轨枕。 矿车 一、矿车选型 本矿井运载原煤的矿车选用600㎜轨距、MG1.1-6A型,1t固定式矿车。 二、各类矿车的数量 1、一吨固定式矿车 按排列法计算矿井达到设计生产能力时需用MG1.1-6A型1t固定式矿车6辆。 2、1t材料车

矿井运送材料采用MG1.1-6A 型一吨材料车,材料车数量为矿车, 为4辆。 3、1t 平板车 矿井运送设备采用MP1.1-6A 型1t 平板车,平板车数量为5辆。 运输蓄电池机车选型 一、设计依据 本矿井属高瓦斯矿井,井下运输选用CDXT-2.5T 型,600轨距, 特殊防爆型蓄电池机车牵引矿车。 本矿井在主平洞开拓113运输石门,113运输石门的材料、煤、 矸石需经主平洞运输,输距离均为1000m ,112回风石门前期运输距 离为210m 矸石率 20% 装运容器 MG1.1-6A 大巷轨道坡度 3‰ 二、设计选型计算 1、机车牵引能力 t 4.315 .1304.0110312224.01000=++++??=Q 蓄电池机车牵引MG1.1-6A 型1t 固定式矿车数量取4辆。 2、机车电机过热能力校核 (1)蓄电池机车牵引空车时的牵引力

采区下部车场设计

实验二:采区下部车场优化设计 一、实验目的 1.通过上机进行采区的下部车场的施工图设计,可以使学生更好的掌握采区设计,并增加计算机绘图能力,为课程设计、毕业设计打下良好基础。 2.加强计算机在煤矿的普及应用,从而提高利用计算机和系统的观点解决实际问题的综合能力。 二、实验原理 以采区设计中采区下部车场及硐室的设计原则、步骤和方法为基本原理。三、实验学时 4学时 四、实验仪器设备 计算机及CAD绘图软件。 五、实验要求 1.根据学生自主提出的设计已知条件进行采区下部车场线路设计计算,并利用计算机绘制出采区下部车场设计施工图。 2.弄清采区下部车场的作用、形式及施工图的绘制要求。 六、实验内容及结果 1.叙述专题设计内容(包括学生在教师的指导下自主设计的已知条件和车场设计的计算过程)。 2.专题设计结果(车场设计施工图)。 已知:采取范围内每层倾角19°,运输上山河轨道上山均开掘在煤层内,运输上山与轨道上山中心线相距20m。 运输大巷位于煤层底板岩石内,大巷中心线处轨面水平至煤层底板垂直距离20m,采取不在井田边界。 大巷轨道上山均采用600mm轨距,井下主运输大巷采用3t底卸式矿车运煤,10t 架线式电机车牵引,每列车由20辆矿车组成。上山辅助运输采用1t矿车固定式矿车,由绞车牵引完成。车场与大巷铺设22kg/m钢轨。

设计步骤: (一)装车站设计 根据给定条件,装车站应为石门装车式,并应设计成通过式,绘制草图,如图 图一 单煤仓尽头式装车站设计图 渡线道岔选用ZDX 622–4–1214型号,α=14°02′10″,a=3462,b=3588,单开道岔连接点长度L K =12523 623134625.045005.0l m e 1=?+=?+=L L 78500500034622045005000n m e =+?+=+?+=L L L H ,取 79000 2018006225125232790002l 221=+?+?=++=K H D L L L (二)辅助提升车场设计 1.甩车道线路设计 辅助提升车场子啊竖曲线以后以25°坡度跨越大巷见煤。上山改铺22kg/m 钢轨,斜面线路采用ZDC622–3–9D 对称道岔分车。ZDC622–3–9D 道岔参数:α=18°26′06″, a=2200,b=2800。 辅助提升车场双轨线路中心距为1900。对称道岔线路连接长度:(连接半径为12000) 9021 4 606218tan 120002606218cot 2190022004 tan 2cot 2S a T B a l 对=' ''??+'''??+=+?+ =++=ααR 水平投影长:817625cos 9021cos 对对 =??=?='θL L 根据生产实践经验,竖曲线半径定位 R G =15000(甩车线) R D =9000(提车线)

煤矿开采技术——采区车场轨道线路设计

第十七章采区车场轨道线路设计 第一节轨道线路设计基础(一) 目的要求: 1、了解车场线路设计步骤 2、掌握并熟悉矿井轨道有哪些类型及其参数并能根据实际选择使用 3、熟悉道岔的类型及参数并能在设计中选择使用 重点、难点和突破的方法: 重点: 1、轨道类型及其参数 2、道岔类型及其参数 难点:道岔类型及其参数 突破方法: 1、详细讲解 2、图示、模型 教学内容和步骤(附后) 第十七章采区车场轨道线路设计本章要点 1.轨道线路设计基础知识 (轨道、道岔、曲线、线路施工、线路联接点) 2.采区车场轨道 线路设计(采区下部、中部、上部车场) 第一节轨道线路设计基础 一、轨道线路设计基本知识 (一)采区轨道线路分类 1、线路位置与作用 (1)轨道上山 (2)采区车场 (3)工作面轨道平巷 2、线路空间状态

(1)水平: 下部车场:大巷装车站、区段轨道平巷 (2)倾斜:上山中部车场斜面线路。 (二)采区车场线路设计步骤 进行采区车场施工设计,必须进行线路设计,为巷道线路施工提供准确数据。(1)确定车场形式 (2)绘制车场平面布置草图 (3)进行线路连接点、线路参数设计计算 (4)计算线路平面布置总尺寸 (5)绘制线路布置图 (三)矿井轨道 1.轨道 在巷道底板铺设道床(道砟)、轨枕、钢轨和联结件等组成。 1)轨型:以单位长度质量表示,/kg·m-1,(kg/m) 矿井使用的轨型系列值: 现采用标准轨型: 15、22、30、38、43(新设计矿井使用) 原使用的轨型: 11、15、18、24 (生产矿井使用) 2)轨距 (1)轨距:单轨线路是有两根轨道组成, 两根轨道上轨头内缘的距离为轨距。 矿用标准轨距:600mm;900mm (762mm)

井底车场设计

采矿学(二)井底车场设计 姓名:张金龙 班级:采矿工程(1)班 学号:2008171408 指导教师:孙志文

1、井底车场 1.1 井底车场的作用 井底车场是位于开采水平,井筒附近的一组巷道与硐室的总称,是连接井筒提升与大巷运输的枢纽,担负着煤、矸、物料、人员的转运任务,并为矿井的排水、通风、动力供应、通讯和调度服务,对保证矿井正常生产和安全生产起着重要的作用。 1.2 井底车场构成 井底车场由线路、布置线路的巷道和完成特定功能的硐室组成。 1.2.1 井底车场线路 1、主井重车线、空车线 井底车场内一般只设一条空重车线,特大型矿井根据需要也可设两条空重车线。 大巷采用固定厢式矿车运煤时,大中型矿井的空重车线长度为宜各自为1.5~2.0倍列车长度。 采用底卸矿车运煤时,主井空重车线长度视线路布置及调车方式确定,并能容纳1.0列车。 对于主井采用罐笼提升的小型矿井,副井提升部分煤炭时,每个井筒的空重列车长度应各自容纳1.0~1.5列车。 2、副井重车线、空车线 对于采用固定式矿车为辅助运输的大中型矿井,副井空重车线宜各自为1.0~1.5倍列车长度。 对小型矿井,副井空重车线长度应能容纳0.5~1.0倍列车长度。 3、材料车线 并列布置在副井空车线一侧,其长度宜按10辆到1列材料(设备)车的长度确定。 4、调车线 调车线是调动空重车辆及电机车运行的线路,其长度大于1.0列车长度与电机车的 长度之和。 5、人车线 设在副井回车线内,其长度一般为一列成长度再加15~20米。 6、回车线 回车线要根据来车方向、调车方式、坡度要求和回车要求等因素确定。 为了调车方便,一般主副井空车线、副井重车线设自动滚行坡度,其高差损失由上 坡弥补。在主井重车线内,矿车进入翻笼要借助与设在翻笼前的推车机来实现。 1.2.2 井底车场通过能力 井底车场通过能力是指车场内的卸载能力和线路通过能力。 采用机车运输时,井底车场通过能力与井底车场形式、卸载方式、矿车载重量和调 车方式有关。一般情况下,卸载能力大于线路通过能力,故通常所说的井底车场通过能力是指线路通过能力。 大巷采用电机车牵引固定式矿车运输时,井底车场通过能力可按(1—1)计算: N=t K nG t K nG g g )1(15.168.31)1(15.11060163304+= +???- 式中 N —井底车场通过能力,万t /a ; n —每一列车的矿车数,辆; G —每辆矿车的实际载重量,t ;

斜井绞车选型设计

斜井绞车选型设计方案 设备处 2012年9月28日

目录 目录 (1) 前言 (2) 1 设计要求及设计参数 (3) 2 钢丝绳选型设计 (4) 3 绞车选型设计 (9) 4 钢丝绳校核 (13) 5 绞车校核 (14) 6 结论 (22) 参考文献 (23) 参考规范性文件 (24)

前言 我矿的斜井带式制动绞车(型号为JT-0.8×0.6)安装于1991年,虽只用作提升矿车,但也肩负着东部出矿的提升重任,现设置两班制,每日工作时间也有16个小时,属于我矿的重要考核设备。绞车距今已投入使用20多年,设备陈旧,技术状况较差,且根据国家安全生产监督管理总局下发的文件,已将带式制动绞车列为淘汰产品,禁止在煤矿和金属非金属矿山使用,因此公司领导本着安全第一的原则,考虑到我矿目前的安全形势,决定对斜井绞车进行更换。 本设计在现有的技术参数下,严格参照《GB l6423—2006金属非金属矿山安全规程》和《煤矿安全规程》,并结合全国大部分金属非金属矿山中已通过国家安全生产监督管理总局审查并同意使用的斜井绞车型号,对我矿斜井绞车进行选型设计。

1 设计要求及设计参数 1.1 设计要求 我矿原斜井绞车型号为JT-0.8×0.6,钢丝绳采用的是6×19-NF-Φ15.5,斜井长度为125m ,轨道倾角为20°,提升一辆重车。此次更换斜井绞车,轨道倾角仍为20°,但要求绞车能够在200m 斜井长度上提升两辆重车。 根据现场实际尺寸画出斜井绞车提升示意图,如下: 图1 斜井绞车提升示意图 1.2 设计参数 根据已知参数和现场实际尺寸,则设计参数如下: (1)矿车类型:0.68 m 3 翻转式矿车,矿车自重:1710M kg =; (2)矿岩容重:3.1 t / m 3;矿岩松散系数:1.6;矿车装满系数:0.85; 矿车有效载重:2 3.10.680.8511201.6 M kg =??=; 则两辆重车重量:122()2(7101120)3660K M M M kg =+=?+=; (3)轨道倾角:20θ=?; (4)斜井长度:0200L m =;380挂钩点至380井底距离暂取10m ;420摘 钩点至420井口距离暂取20m ;'2001020230L m =++=; (5)380挂钩点到420第一个地滚筒间钢丝绳长度:L=210m ; (6)斜井已铺设15kg/m 的轨道,600mm 轨距,采用水泥轨枕。

最新版煤矿车场设计方案

最新版 矿井采区车场设计方案

一概述 采区车场设计方案说明 伊宁市财荣煤业为0.6Mt/a 机械化改造矿井,矿井共分为两个 区段进行采煤。为了满足矿井运输要求,分别布置+646m 、+612m 两个采区车场和 +580m 矿井底部车场, 二设计步骤 1. 轨道与轨型 钢轨型号选择 使用地点运输设备钢轨型号 /kg. m3 综采支架等30 采区、井底车场 综采支架等30 2 . 道岔选择 选择原则: (1))与基本规矩相适应; (2))与基本轨型相适应; (3))与行驶车辆类别相适应; (4))与行车车速相适应 道岔选型表 轨距大巷及采区下部车场采区上中部车场 /钢轨/ mm kg ?m -1 600 18 ~ 30 道岔 相应轨型 4 号道岔 钢轨/ kg ?m -1 30 道岔 主提升相应轨型4、5 号道岔。 辅助提升用相应轨型的 3 、4 号道岔

3. 轨距与线路中心距 目前我国矿井采用的标准轨距为 600 mm 、762 mm 和 900 mm 三种,其中以 600 mm 、和 900 mm 轨距最为常见。 1t 固定式矿车、3t 底卸式矿车和 10t 架线电机车均采用 600mm 轨距。 为了设计和施工方便,双轨线路有 1200 mm 、1300mm 、 1400mm 、1600mm 和 1900mm 等几中标准中心距。一般情况下 不选用非标准值。但在双轨曲线巷道(即弯道)中,由于车辆运行时 发生外伸和内伸现象,线路中心距一般比直线巷道还加宽一定数值。 线路中心距 设备类型及有关参数/ mm 线路中心距/ mm 设备类型 轨 距 车 宽 直线段 曲线段机车或 3t 矿车 1 t 矿 车 2 曲线半径 曲线半径选择 运输设备 轨距 曲线轨道半径 /m 牵引设备 矿车 mm 最小 最大 建议综采设备 2.5t 600 12 15 —— 20 12 3. 线路长度确定 空、重车线宜为 1.0 —— 1.5 倍列车长,此处取 1.2 倍 L =1.2 (mn L K )+ NL j 式中: L —— 副井空、重车线, m ; m —— 列车数目, 1 列; n —— 每列车的矿车数, 8 辆 ; 600 1060 1300 1600 600 1200 1600 1900 600 880 1100 1300

斜井提升绞车设计选型资料

第4章斜井提升 4.1斜井串车提升 本章主要介绍平车场双钩串车提升运动学分析与循环周期的计算。 4.1.1平车场双钩串车提升运动学分析 平车场双钩串车提升如图1-1,开始时,在井口平车场空车线上的空串车,由井口推车器以a0加速至 v=1.0m/s的低速,向下推进。同时,井底重串车上提, 全部重串车进入井筒后,绞车以a1加速到最大提升速度v m 。并等速运行,行至 井口。空串车运行到井底时,绞车以a3进行减速运行,使之由v m减至 v,空串 车进入井底车场时,减速、停车。与此同时,井口平车场内的重串车在重车,借助惯性继续前进。行至摘挂钩位置时,摘下重串车挂上空串车,此时,井下也摘挂钩完毕。打开井口空车线上的阻车器,再进行下一个循环。 图4-1 斜井平车场及其速度图

4.1.2斜井串车运动学计算 根据《煤矿安全规程》规定:用矿车升降物料时,最大允许速度v m≤5m/s ,倾斜井巷内升降人员时,其加速度a 1和减速度a 3≤0.5m/s 2。本例初选最大速度 v m=4.7m/s ,初加速度a 0=0.3m/s 2,主加速度a 1=0.5m/s 2和主减速度a 3=0.5m /s 2,车场内速度v 0=1.0m/s ,各阶段运行速度计算图如图1-2所示 图4-2 各阶段运行速度计算图 4.1.3一次提升循环时间T (1) 速度图中各阶段运行时间及路程计算如下: 重车在井底车场运行阶段 初加速时间 t 01= 00a v =3 .00.1=3.33 s 初加速行程 L 01=02 02a v =3 .020.12 =1.67 m 等速度行程 L 02=L D -L 01=30-1.67=28.33m 等速度时间 t 02= 002v L =0 .133 .28=28.33s

矿山井底车场线路尺寸设计

(1)矿车的型号 本矿选用MG1.7-6A固定式矿车 其有关参数为: 名义装载量:1.5t; 自重:718kg; 最大牵引力:58.8kN; 轨距:600mm; 外形尺寸(长×宽×高):2400×1050×1200 (单位:mm)(2)蓄电池牵引电机车 设计选用XK8-6/110-KBT电机车,其有关参数为: 粘着质量:8t; 轨距:600mm; 牵引力:11.18Kn; 牵引速度:6.2km/h; (3)材料车 设计井选用MC1.5-6A型平板车,有关参数: 载重量:1500kg; 最大载重量:2900kg; 最大牵引力:58.8kN; 外形尺寸(长×宽×高):2400×1050×1200 (单位:mm)(4)人车 其有关参数为: 型号:RP12/6; 自重:1450kN; 最大牵引力:29.4kN; 最大行使速度:3m/s; 最大弯曲半径:8m; 外形尺寸(长×宽×高):4280×1025×1525 (单位:mm) (5)线路道岔特征表 表4-4 线路道岔特征表

4、井底车场线路计算 (1)主、副井线路的长度 矿井采用皮带机运输煤炭,主井不设卸载站,因此主井不需要空、重车线。副井空重车线长度计算 + = L+ Lf NLj mnLk 式中L——副井空重车线长度,一般取整数,m。 m——列车数,列根据《煤矿安全规程》和生产实践,副井m=1.0~1.5。 取1.5。 n——每列车矿车数,本矿井采用8t蓄电池式电机车,采用1.5t固定式矿车,n=16辆。 Lk——每辆矿车长度,m。 N——电机车台数。 Lj——每台机车长度,m。 Lf——附加长度,一般取10~15m。 经计算副井空重车线为: L =1.5×2.4×16 + 1×4.5 +15 =77.1 所以,取80m 。 (2)调车线长度 + = L+ NLj mnLk Lf 式中各参数同上 所以 L=1.0×16×2.4+1×4.5+15 =57.9 取L=60m。 (3)材料车线长度

调度绞车选型设计计算书

丁家梁煤矿一煤运输顺槽绞车选型设计计算书 编制: 审核: 审批: 日期:

调度绞车选型设计 一、主要参数: 1、 使用地点相关参数: 使用地点:一煤运输顺槽 使用地点斜巷倾角(β) 分四段,第一段倾角按最大20°考虑,其余平均按10°考虑。 使用地点斜巷长度(L ) 900m ,分三段,第一段为250米,第二段为200米,第三段为200米,第四段为250米; 绞车绳端载荷(包括平板车自身重量和设备重量)(W )11000 kg ; 二、钢丝绳的选取 1、钢丝绳重量的计算(第一段 长度L=250米,倾角按最大坡度20°) 由下列计算公式计算钢丝绳重量 126 W sin f cos )q (sin f cos )11000sin200.015cos 20)167010250(sin200.15cos 20)9.8 6.59450 b L g m ββσββρ +≥-+???+?=?-?+???o o o o (( =1.47Kg/m 式中W :绳端载荷(包括平板车自身重量和设备重量),kg g :重力加速度,9.8m/s ; β:斜巷中产生最大拉力处的倾角,取20°; f1:平板在轨道上运行时的实测阻力系数,采用0.015; f2:钢丝绳在运行中的实测阻力系数,采用0.15; q :钢丝绳单位长度的质量,Kg/m ;

L :使用地点斜巷长度,250m; b σ:钢丝绳的公称抗拉强度,取1670×106N/㎡; ρ:钢丝绳的密度,取9450Kg/m 3 m:钢丝绳的安全系数,取6.5; 计算得钢丝绳每米重量为1.47Kg/m, 查GB8919-2006 重要用途钢丝绳,选取钢丝绳参数如下: 钢丝绳直径(φ):20mm ; 钢丝绳每米重量(q ):1.47Kg/m ; 钢丝绳公称公称抗拉强度:1670MPa 钢丝绳最小破断拉力总和(Q ):267KN 。 由此可得,第一段选用钢丝绳型号为6×19S+FC-20 2、第二、三、四段(长度按250米计算,倾角按平均10度计算) 由下列计算公式计算钢丝绳重量 126 W sin f cos )q (sin f cos )11000sin100.015cos10)167010250(sin100.15cos10)9.8 6.59450 b L g m ββσββρ +≥-+???+?=?-?+???o o o o (( =1.22Kg/m 查GB8919-2006 重要用途钢丝绳,选取钢丝绳参数如下: 钢丝绳直径(φ):18mm ; 钢丝绳每米重量(q ):1.19Kg/m ; 钢丝绳公称公称抗拉强度:1670MPa 钢丝绳最小破断拉力总和(Q ):217KN 。

第三章 采区车场设计(第二版)

第三章采区车场设计 第一节窄轨线路 一、轨道与轨型 轨道运输是煤矿井下主要运输方式,矿井轨道由铺设在巷道底板上的道床、轨枕、钢轨和联接件等组成。 钢轨的型号简称轨型,以每m长度的质量(kg/m)表示。窄轨线路的轨型有15、22、30、38和43kg/m等5种。窄轨线路中心距有600mm、762mm和900mm 3种,使用时根据矿井生产能力大小和矿井运输方式选用。大型矿井一般选用900mm轨距,使用3t、5t矿车;中、小型矿井多选用600mm轨距,使用1t、3t矿车。新设计矿井轨型按表3—1选用。除了上述规定外,《煤矿运输安全质量标准化评分表》中规定;运行7t及其以上机车、3t及以上矿车、采区运输重量超过15t(包括平板车重量)及以上设备时线路轨型不低于30kg/m,卡轨车、齿轨车和胶轮车运行线路轨型不低于22kg/m。 表3—1 新设计矿井轨型选用表 二、道岔 1.道岔类别 道岔是使车辆由一条线路上转到另一条线路上的装置,它是由尖轨、辙叉、转辙器、道岔曲轨、护轮轨和基本轨所组成,道岔的结构如图3—1所示。

1—尖轨;2—辙叉;3—转辙器;4—道岔曲轨;5—护轮轨;6—道岔基本轨 图3—1 道岔结构 常用道岔有单开道岔、对称道岔、渡线道岔3种,单开道岔和渡线道岔又有左向和右向之分(在平面线路上沿顺时针方向分出时为右向,沿逆时针方向分出时为左向)。井下常用道岔有3号、4号、5号。每种型号的道岔又配备了4m、6m、9m、12m、15m、20m、25m、30m、40m、50m、70m等11种曲线半径;渡线道岔和对称道岔按不同轨距和道岔类型,配备有1300mm、1400mm、1500mm、1600mm、1700mm、1800mm、1900mm、2200mm和2500mm等9种线路间距。 道岔手册中所列型号均为右向道岔,如ZDK622—4—12末注明左右,均为右向道岔。右向道岔的分岔线在行进方向(由a→b)的右侧。左向道岔必须在尾数后注上(左)字,如:ZDK622—4—12(左),岔线在行进方向(由a→b)的左侧。 (a) (b (c) a—单开道岔;b—对称道岔;c—渡线道岔 图3—2 道岔的类型及单线表示 图3—3 道岔的含义

最新井底车场设计

井底车场设计

井底车场设计 一要求 根据矿井初步设计,某煤矿第一水平设计井底车场为刀把式。该矿采用3t 底卸式矿车,辅助运输采用1t固定箱式矿车。其中重车用10t架线式电机车运输,每列车长16节,辅助运输最多26节。矿井生产能力300万t。是对该矿井井底车场进行线路设计,标记必要硐室,按相应比例绘制井底车场线路图,并计算井底车场通过能力。 二设计步骤 1. 轨道与轨型 2 道岔选择 选择原则: (1)与基本规矩相适应; (2)与基本轨型相适应; (3)与行驶车辆类别相适应; (4)与行车车速相适应 3 轨距与线路中心距 目轨距是指单轨线路上两条钢轨轨头内缘之间的距离。

前我国矿井采用的标准轨距为600 mm、762 mm和900 mm三种,其中以600 mm、和900 mm轨距最为常见。1 t固定式矿车、3 t底卸式矿车和10t架线电机车均采用600mm轨距。 为了设计和施工方便,双轨线路有1 200 mm、1 300mm、1 400mm、1 600mm 和1 900mm等几中标准中心距。一般情况下不选用非标准值。但在双轨曲线巷道(即弯道)中,由于车辆运行时发生外伸和内伸现象,线路中心距一般比直线巷道还加宽一定数值。 线路中心距 2曲线半径 曲线半径选择 本设计曲线连接曲线半径主井选25米,副井15米。 3车线有效长度计算 (1)主井空、重车线 设备类型参数

f j K L NL mnL L ++= 式中: L ——主井空、重车线,m ; m ——列车数目,1列; n ——每列车的矿车数,16辆; L K ——每辆矿车带缓冲器的长度,缓冲器长取0.3m ; N ——机车数,1台; L j ——每台机车的长度,m ; L f ——附加长度,一般取10m 。 所以: L =1×16×(3.45+0.3)+4.5+15 =79.5m 取L=80m 当采用机车顶推底纵卸式矿车列车卸载时,机车不过卸载站,列车滑行进入空车线,空列车的附近加长度应根据列车自动滑行的制动距离要求通过计算确定,并增加10 ~ 15 m 的安全距离。当空车线的附近线路采用反坡或设置机械阻车及制动装置时可不受限制。 (2)副井空、重车线 副井空、重车线宜为1.0——1.5倍列车长,此处取1.2倍 L =1.2(mn L K )+ NL j 式中: L ——副井空、重车线,m ; m ——列车数目,1列; n ——每列车的矿车数,26辆; L K ——每辆矿车带缓冲器的长度,缓冲器长取0.3m ; N ——机车数,1台; L j ——每台机车的长度,m ; 所以: L =1.2×26×(2+0.3)+4.5

相关文档
最新文档