数学建模示例

数学建模示例
数学建模示例

【前言:笔者在养猪场工作期间,每天清晨第一件乐事就是推着独轮车运送猪粪。小路高低不平,而年轻人的躁动与乐天驱使饲养员们推车飞跑,翻车是屡见不鲜的喜剧。笔者注意到,轮子越大的粪车推起来越平稳,越不容易翻车。2002年,有中学生问我数学建模问题,使我想起了当年思考过的粪车问题。粪车当然不在城市少年的视野之内,于是便从自行车谈起,是为本文缘起。初稿发表于苏州大学出版的《中学数学月刊》2002年第10期,标题为《行车颠簸问题的数学模型与分析》。此为修订稿,对于建模的过程解说得更加详细。】

数学建模示例

——行车颠簸问题的数学模型与分析

“建立数学模型”(本文简称建模),就是以准确的数学语言来描述一件具体的事情,为的是以数学的方法或计算机软件对它进行分析处理。这在应用数学和计算机软件设计中是极为重要的手段。

一件具体的事情往往有很多方面的属性,但是在建模时,只需要抽出与当前研究的问题相关的那些属性,这叫做抽象。例如,对于一个杯子,可以有形状、材质、透明度、颜色、保温性等等方面的描述。如果当下我们要研究它的形状与装水多少的关系,则只需要将它作为一个几何体来计算它的容积,而忽略其颜色、材质等其他方面的属性。

骑过自行车的人都有体会:小轮自行车在经过路面上的不平整之处时要比大轮自行车更为颠簸一些,这是生活常识。那么,其中有什么数学道理吗?本文打算建立这个问题的数学模型并讨论之,所用的知识不超出中学课本,涉及的知识点有:圆、勾股定理、根式、函数等。

1.建立“颠簸程度”的数学模型

我们在研究行车颠簸问题时,把车轮抽象为一个几何上的圆,而忽略其材料、辐条、轴承等方面的属性,这是我们为建模所做的第一重抽象。

这个圆在理想的平整路面上滚动时,圆心对路面没有垂直方向的位移,这叫做没有颠簸。当这个圆在不平整路面上滚动时,会有上下跳动,即圆心对路面有垂直方向的位移,这叫做有颠簸。这是我们将“颠簸”这种日常的语言转化为数学语言。

但是,不同大小的车轮在同样一段不平整的路面上行进,都会产生相同的垂直方向的位移,为什么给骑车人的颠簸感觉不一样呢?这与完成垂直方向位移所用的时间长短有关。同样大小的垂直方向位移在越短的时间内完成,造成的颠簸感觉就越强烈,即颠簸程度越大。这已经很接近准确的

数学定义了。

不管是驾车还是骑车,我们在通过不平整路线时都会自觉或不自觉地减速,这是何故?是因为同一辆车子通过同样的不平整路线,行进得越快,则颠簸感越强烈。正是基于这种常识,我们必须忽略车速不同的情况,而只考虑大小不同的车轮在水平方向都以相同的速度v 前进,颠簸程度才有可比性。这是我们为建模所做的第二重抽象。

这样,“在时间t 内完成垂直方向的位移h ”就等同于“在完成水平位移vt 的同时完成垂直位移h ”。设s =vt ,我们进一步把“颠簸程度”k 定义为“在单位水平距离上的垂直位移”,即:

这就是颠簸程度的数学模型,这是一个代数公式。数学模型可以是但不限定是代数公式,它也可能是几何图形,或曲线图表等其他形式。

以上我们经过逐步抽象,将颠簸问题变成了一个可以用公式来演算的数学问题。

2.“颠簸程度”是车轮半径的函数

以下用一个半径为R 的圆代表车轮,在本文的图中,车轮都是从左向右运动的。

第一种场景:如图1所示。圆O 运动到圆O’,圆心在移动水平距离s=OB 的同时完成垂直上移h=O’B 。一般情况下,h 总是比车轮半径小,故h

图1

。故

,或即2222222222)(,''h Rh s h Rh h R R s B A OA OB -=-=--=-=)

0(s h

k =

第二种场景:如图2所示。圆O 运动到圆O’,圆心在移动水平距离BO’=s 的同时完成垂直下移OB=h 。

图2

与第一种场景类似可得:

以上两种场景下,h 是定值,对于不同的R 就有不同的s ,因而有不同的k 。如果不考虑垂直位移的方向,只考虑其绝对值,可以认为(1)(2)两式是相同的。

第三种场景:如图3所示。路面上有一宽度为2s 的缺口,但s

)

2(22h Rh h h k -==)

1(22h Rh h s h k -==

图3

与第一、第二两种场景不同,这里s 是定值,h 是随R 变化的量。对于不同的R 就有不同的h ,因而有不同的k 。

公式(1)(2)(3)都是公式(0)在不同场景下的具体化。从(1)、(2)、(3)式可以看出,在各种不同的场景下,“颠簸程度”k 都是车轮半径R 的函数。

3.“颠簸程度”随车轮半径变大而减小

在(1)(2)两个函数式中,自变量R 只出现在分母上,并且只出现在分母的被减数中,显然车轮半径R 越大则分母越大,从而“颠簸程度”k 越小。

在(3)式中,关系不是这样简单明确,因为自变量R 既出现在分子的被减数中,又出现在分子的减数中,R 变化时k 如何变化不易看出来。为此,将(3)的右边分子有理化:

在(4)式中,R 只出现在分母中,且容易看出:R 越大则分母越大,从而k 越小。于是我们得到结论:在各种情况下,“颠簸程度”总是随车轮半径变大而减小。这就解释了为何车轮越小,车子颠簸程度越大。

)

3(,222222s s R R s h k s R R h DE BD BG BE BG EG --==--=--=-=故

,即因为)

4()()

)((2222222222s R R s s R R s s R R s R R s

s R R s h k -+=-+-+--=--==

4.方法总结与进一步的思考

4.1本文為了建立车轮颠簸问题的数学模型,对具体的事物进行了几次抽象,这是建模的第一步。值得读者细心体会。

4.2本文给“颠簸程度”建立的数学模型是:k=h/s,即在单位水平距离上的垂直位移。象这样用两个量的比值来考察事物的变化程度,使得不便于比较的量成为可以比较的,是一种极为常见的数学方法,广泛应用于各种学科和应用领域(例如,数学中的斜率,物理学中的速度、密度、比热,经济学中的人均GDP等),希望读者仔细领会,并在平时的生活、学习和看报读书中随时留意。4.3中学课本上只讲根式的分母有理化,而以上讨论中用到了根式的“分子有理化”。其实,它也是一种有用的恒等变形,方法与分母有理化是一样的。

4.4事实上,道路上的凸凹并非总是如图1、图2与图3那样呈直角的形状,道路上的缺口的两边一般也非如图3那样高低平齐。在讨论中对问题进行了一些简化。对于更一般的场景的深入研究留给读者思考。事实上,任何数学模型都是对现实对象的抽象与简化。建立数学模型的主要工作正是进行准确的抽象与适当的简化。

4.5数学不仅存在于那些玄妙的难题之中,也广泛存在于各种实际应用问题之中。发现和提出问题,进而解决自己提出的问题,真是一件饶有趣味的事情。

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

数学建模1例题解析

1.贷款问题 小王夫妇计划贷款20万元购买一套房子,他们打算用20年的时间还清贷款。目前,银行的利率是%/月。他们采用等额还款的方式(即每月的还款额相同)偿还贷款。 (1)在上述条件下,小王夫妇每月的还款额是多少共计付了多少利息 (2)在贷款满5年后,他们认为他们有经济能力还完余下的款额,打算提前还贷,那么他们在第6年初,应一次付给银行多少钱,才能将余下全部的贷款还清 (3)如果在第6年初,银行的贷款利率由%/月调到%/月,他们仍然采用等额还款的方式,在余下的15年内将贷款还清,那么在第6年后,每月的还款额应是多少 (4)某借贷公司的广告称,对于贷款期在20年以上的客户,他们帮你提前三年还清贷款。但条件是: (i)每半个月付款一次,但付款额不增加,即一次付款额是原付给银行还款额的1/2; (ii)因为增加必要的档案、文书等管理工作,因此要预付给借贷公司贷款总额10%的佣金。 试分析,小王夫妇是否要请这家借贷公司帮助还款。 解答: (1)贷款总月数为N=20*12=240,第240个月的欠款额为0,即。 利用式子 (元),即每个月还款元,共还款(元),共计付利息元。 (2)贷款5年(即5*12=60个月)后的欠款额为, 利用公式:, 所以,

(元) (3)元,即第六年初,贷款利率,所以余下的15年,每个月还款额为:(元) (4)按照借贷公司的条件(i)每半个月付款一次,但付款额不增加,即一次付款额是原付给银行还款额的,付款的时间缩短,但是前17年的付款总额不变。帮忙提前三年还清需要资金数: 。 对于条件(ii)佣金数: 分析:因为预付佣金20000元,按照银行存款利率/月,17年的存款本息为 即在第17年需要给付借贷公司的钱少于给付银行的钱。所以建议请这家借贷公司帮助还款。 2.冷却定律与破案 按照Newton冷却定律,温度为T的物体在温度为的环境中冷却的速度与温差成正比。用此定律建立相应的微分方程模型。 凌晨某地发生一起凶杀案,警方于晨6时到达案发现场,测得尸温26℃,室温10℃,晨8时又测得尸温18℃。若近似认为室温不变,估计凶杀案的发生时间。 解答: 根据Newton冷却定律,可知温度T的微分方程为:

数学建模典型例题(二)

6 小行星的轨道模型 问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1. 表6.1 坐标数据 由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为 012225423221=+++++y a x a y a xy a x a . 问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据: (x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5). 由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定 系数,将五个点的坐标分别代入上面的方程,得 ???? ?????-=++++-=++++-=++++-=++++-=++++.122212221222122212225554253552251454424344224 135342 3333223125242 232222211514213112211y a x a y a y x a x a , y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵

数学建模题目及答案

09级数模试题 1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。试作合理的假设并建立数学模型说明这个现象。(15分) 解:对于此题,如果不用任何假设很难证明,结果很 可能是否定的。 因此对这个问题我们假设: (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 现在,我们来证明:如果上述假设 条件成立,那么答案是肯定的。以长方 桌的中心为坐标原点作直角坐标系如图 所示,方桌的四条腿分别在A、B、C、D 处,A、、D的初始位置在与x轴平行,再 假设有一条在x轴上的线,则也与A、B,C、D平行。当方桌绕中心0旋转时,对角线与x轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。为消除这一不确定性,令() fθ为A、B离地距离之和,

()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。由假设(1), ()f θ,()g θ均为θ的连续函数。又由假设(3) ,三条腿总能同时着地, 故()f θ()g θ=0必成立(?θ)。不妨设(0)0f =(0)0g >(若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为: 已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。 证明:当θ=π时,与互换位置,故()0f π>,()0g π=。作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。又由于00()()0f g θθ=,故必有00()()0f g θθ==,证毕。 2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。(15分) 解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A 宿舍的委员数为x 人,B 宿舍的委员数为y 人,C 宿舍的委员数为z 人。计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。 则 10; 10=235/1000;

2003全国大学生数学建模竞赛B题优秀论文(出题人亲作)

2003高教社杯全国大学生数学建模竞赛 B 题参考答案 注意:以下答案是命题人给出的,仅供参考。各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。 问题分析: 本题目与典型的运输问题明显有以下不同: 1. 运输矿石与岩石两种物资; 2. 产量大于销量的不平衡运输; 3. 在品位约束下矿石要搭配运输; 4. 产地、销地均有单位时间的流量限制; 5. 运输车辆每次都是满载,154吨/车次; 6. 铲位数多于铲车数意味着最优的选择不多于7个产地; 7. 最后求出各条路线上的派出车辆数及安排。 运输问题对应着线性规划,以上第1、2、3、4条可通过变量设计、调整约束条件实现; 第5条使其变为整数线性规划;第6条用线性模型实现的一种办法,是从1207 10 C 个整数规划中取最优的即得到最佳物流;对第7条由最佳物流算出各条路线上的最少派出车辆数(整数),再给出具体安排即完成全部计算。 对于这个实际问题,要求快速算法,计算含50个变量的整数规划比较困难。另外,这是一个二层规划,第二层是组合优化,如果求最优解计算量较大,现成的各种算法都无能为力。于是问题变为找一个寻求近优解的近似解法,例如可用启发式方法求解。 调用120次整数规划可用三种方法避免:(1)先不考虑电铲数量约束运行整数线性规划,再对解中运量最少的几个铲位进行筛选;(2)在整数线性规划的铲车约束中调用sign 函数来实现;(3)增加10个0-1变量来标志各个铲位是否有产量。 这是一个多目标规划,第一问的目标有两层:第一层是总运量(吨公里)最小,第二层是出动卡车数最少,从而实现运输成本最小。第二问的目标有:岩石产量最大;矿石产量最大;运量最小,三者的重要性应按此序。 合理的假设主要有: 1. 卡车在一个班次中不应发生等待或熄火后再启动的情况; 2. 在铲位或卸点处因两条路线(及以上)造成的冲突时,只要平均时间能完成任务即 可,不进行排时讨论; 3. 空载与重载的速度都是28km/h ,耗油相差却很大,因此总运量只考虑重载运量; 4. 卡车可提前退出系统。 符号:x ij ~ 从i 号铲位到j 号卸点的石料运量 单位 吨; c ij ~ 从i 号铲位到j 号卸点的距离 公里; T ij ~ 从i 号铲位到j 号卸点路线上运行一个周期平均所需时间 分; A ij ~ 从i 号铲位到j 号卸点最多能同时运行的卡车数 辆; B ij ~ 从i 号铲位到j 号卸点路线上一辆车最多可以运行的次数 次; p i ~ i 号铲位的矿石铁含量。 % p =(30,28,29,32,31,33,32,31,33,31) q j ~ j 号卸点任务需求 吨 q =(1.2,1.3,1.3,1.9,1.3)*10000

数学建模例题及解析

。 例1差分方程—-资金的时间价值 问题1:抵押贷款买房——从一则广告谈起 每家人家都希望有一套(甚至一栋)属于自己的住房,但又没有足够的资金一次买下,这就产生了贷款买房的问题。先看一下下面的广告(这是1991年1月1日某大城市晚报上登的一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心的是:如果一次付款买这栋房要多少钱呢?银行贷款的利息是多少呢?为什么每个月要付1200元呢?是怎样算出来的?因为人们都知道,若知道了房价(一次付款买房的价格),如果自己只能支付一部分款,那就要把其余的款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说的房子作出决策了。现在我们来进行数学建模。由于本问题比较简单无需太多的抽象和简化。 a。明确变量、参数,显然下面的量是要考虑的: 需要借多少钱,用记; 月利率(贷款通常按复利计)用R记; 每月还多少钱用x记; 借期记为N个月。 b.建立变量之间的明确的数学关系。若用记第k个月时尚欠的款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总的欠款为 k=0,1,2,3, 而一开始的借款为.所以我们的数学模型可表述如下 (1) c. (1)的求解。由

(2)这就是之间的显式关系。 d.针对广告中的情形我们来看(1)和(2)中哪些量是已知的。N=5年=60个月,已知;每月还款x=1200元,已知A.即一次性付款购买价减去70000元后剩下的要另外去借的款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策的困难.然而,由(2)可知60个月后还清,即,从而得 (3) A和x之间的关系式,如果我们已经知道银(3)表示N=60,x=1200给定时0 A。例如,若R=0.01,则由(3)可算得行的贷款利息R,就可以算出0 53946元。如果该房地产公司说一次性付款的房价大于70000十53946=123946元的话,你就应自己去银行借款。事实上,利用图形计算器或Mathematica这样的 数学软件可把(3)的图形画出来,从而可以进行估算决策。以下我们进一步考虑下面两个问题。 注1问题1标题中“抵押贷款”的意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子的产权)作抵押,即万一你还不出钱了,就没收你的不动产。 例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清。假设这对

数学模型经典例题

一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。(15分) 解:一、模型假设: 1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。 2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。 3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。 (3分) 二、建立模型: 以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定: ()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和 由假设3可得,()f θ、()g θ中至少有一个为0。 由假设2知()f θ、()g θ是θ的连续函数。 (3分) 问题归结为: 已知()f θ和()g θ是θ的连续函数,对任意θ, ()()0f g θθ=,且设()()00,00g f =>。证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立 若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。 (3分) 由f g 和的连续性知h 也是连续函数。根据连续函数的基本性质,必存在 ()000θθπ<<使000()0,()()h f g θθθ==即。 最后,因为00()()0f g θθ=,所以00()()0f g θθ==。 (3分) 图 5

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

数学建模题目及其答案(疾病诊断)

数学建模疾病的诊断 现要你给出疾病诊断的一种方法。 胃癌患者容易被误诊为萎缩性胃炎患者或非胃病者。从胃癌患者中抽 取5人(编号为1-5),从萎缩性胃炎患者中抽取5人(编号为6-10),以及非胃病者 中抽取5人(编号为11-15),每人化验4项生化指标:血清铜蓝蛋白( X)、 1 蓝色反应( X)、尿吲哚乙酸(3X)、中性硫化物(4X)、测得数据如表1 2 所示: 表1. 从人体中化验出的生化指标 根据数据,试给出鉴别胃病的方法。

论文题目:胃病的诊断 摘要 在临床医学中,诊断试验是一种诊断疾病的重要方法。好的诊断试验方法将对临床诊断的正确性和疾病的治疗效果起重要影响。因此,对于不同疾病不断发现新的诊断试验方法是医学进步的重要标志。传统的诊断试验方法有生化检测、DNA检测和影像检测等方法。而本文则通过利用多元统计分析中的判别分析及SPSS软件的辅助较好地解决了临床医学中胃病鉴别的问题。在临床医学上,既提高了临床诊断的正确性,又对疾病的治疗效果起了重要效果,同时也减轻了病人的负担。 判别分析是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。 其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。 首先,由判别分析定义可知,只有当多个总体的特征具有显著的差异时,进行判别分析才有意义,且总体间差异越大,才会使误判率越小。因此在进行判别分析时,有必要对总体多元变量的均值进行是否不等的显著性检验。 其次,利用判别分析中的费歇判别和贝叶斯判别进行判别函数的建立。 最后,利用所建立的判别函数进行回判并测得其误判率,以及对其修正。 本文利用SPSS软件实现了对总体间给类变量的均值是否不等的显著性检验并根据样本建立了相应的费歇判别函数和贝叶斯判别函数,最后进行了回判并测得了误判率,从而获得了在临床诊断中模型,给临床上的诊断试验提供了新方法和新建议。 关键词:判别分析;判别函数;Fisher判别;Bayes判别 一问题的提出 在传统的胃病诊断中,胃癌患者容易被误诊为萎缩性胃炎患者或非胃病患者,为了提高医学上诊断的准确性,也为了减少因误诊而造成的病人死亡率,必须要找出一种最准确最有效的诊断方法。为诊断疾病,必须从人体中提取4项生化指标进行化验,即血

数学建模试题

2012-2013第一学期 《数学建模》试题卷 班级:2010级统计 姓名:石光顺 学号:20101004025 成绩:

一、用Matlab 求解以下优化问题(10分) 用Matlab 求解下列线性规划问题: 解:首先化Matlab 标准型,即 123min 3w x x x =-++ 123121114123x x x ?? -??????≤??????---???? ???? , [][]1 2 32011T x x x -?= 然后编写Matlab 程序如下: f=[-3,1,1]; a=[1,-2,1;4,-1,-2]; b=[11,-3]; aeq=[-2,0,3]; beq=1; [x,y]=linprog(f,a,b,aeq,beq,zeros(3,1)); x,y=-y 运行结果: x = 0.0000 2.3333 0.3333 y = -2.6667 即当1230, 2.3333,0.3333x x x ===时,max 2.6667z =-。

二、求解以下问题,列出模型并使用Matlab求解(20分) 某厂生产三种产品I,II,III。每种产品要经过A, B两道工序加工。设该厂有两种规格的设备能完成A工序,它们以A1, A2表示;有三种规格的设备能完成B工序,它们以B1, B2, B3表示。产品I可在A, B任何一种规格设备上加工。产品II可在任何规格的A设备上加工,但完成B工序时,只能在B1设备上加工;产品III 只能在A2与B2设备上加工。已知在各种机床设备的单件工时,原材料费,产品销售价格,各种设备有效台时以及满负荷操作时机床设备的费用如表1,求安排最优的生产计划,使该厂利润最大。 表1 解:(1)根据题意列出所有可能生产产品I、II、III的工序组合形式,并作如下假设: x ; 按(A1,B1)组合生产产品I,设其产量为 1 x; 按(A1,B2)组合生产产品I,设其产量为 2 x; 按(A1,B3)组合生产产品I,设其产量为 3 x; 按(A2,B1)组合生产产品I,设其产量为 4 x; 按(A2,B2)组合生产产品I,设其产量为 5

数学建模习题及问题详解

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生 们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

经典的数学建模例子1

经典的数学建模例子 一、摘要 SARS SARS就是传染性非典型肺炎,全称严重急性呼吸综合症(Severe Acute Respiratory Syndromes),简称SARS,是一种因感染SARS相关冠状病毒而导致的以发热、干咳、胸闷为主要症状,严重者出现快速进展的呼吸系统衰竭,是一种新的呼吸道传染病,传染性极强、病情进展快速。 当一种传染病流行的时候,会给人们的工作学习带来很大的不变,能有效地进行隔离、预防,会大大减少人员的得病率,当一种传染病开始流行时,在一定的条件下其趋势就像真菌的繁殖曲线,如果能通过计算预测但大概推算出其发病率高峰时期,及时的隔离预防。那会给社会人力带来很大的方便,当年SARS的爆发给我们带来和大的不便和损失,因此本论文就以SARS为例,来研究传染病的传播规律、为预测和控制传染病蔓延创造条件和帮助。 1 二、正文 1、模型的背景问题描述 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。 要求:(1)建立传染病传播的指数模型,评价其合理性和实用性。 (2)建立一个适合的模型,说明为什么优于问题1中的模型;特别要说明怎样才能 3 建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。表中提供的数据供参考。 (3)说明建立传染病数学模型的重要性。 2、模型假设 (一)答;

数学建模例题及解析

。 例1差分方程——资金的时间价值 问题1:抵押贷款买房——从一则广告谈起 每家人家都希望有一套(甚至一栋)属于自己的住房,但又没有足够的资金一次买下,这就产生了贷款买房的问题。先看一下下面的广告(这是1991年1月1日某大城市晚报上登的一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心的是:如果一次付款买这栋房要多少钱呢?银行贷款的利息是多少呢?为什么每个月要付1200元呢?是怎样算出来的?因为人们都知道,若知道了房价(一次付款买房的价格),如果自己只能支付一部分款,那就要把其余的款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说的房子作出决策了。现在我们来进行数学建模。由于本问题比较简单无需太多的抽象和简化。 a.明确变量、参数,显然下面的量是要考虑的: 需要借多少钱,用记; 月利率(贷款通常按复利计)用R记; 每月还多少钱用x记; 借期记为N个月。 b.建立变量之间的明确的数学关系。若用记第k个月时尚欠的款数,则一个月后(加上利息后)欠款,不过我们又还了x元所以总的欠款为 k=0,1,2,3, 而一开始的借款为。所以我们的数学模型可表述如下 (1) c. (1)的求解。由

(2) 这就是之间的显式关系。 d.针对广告中的情形我们来看(1)和(2)中哪些量是已知的。N=5年=60个月,已知;每月还款x=1200元,已知A。即一次性付款购买价减去70000元后剩下的要另外去借的款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策的困难。然而,由(2)可知60个月后还清,即,从而得 (3) A和x之间的关系式,如果我们已经知道银行(3)表示N=60,x=1200给定时0 A。例如,若R =0.01,则由(3)可算得的贷款利息R,就可以算出0 53946元。如果该房地产公司说一次性付款的房价大于70000十53946=123946元的话,你就应自己去银行借款。事实上,利用图形计算器或Mathematica这样的 数学软件可把(3)的图形画出来,从而可以进行估算决策。以下我们进一步考虑下面两个问题。 注1问题1标题中“抵押贷款”的意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子的产权)作抵押,即万一你还不出钱了,就没收你的不动产。例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清。假设这对夫妇每月可有节余900元,是否可以去买房呢?

数学建模考试题(开卷)及答案

2010年上学期2008级数学与应用数学,信息与计算科学专业 《数学建模》课程考试供选试题 第1题 4万亿投资与劳动力就业: 2008以来,世界性的金融危机席卷全球,给我国的经济发展带来很大的困难。沿海地区许多中小企业纷纷裁员,造成大量的人员失业。据有关资料估计,从2008年底,相继有2000万人被裁员,其中有1000万人是民工。部分民工返乡虽然能够从一定程度上缓解就业压力,但2009年的600多万毕业大学生给我国就业市场带来巨大压力。但可喜的是,我国有庞大的外汇储备,民间资本实力雄厚,居民储蓄充足。中国还是发展中国家,许多方面的建设还处于落后水平,建设投资的潜力巨大。为保持我国经济快速发展,特别是解决就业问题带来希望,实行政府投资理所当然。在2009年两代会上,我国正式通过了4万亿的投资计划,目的就是保GDP增长,保就业,促和谐。但是有几个问题一直困扰着我们,请你运用数学建模知识加以解决。问题如下: 1、GDP增长8%,到底能够安排多少人就业?如果要实现充分就业,2009年的GDP到底要增长多少? 2、要实现GDP增长8%,4万亿的投资够不够?如果不够,还需要投资多少? 3、不同的产业(或行业)吸纳的劳动力就业能力不同,因此投资的流向会有所不同。请你决策,要实现劳动力就业最大化,4万亿的投资应该如何分配到不同的产业(或行业)里? 4、请你给出相关的政策与建议。 第2题 深洞的估算:假如你站在洞口且身上仅带着一只具有跑秒功能的计算器,你出于好奇心想用扔下一块石头听回声的方法来估计洞的深度,假定你捡到一块质量是1KG的石头,并准确的测定出听到回声的时间T=5S,就下面给定情况,分析这一问题,给出相应的数学模型,并估计洞深。 1、不计空气阻力; 2、受空气阻力,并假定空气阻力与石块下落速度成正比,比例系数k1=0.05; 3、受空气阻力,并假定空气阻力与石块下落速度的平方成正比,比例系数k2=0.0025; 4、在上述三种情况下,如果再考虑回声传回来所需要的时间。 第3题 优秀论文评选:在某数学建模比赛的评审过程中,组委会需要在一道题目的150 篇参赛论文中选择4 篇论文作为特等奖论文。评审小组由10 名评委组成,包括一名小组组长(出题人),4 名专业评委(专门从事与题目相关问题研究的评委),5 名普通评委(从事数学建模的教学和组织工作,参与过数学建模论文的评审)。组委会原先制定的评审步骤如下: step1:首先由普通评委阅读所有150 篇论文,筛选出20 篇作为候选论文。 Step2:然后由小组内的所有评委阅读这些候选论文,每人选择4 篇作为推荐的论文。 Step3:接着进入讨论阶段,在讨论阶段中每个评委对自己选择的 4 篇论文给出理由,大家进行讨论,每个评委对论文的认识都会受到其他评委观点的影响。 Step4:在充分讨论后,大家对这些推荐的论文进行投票,每个评委可以投出4票,获得至少6 票的论文可以直接入选,如果入选的论文不足,对剩余的论文(从20篇候选论文中除去已经入选的论文)重复step2至step4 步的评审工作。如果三轮讨论后入选的论文仍然不够,则由评选小组组长确定剩下名额的归属。 如果有超过4 篇的论文获得了至少6票,则由评选小组组长确定最终的名额归属。问题:

matlab数学建模实例

第四周 3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

数学建模经典案例最优截断切割问题

建模案例:最优截断切割问题 一、 问 题 从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍。且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少。 二、 假 设 1、假设水平切割单位面积的费用为r,垂直切割单位面积费用为1; 2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e; 3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割. 三、 模型的建立与求解 设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b 0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M 4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式。当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工. 由此准则,只需考虑 P 6622290!!! ??=种切割方式.即在求最少加工费用 时,只需在90个满足准则的切割序列中考虑.不失一般性,设u 1≥u2,u3≥u 4,u5≥u6,故只考虑M1在M2前、M 3在M 4前、M5在M6前的切割方式。 1、 e=0 的情况

数学建模经典例题

A题机组组合问题 当前的科学技术还不能有效地存储电力,所以电力生产和消费在任何时刻都要相等,否则就会威胁电力系统安全运行。又由于发电机组的物理特性限制,发电机组不能够随心所欲地发出需要的电力。为了能够实时平衡变化剧烈的电力负荷,电力部门往往需要根据预测的未来电力负荷安排发电机组起停计划,在满足电力系统安全运行条件下,追求发电成本最小。 在没有电力负荷损耗以及一个小时之内的电力负荷和发电机出力均不变的前提下,假定所有发电机组的发电成本都是由3部分组成,它们是启动成本(Startup Cost),空载成本(No load cost)和增量成本(Incremental Cost)。需要考虑的约束有: 1.负荷平衡约束:任何小时,电力负荷之和必须等于发电机发电出力之和。 2.系统备用约束:处于运行状态的发电机的最大发电能力减去其出力称为该发电机的备用容量,处于停运状态的发电机的备用容量为0。任何小时,发电机的备用容量之和必须大于系统备用要求。 3.输电线路传输容量约束:线路传输的电能必须在它的传输容量范围内。 4.发电机组出力范围约束:处于运行状态的发电机组的发电出力必须小于其最大发电能力(Pmax, MW)。 5.机组增出力约束(Ramp Up, MW/h):发电机组在增加发电出力时,不能太快,有一个增加出力的速度上限,在一定时间内(通常是10分钟,为简单起见,本题取1个小时)不能超过额定范围。 6.机组降出力约束(Ramp Down, MW/h):与机组增出力约束类似,发电机组在减少发电出力时也有一个减少出力的速度上限。 问题1:3母线系统 有一个3母线系统,其中有2台机组、1个负荷和3条输电线路,已知4个小时的负荷和系统备用要求。请求出这4个小时的最优机组组合计划。最终结果应该包括总成本、各小时各机组的状态、各小时各机组的发电出力和各小时各机组提供的备用。所有数据请见下面图及表格,“3BusData”目录中还有包含了本题所有表格数据的5个xml文件。

简单的数学建模题目

〈〈数学模型及数学软件》上机报告 专业:班级:姓名:学号: 地点及机位编号:日期时间:5月26日 一、上机训练题目或内容 报童每天清晨从报社购进报纸零售,晚上将没有卖完的报纸退回。设每份报纸的购进价为,零售价为,退回价为,应该自然地假设。这就是说,报童售出一份报纸赚,退回一份报纸赔。报童如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。请你为报童筹划一下,他应该如何确定每天购进报纸的数量,以获得最大的收入。 二、数学模型或求解分析或算法描述 解:设: 报纸具有时效性每份报纸进价b元,卖出价a元,卖不完退回份报纸c元。设每日的订购量为n,如 果订购的多了,报纸剩下会造成浪费,甚至陪钱。订的少了,报纸不够卖,又会少赚钱。为了获得最大效益,现在要 确定最优订购量n。 n的意义:n是每天购进报纸的数量,确定n一方面可以使报童长期以内拥有一个稳定的收入,另一方 面也可以让报社确定每日的印刷量,避免纸张浪费。所以,笔者认为n的意义是双重的。 本题就是让我们根据a、b、c及r来确定每日进购数n。 基本假设 1、假设报童现在要与报社签定一个长期的订购合同,所以要确定每日的订购量n。 2、假设报纸每日的需求量是r,但报童是一个初次涉足卖报行业的菜鸟,毫无经验,无法掌握需求量r的 分布函数,只知道每份报纸的进价b、售价a及退回价c。 3、假设每日的定购量是n。 4、报童的目的是尽可能的多赚钱。 建立模型 应该根据需求量r确定需求量n,而需求量r是随机的,所以这是一个风险决策问题。而报童却因为 自身的局限,无法掌握每日需求量的分布规律,已确定优化模型的目标函数。但是要得到n值,我们可以 从卖报纸的结果入手,结合r与n的量化关系,从实际出发最终确定n值。 由常识可以知道卖报纸只有赚钱、不赚钱不赔钱、赔钱会有三种结果。现在用简单的数学式表示这三种结果。 1、赚钱。赚钱又可分为两种情况: ①r>n,则最终收益为(a-b)n (1) r0 整理得:r/n>(b-c)/(a-c) (2) 2、由(2)式容易得出不赚钱不赔钱 r/n=(b-c)/(a-c) (3) 3、赔钱 r/n<(b-c)/(a-c) (4)

数学建模习题集

数学建模 习 题

习题一 1.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余不变。试构造模型并求解。 2.模仿1.4节商过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。试设计一个安全过河方案,并使渡河次数尽量地少。 3.利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型:(1)分段的指数增长模型。将时间分为若干段,分别确定增长率r 。 (2)阻滞增长模型。换一种方法确定固有增长率r 和最大容量m x 。 4.说明1.5节中Logistic 模型(9)可以表为) (01)(t t r m e x t x --+= ,其中0t 是人口增长出现拐点的时刻,并说明0t 与r, m x 的关系. 5.假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,t 到t+?t 时间内人口的增长与m x -)(t x 成正比例(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。 6.某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿。次日早8:00沿同一条路径下山,下午5:00回旅店。某乙说,甲必在二天中的同一时刻经过路径中的同一地点。为什么? 7.37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜

者及轮空者进入下一轮,直至比赛结束。问共需进行多少场比赛,共需进行多少轮比赛。如果是n支球队比赛呢? 8.甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。问开往甲乙两站的电车经过丙站的时刻表是如何安排的。 9.某人家住T市在他乡工作,每天下班后乘火车于6:00抵达T市车站,他的妻子驾车准时到车站接他回家,一旦他提前下班搭早一班火车于5:30抵T市车站,随即步行回家,他的妻子像往常一样驾车前来,在半路上遇到他,即接他回家,此时发现比往常提前了10分钟。问他步行了多长时间? 10.一男孩和一女孩分别在离家2公里和1公里且方向相反的两所学校上学,每天同时放学后分别以4公里和2公里每小时的速度步行回家。一小狗以6公里/小时速度由男孩处奔向女孩,又从女孩处奔向男孩,如此往返直至回到家中。问小狗奔波了多少路程?

相关文档
最新文档