开关电源IC DK112

开关电源IC DK112
开关电源IC DK112

功能描述

DK112芯片是专用小功率开关电源控制芯片,广泛用于电源适配器、LED电源、电磁炉、空调、DVD等小家电产品。

一、产品特点

?采用双芯片设计,高压开关管采用双极型晶体管设计,以降低产品成本;控制电路采用大规模MOS数字电路设计,并采用E极驱动方式驱动双极型晶体芯片,以提高高压开关管的安全耐压值。内建自供电电路,不需要外部给芯片提供电源,有效的降低外部元件的数量及成本。

?芯片内集成了高压恒流启动电路,无需外部加启动电阻。

?内置过流保护电路,防过载保护电路,输出短路保护电路,温度保护电路及光藕失效保护电路。

?内置斜坡补偿电路,保证在低电压及大功率输出时的电路稳定。

?内置PWM振荡电路,并设有抖频功能,保证了良好的EMC特性。

?内置变频功能,待机时自动降低工作频率,在满足欧洲绿色能源标准(<0.3W)同时,降低了输出电压的纹波。

?内置高压保护,当输入母线电压高于保护电压时,芯片将自动关闭并进行延时重启。

?内建斜坡电流驱动电路,降低了芯片的功耗并提高了电路的效率。

?4KV防静电ESD测试。

二、功率范围

输入电压(85~264V ac)(85~145V ac)(180~264V ac)

最大输出功率12W18W18W

三、封装与引脚定义

引脚符号功能描述

1Gnd接地引脚。

2Gnd接地引脚。

3Fb反馈控制端。

4Vcc供电引脚。

5678Collector输出引脚,连接芯片内高压开关管Collector端,与开关变压器相连。

四、内部电路框图

五、极限参数

供电电压Vcc...........................................-0.3V--9V

供电电流Vcc...........................................100mA

引脚电压...........................................-0.3V--Vcc+0.3V 开关管耐压...........................................-0.3V--780V

峰值电流...........................................800mA

总耗散功率...........................................1000mW

工作温度...........................................0℃--125℃

储存温度...........................................-55℃--+150℃焊接温度...........................................+280℃/5S

六、电气参数

项目测试条件最小典型最大单位电源电压Vcc AC输入85V-----265V456V

启动电压AC输入85V-----265V 4.85 5.2V

关闭电压AC输入85V-----265V 3.64 4.2V

电源电流Vcc=5V,Fb=2.2V203040mA 启动时间AC输入85V------500mS Collector保护电压L=1.2mH460480500V

开关管耐压Ioc=1mA700------V

开关管电流Vcc=5V,Fb=1.6V----3.6V600650700mA 峰值电流保护Vcc=5V,Fb=1.6V----3.6V650720800mA 振荡频率Vcc=5V,Fb=1.6V----2.8V606570KHz 变频频率Vcc=4.6V,Fb=2.8V----3.6V0.5--65KHz 抖频步进频率Vcc=4.6V,Fb=1.6V----2.8V0.81 1.2KHz 温度保护Vcc=4.6V,Fb=1.6V----3.6V120125130℃占空比Vcc=4.6V,Fb=1.6V----3.6V5---50%

控制电压Fb AC输入85V-----265V 1.6--- 3.6V

七、工作原理

?上电启动:当外部电源上电时,直流高压经开关变压器传至芯片的COLLECTOR端(5678引脚),后经内建高压恒流启动电路将启动电流送至开关管Q1的B极,通过开关管Q1的电流放大(约为20倍放大)进入电源管理电路经D1为Vcc外部电容C1充电,同时为Fb预提供一个3.6V电压(Fb引脚对地应接入一只滤波电容),当Vcc的电压逐步上升至5V时,振荡器起振,电路开始工作,控制器为Fb开启一个约为25uA的对地电流源,电路进入正常工作。

上电原理图上电时序图

?正常工作:电路完成启动后,振荡器开始工作,触发器的Q1,Q2输出高电平,高压晶体管与功率MOS管同时导通,开关电流经晶体管与功率MOS管接到40Ω电流取样电阻,并在电阻上产生与电流成正比的电压,(由于开关变压器分布电容的存在,在电路开通的瞬间有一个高的尖峰电流,为了不引起电路的误动作,在电路开通时启动一个前沿消隐电路将尖峰电流去除,消隐时间为250nS),控制端Fb电压经斜坡补偿后与取样电阻上的电压相加后与0.6V的基准电压相比较,当电压高于基准电压时比较器输出低电平,触发器的Q1,Q2输出低电平,高压晶体管与功率MOS管同时关断,COLLECTOR端电压上升,电路进入反激工作,在下一个振荡周期到时,电路将重新开始导通工作。

工作时序图

电路在t1时间Vcc电压上升到5V,电路开启工作,Q2输出PWM信号,t2~t3时间Vcc 电压高于6V,电路停止输出,Q2输出低电平,t3~t4时间Vcc电压回到范围之内,电路正常工作,t4~t5时间Vcc电压低于4V,电路停止输出,Q2输出低电平,t6时间Fb电压低于1.6V,开路开启一个24mS的定时器,PWM以最大占空输出,直到t7时间Fb电压还未能高于1.5V,电路开始重新启动,t9时间Vcc电压上升到5V,电路重新开启工作,t10时间Fb电压高于3.6V,电路停止输出。

?控制引脚Fb:Fb引脚外部应当连接一只电容,以平滑Fb电压,外接电容会影响到电路的反馈瞬态特性及电路的稳定工作,典型应用可在10nF~100nF之间选择;当Fb电压高于1.5V而小于2.8V时,电路将以65KHz的频率工作,当Fb电压高于2.8V而小于3.6V时,电路将随着Fb的电压升高而降低频率,当Fb电压高于3.6V时,电路将停止振荡,当Fb电压小于1.5V时,电路将启动一个48mS的延时电路,如在此期间Fb 电压回复到1.5V以上,电路将继续正常工作,否则,芯片将进行重新启动,此电路完成了光藕失效的保护。

Is与Fb时序图

Fb与工作频率(PWM)时序图

?自供电电路:(已申请国家专利)芯片内建自供电电路,将电路的电源电压控制在5V 左右,以提供芯片本身的电流消耗,自供电电路只能提供自身的电流消耗,不能为外部电路提供能量。

?斜坡电流驱动:为了降低芯片的耗能及提高电路的效率,内部为高压晶体管的B极提供的基极电流采用了斜坡电流驱动技术,当开关电流Is为0时,基极电流约为40mA,随着开关电流的逐步增大,基极电流也逐步增大,当开关电流为600mA时,基极电流为100mA。

Ib与Is时序图

?抖频电路:为了能满足EMC的要求,芯片内设有一个抖频电路,PWM的频率将以65KHz 的频率为中心,以1KHz的步进在8个频率点上运行,这样有效的降低了EMC的设计的复杂度及费用。

?热保护:芯片的温度达到125℃时,芯片将进行重新启动,直至芯片的温度降低到120℃以下,芯片才会重新进入正常工作状态。

?峰值电流保护:因外部的某种异常引起的电流过大时,当电流达到720mA时,芯片将进行重新启动。

?电源异常:因外部的某种异常引起的电源电压高于6V时,或电源电压低于4V时,芯片将进行重新启动。

?超压保护:芯片在完成启动后,芯片内部设定了一个电流的上升斜率检测电路,当外部的电压超高或者开关变压器的失效,都会引起电流的斜率变化,保护电路将会对电路进行重新启动,这样保证了高压晶体管的安全,同时对低频的浪涌电压进行了有效的保护。

斜率检测时序图

根据电感电流公式I=U/L??t可知,在电感不变时,在一个固定的时间上检测电流可计算出电压,芯片利用该原理在350nS时检测Is电流,当Is电流小于0.14V时,电路正常工作,当Is电流大于0.14V时,芯片进入异常保护;同理,当外部的电感器的电感量变小,也会让芯片进入异常保护;这样即可以保护母线电压过高引起的开关管的击穿,也可以保护因外部变压器的饱和或者短路引起的电感量下降导致Is电流过大,引起芯片的损坏。

直流母线保护电压与变压器电感量的关系图

八、芯片测试8.1、耐压测试

8.2、电性能测试

九、典型应用一(12V/1A输出离线反激式开关电源)

9.1元器件清单

序号元件名称规格/型号位号数量备注1保险丝F2A/AC250V F11

2安规X电容104/AC275V C11

3二极管IN4007D1~D44

4HER107D51

5SR2100D61

6稳压二极管11V/0.5W ZD11

7电解电容33UF/400V C21

822UF/16V C41

91000UF/25V C61

10瓷片电容103/250V C31

11103/25V C51

12IC DK112IC11

13PC817IC21

14色环电阻器100K/0.25W R11

153K/0.25W R21

16470R/0.25W R31

17变压器EE25T11

9.2变压器设计(只作参考)

9.2.1参数确定:

变压器设计时,需要先确定一些参数,(1)输入电压范围,(2)输出电压、及电流,(3)开关频率,(4)最大占空比;

(1)输入电压范围AC85~265V

(2)输出电压、电流DC12V/1A

(3)开关频率F=65KHz

(4)最大占空比D=0.5

9.2.2磁心的选择:

先计算出电源的输入功率P=P out/η(η指开关电源的效率,设为0.8),

P out=V out?Iout=12V?1A=12W,P=12/0.8=15W。我们可以通过磁心的制造商提供的图表进行选择,也可通过计算方式选择,我们查图表方式选择15W电源可用EE20或者EE25磁心,我们选择EE25磁心进行下一步的计算。

9.2.3计算原边电压Vs

输入电压为AC85~265V,计算最低电压下的最大功率,最低电压为85V

V s=85?1.3=110V(考虑了线路压降及整流压降)

9.2.4计算导通时间

T on=1/F?D=1/65?0.5=7.7uS;

9.2.5计算原边匝数Np

V Np=V sT on

?Bac·Ae

Np――――原边匝数

Vs――――原边直流电压(最低电压值)

Ton――――导通时间

?Bac――――交变工作磁密(mT),设为0.2

Ae――――磁心有效面积(mm2)EE16磁心为50mm2

Np=(110?7.7)/(0.2?50)=84.7≈85

由于变压器不能取半匝,所以取85匝。

9.2.6计算副边匝数Ns

Ns――――副边匝数

Np――――原边匝数

Vout――――输出电压(包含线路压降及整流管压降,12V+1V=13V)

Vor――――反激电压(设置该电压不高于150V,以免造成芯片过压损坏,本设计中

设为100V)

Ns=(13*85)/100=11匝

9.2.7计算原边电感量Lp

Lp=(V s?T on)/Ip Lp――――原边电感量

Ip――――原边峰值电流(芯片设定最大峰值电流720mA)

Lp=(100*7.7)/720=1.18≈1.2(mH)

9.2.8变压器的设计验证

变压器的设计时最大磁感应强度不能大于0.4T,(铁氧体的饱和磁感应强度一般为0.4T左右),由于单端反激电路工作在B-H的第一象限,磁心又存在剩磁Br约为0.1T,所以最大的工作磁通Bmax最大只有0.4?0.1=0.3T

Bmax=(Ip?Lp)/(Np?Ae)

Bmax=(800?1.2)/(85?50)=0.225

Bmax<0.3证明设计合理

9.2.9变压器的漏感

由于变压器不是理想器件,在制造过程中一定会存在漏感,漏感会影响到产品的稳定及安全,所以要减小,漏电感应控制在电感量的5%以内,三明治绕线方式可以减小漏感。

十、典型应用二(非离线式开关电源)

10.1元器件清单

序号元件名称规格/型号位号数量备注

1保险丝F2A/AC250V F11

2安规电容104/AC275V C11

3二极管IN4007D1D44

4HER107D5,D62

5稳压二极管16V/0.5W ZD11

6电解电容22UF/400V C21

722UF/16V C41

8220UF/25V C51

9瓷片电容103/25V C31

10IC DK112IC11

11色环电阻器 4.7K/0.25W R11

12电感器 1.5mH L11

十一、设计注意事项

10.1、功率器件是需要散热的,芯片的主要热量来自功率开关管,功率开关管与引脚5678相连接,所以在PCB布线时,应该将引脚5678外接的铜箔的面积加大并作镀锡处理,以增大散热能力。

10.2、芯片的5678引脚是芯片的高压部份,最高电压可达600V以上,所以在线路布置上要与低压部份保证1.5mm以上的安全距离,以免电路出现击穿放电现象。

10.3、芯片的第1引脚是测试引脚,用于芯片的成品测试及耐压测试,在电路应用时不能与其它电路相连接。

十一、封装尺寸

十二、包装信息

12.1、芯片采用防静电管包装

代最小值额定值最大值号(mm)(mm)(mm) A1111.512 B11.51212.5 C1010.511 D0.40.50.6 E 3.54 4.5 F5 5.56

12.2、包装数量

包装数量

单管50

单包装箱2000

大包装箱20000

开关电源测试标准

开关电源测试标准

开关电源的测试 良好的开关电源必须符合所有功能规格、保护特性、安全规范(如UL、CSA、VDE、DEMKO、SEMKO,长城等等之耐压、抗燃、漏电流、接地等安全规格)、电磁兼容能力(如FCC、CE等之传导与幅射干扰)、可靠性(如老化寿命测试)、及其他之特定需求等。 开关电源包括下列之型式: ·AC-DC:如个人用、家用、办公室用、工业用(电脑、周边、传真机、充电器) ·DC-DC:如可携带式产品(移动电话、笔计本电脑、摄影机,通信交换机二次电源) ·DC-AC:如车用转换器(12V~115/230V) 、通信交换机振铃信号电源 ·AC-AC:如交流电源变压器、变频器、UPS不间断电源 开关电源的设计、制造及品质管理等测试需要精密的电子仪器设备来模拟电源供应器实际工作时之各项特性(亦即为各项规格),并验证能否通过。开关电源有许多不同的组成结构(单输出、多输出、及正负极性等)和输出电压、电流、功率之组合,因此需要具弹性多样化的测试仪器才能符合众多不同规格之需求。 电气性能(Electrical Specifications)测试 当验证电源供应器的品质时,下列为一般的功能性测试项目,详细说明如下: 一、功能(Functions)测试: ·输出电压调整(Hold-on Voltage Adjust) ·电源调整率(Line Regulation) ·负载调整率(Load Regulation) ·综合调整率(Conmine Regulation) ·输出涟波及杂讯(Output Ripple & Noise, RARD) ·输入功率及效率(Input Power, Efficiency) ·动态负载或暂态负载(Dynamic or Transient Response) ·电源良好/失效(Power Good/Fail)时间 ·起动(Set-Up)及保持(Hold-Up)时间 常规功能(Functions)测试 A. 输出电压调整: 当制造开关电源时,第一个测试步骤为将输出电压调整至规格范围内。此步骤完成后才能确保后 续的规格能够符合。通常,当调整输出电压时,将输入交流电压设定为正常值(115Vac或230Vac), 并且将输出电流设定为正常值或满载电流,然后以数字电压表测量电源供应器的输出电压值并调整其 电位器(VR)直到电压读值位于要求之范围内。 B. 电源调整率:

开关电源类产品设计的安全规范(标准版)

开关电源类产品设计的安全规 范(标准版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0679

开关电源类产品设计的安全规范(标准版) 1.范围 1.1本规范规定了0公司户内使用、额定电压≤600V的开关电源类产品的设计安全要求,它包括参考标准资料、标志说明、一般要求和试验一般条件、电气技术参数规格、材料和结构、电气试验、机械试验、环境可靠性试验、包装、存放、出货和附录项内容。 1.2它主要以信息技术设备,包括电气事务设备及与之相关设备的安全标准为基础编写。 2.主要参考资料 2.1IEC60950-1999:信息技术设备的安全。 2.2IEC61000-4(所有系列):电磁兼容--试验和测量技术。 2.3IEC61000-3-2-1998:电磁兼容第3部分:限值第2章低压

电气及电子设备发出的谐波电流限值(设备每相输入电流≤16A)。 2.4IEC61000-3-3-1998:电磁兼容第3部分:限值第3章标称电流≦16A的低压电气及电子设备的供电系统中电压波动和变化的 限值。 2.5IEC60384-14-1993:电子设备用固定电容器第14部分:分规范拟制电源电磁干扰用固定电容器。 2.6CISPR22-1998:信息技术设备的无线电干扰特性的限值和测量方法。 2.7CISPR24-1997:信息技术设备的无线电抗干扰特性的限值和测量方法。 2.8IEC60695-10-2:1995:着火危险试验第10部分:减少着火对电子技术产品而引起的不正常发热效应的指南和试验方法第2部分:用球压试验测试非金属材料构成产品的耐热方法。 2.9IEC61140-1997:防电击保护设备和安装的一般要求。 2.10IEC60227-1997:额定电压450V/750V及以下PVC绝缘电缆。 3.标记和说明

各种常用电子元件符号及其名称【全】

各种常用电子元件符号 二极管变容二极管 表示符号:D 表示符号:D 双向触发二极管稳压二极管 表示符号:D 表示符号:ZD,D 稳压二极管桥式整流二极管表示符号:ZD,D 表示符号:D

肖特基二极管隧道二极管 隧道二极管光敏二极管或光电接收二极管 发光二极管双色发光二极管 表示符号:LED 表示符号:LED 光敏三极管或光电接收三极管单结晶体管(双基极二极管)表示符号:Q,VT 表示符号:Q,VT

复合三极管NPN型三极管 表示符号:Q,VT 表示符号:Q,VT PNP型三极管PNP型三极管 表示符号:Q,VT 表示符号:Q,VT NPN型三极管带阻尼二极管NPN型三极管表示符号:Q,VT 表示符号:Q,VT 带阻尼二极管及电阻NPN型三极管 表示符号:Q,VT 表示符号:Q,VT

带阻尼二极管IGBT 场效应管 表示符号:Q,VT 电子元器件符号图形 接面型场效应管P-JFET 接面型场效应管N-JFET 场效应管增强型P-MOS 场效应管增强型N-MOS 场效应管耗尽型P-MOS 场效应管耗尽型N-MOS

电阻电阻器或固定电阻表示符号:R 电阻电阻器或固定电阻表示符号:R 电位器可调电阻 表示符号:VR,RP,W 表示符号:VR,RP,W 电位器可调电阻 表示符号:VR,RP,W 表示符号:VR,RP,W 三脚消磁电阻二脚消磁电阻 表示符号:RT 表示符号:RT 压敏电阻表示符号:RZ,VAR 热敏电阻表示符号:RT

光敏电阻电容(有极性电容)CDS 表示符号: 电容(有极性电容)可调电容 表示符号:C 表示符号:C 电容(无极性电容)四端光电光电耦合器 表示符号:C 表示符号:IC,N 六端光电光电耦合器 表示符号:IC,N 电子元器件符号图形

开关电源技术规格书

开关电源技术规格书 Switching Power Supply Specification 型号Model: 1305AC 拟制(Editor) :段家贵 审核(Verifier) : 批准(Approver) : 版本(Edition) :1305 1、总则Introduction 该款电源参考intel提出的ATX12V V2.31标准设计制造,额定输出功率90W。 。 The Power Supply was designed reference Intel Power Supply Design Guide ATX12V 2.31. Rated output total power is90W. 2、电气特性Electrical 2.1、 2.2、直流精度 [鍵入文字]

注:当+12V处于峰值电流负载时,输出电压范围为±10%。 Note: At +12VDC peak loading, regulation at the +12V outputs can go to ±10%. 2.3、直流功率分布Typical Power Distribution 2.4、 注意:1、噪声与纹波的测试带宽为10Hz~20MHz; 2、在测试噪音与纹波期间,用一个0.1UF瓷片电容和10UF的电解电容并接在输出端上。 Note: 1、Ripple and noise are defined as periodic or random signals over a frequency band of 10Hz to 20 MHz. 2、Measurements shall be made with an oscilloscope with 20 MHz of bandwidth. Outputs should be bypassed at the connector with a 0.1μF ceramic disk capacitor and a 10 μF electrolytic capacitor to simulate system loading. 2.5、电源效率Efficiency 在25℃下,直流输入11.4V-12.6V 、Intel规定的满负载条件下,电源效率不小于80%。 The efficiency of the power supply should be greater than or equal to 80%, at nominal input voltage of DC 11.4V-12.6V input, under the load conditions defined in the form factor specific sections of intel PSDG, at 25℃。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

解析开关电源电压输出低的原因和检修方法

解析开关电源电压输出 低的原因和检修方法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

解析开关电源电压输出低的原因和 检修方法 1、开关电源电压输出低的原因 (1)220V交流电压输入和整流滤波电路对开关管提供的工作电压不够,超出脉宽调整电路控制范围。 (2)负载电路存在过流引起开关电源负载加重而导致输出电压下降。 (3)开/关机切换错误,行扫描电路刚开始工作瞬间,开关电源即处于待机状态,此类故障适用于无预备电源的机器,CPu电源取自同一个电源,非副电源提供。 (4)开/关机接口电路末端因故障处于开机与待机之间的状态,从而导致开关电源输出电压低于正常值高于待机值。 (5)保护电路末端因故障进入导通状态,使电源进入弱振状态,引起开关电源输出电压下降。 (6)整流输出电路中二极管和滤波电容、限流电阻损坏引起输出电压低。 (7)脉宽调制电路故障,不能对开关电源输出电压的变化作出正确的响应,对开关管基极电压调整方向不对,从而造成开关电源输出电压低。 (8)正反馈电路中的正反馈电阻值变化,续流二极管性能变质或恒流源故障,使正反馈量不足,导致振荡周期变长,振荡频率下降,从而引起开关电源输出电压低。 (9)它激式开关电源因未得到行逆程脉冲而工作于低频状态,造成输出电压低。 2、判断故障的方法与步骤 从上述分析的原因看出,引起电压低的原因涉及到了开关电源自身的各个部分和与开关电源相关的所有电路,在检修时应先缩小故障范围。 (1)先测开关管c极电压,确认开关管供电正常。 (2)根据开关电源各个输出端电压判断故障。 开关电源有的输出端电压正常,有的低于正常值。故障在输出电压低的这个整流输出电路,应对电路中的限流电阻、整流二极管、滤波电容进行检查代换,若限流电阻发烫,说明负载过流,查负载。 开关电源各路输出均低。这种情况说明负载和整流输出电路均正常,故障在开关电源的正反馈电路、脉宽调整、开/待机电路、保护电路。 输出电压有的下降比例大,有的输出电压下降比例小。测量结果说明故障在输出电压下降比例大的电路。此时可断开此路负载,如果断开的是行电路,应接假负载。在断开负载后,再测开关电源各输出端电压,若恢复正常,可判断所断电路的负载有过流现象。若仍不正常,说明故障在该整流滤波电路。 3、断开主负载、接上灯泡,判断是否负载故障

开关电源维修手册

开关电源维修手册 目录引言 一、二、三、 LLC谐振变换器原理 2 LLC 谐振腔之元件设计3 L6598\L6599 芯片资 料 .................................................................. ....错误!未定义书签。 1、L6599 芯片介绍................................................................... ............................ 错误!未定义书签。 2、芯片与典型方框 图 .................................................................. ........................................................... 5 3、PIN 脚功能................................................................... ..................................................................... ... 5 4、典型电源系统 图 .................................................................. ............................................................... 6 5、振荡器...............................................................................................................7 6、工作在轻载或无载时 (8) 四、 L6599 的工作流程 1、 L6599 供电回路………………………………………………………………………………………. 8 2、 L6599 的启动.......................................................................................................9 3、 L6599 稳压原理 (1) 0 4、L6599 的 SCP 保护及次级 OCP 保护 (11) 附: 过流延时保护电路 (12) 2007-12-20 1 DQA 内部专用资料

图解:电子元器件知识大全

电子元器件知识大全:看图识元件 介绍:电压.电流.电阻器.电容器.电感器.二极管.三极管.电位器.稳压块.保险管.集成块IC 无论是硬件DIY爱好者还是维修技术人员,你能够说出主板、声卡等配件上那些小元件叫做什么,又有什么作用吗?如果想成为元件(芯片)级高手的话,掌握一些相关的电子知识是必不可少的。 譬如在检修某硬件时用万用表测量出某个电阻的阻值已为无穷大,虽然可断定这个电阻已损坏,但由于电脑各板卡及各种外设均没有电路图(只有极少数产品有局部电路图),故并不知电阻在未损坏时的具体阻值,所以就无法对损坏元件进行换新处理。可如果您能看懂电阻上的色环标识的话,您就可知道这个已损坏电阻的标称阻值,换新也就不成问题,故障自然也就会随之排除。 诸如上述之类的情况还有很多,比如元器件的正确选用等,笔者在此就不逐一列举了,下面笔者就来说一些非常实用的电子知识,希望大家都能向高手之路再迈上一步。注:下文内容最好结合图一和后续图片进行阅读。看图识元件 一、电压,电流 电压和电流是亲兄弟,电流是从电压(位)高的地方流向电压(位)低的地方,有电流产生就一定是因为有电压的存在,但有电压的存在却不一定会产生电流——如果只有电压而没有电流,就可证明电路中有断路现象(比如电路中设有开关)。另外有时测量电压正常但测量电流时就不一定正常了,比如有轻微短路现象或某个元件的阻值变大现象等,所以在检修中一定要将电压值和电流值结合起来进行分析。在用万用表测试未知的电压或电流时一定要把档位设成最高档,如测量不出值来再逐渐地调低档位。 注:电压的符号是“V”,电流的符号是“A”。二、电阻器 各种材料对它所通过的电流呈现有一定的阻力,这种阻力称为电阻,具有集总电阻这种物理性质的实体(元件)叫电阻器(简单地说就是有阻值的导体)。它的作用在电路中是非常重要的,在电脑各板卡及外设中的数量也是非常多的。它的分类也是多种多样的,如果按用处分类有:限流电阻、降压电阻、分压电阻、保护电阻、启动电阻、取样电阻、去耦电阻、信号衰减电阻等;如果按外形及制作材料分类有:金膜电阻、碳膜电阻、水泥电阻、无感电阻、热敏电阻、压敏电阻、拉线电阻、贴片电阻等;如果按功率分类有:1/16W、1/8W、1/4W、1/2W、1W……等等。

开关电源的分类及运用

开关电源的分类及运用 1.开关电源的分类 开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对两类开关电源的结构和特性作以阐述。 1.1DC/DC变换 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton (通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类: (1)Buck电路降压斩波器,其输出平均电压Uo小于输入电压Ui,极性相同。 (2)Boost电路升压斩波器,其输出平均电压Uo大于输入电压Ui,极性相同。 (3)Buck-Boost电路降压或升压斩波器,其输出平均电压Uo大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路降压或升压斩波器,其输出平均电压Uo大于或小于输入电压UI,极性相反,电容传输。 当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制

造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6、2、10、17)W/cm3,效率为(80-90)%。日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOS-FET代替肖特基二极管),是整个电路效率提高到90%。 1.2AC/DC变换 AC/DC变换是将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为整流,功率流由负载返回电源的称为有源逆变。AC/DC变换器输入为50/60Hz的交流电,因必须经整流、滤波,因此体积相对较大的滤波电容器是必不可少的,同时因遇到安全标准(如UL、CCEE等)及EMC指令的限制(如IEC、FCC、CSA),交流输入侧必须加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高的要求,由于同样的原因,高电压、大电流开关使得电源工作消耗增大,限制了AC/DC变换器模块化的进程,因此必须采用电源系统优化设计方法才能使其工作效率达到一定的满意程度。 AC/DC变换按电路的接线方式可分为,半波电路、全波电路。按电源相数可分为,单项、三相、多相。按电路工作象限又可分为一象限、二象限、三象限、四象限。

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

开关电源测试详细解说

开关电源测试详细解说当验证电源供应器的品质时,下列为一般的功能性测试项目,详细说明如下:一、功能(Functions)测试: ?输出电压调整(Hold-on Voltage Adjust) ?电源调整率(Line Regulation) ?负载调整率(Load Regulation) ?综合调整率(Conmine Regulation) ?输出涟波及杂讯(Output Ripple & Noise, RARD) ?输入功率及效率(Input Power, Efficiency) ?动态负载或暂态负载(Dynamic or Transient Response) ?电源良好/失效(Power Good/Fail)时间 ?起动(Set-Up)及保持(Hold-Up)时间 常规功能(Functions)测试 A. 输出电压调整: 当制造开关电源时,第一个测试步骤为将输出电压调整至规格范围内。此步骤完成后才能确保后续的规格能够符合。通常,当调整输出电压时,将输入交流电压设定为正常值(115Vac或230Vac),并且将输出电流设定为正常值或满载电流,然后以数字电压表测量电源供应器的输出电压值并调整其电位器(VR)直到电压读值位于要求之范围内。 B. 电源调整率: 电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。此项测试系用来验证电源供应器在最恶劣之电源电压环境下,如夏天之中午(因气温高,用电需求量最大)其电源电压最低;又如冬天之晚上(因气温低,用电需求量最小)其电源电压最高。在前述之两个极端下验证电源供应器之输出电源之稳定度是否合乎需求之规格。 为精确测量电源调整率,需要下列之设备: ?能提供可变电压能力的电源,至少能提供待测电源供应器的最低到最高之输入电压范围,(KIKUSUIPCR 系列电源能提供0--300VAC 5-1000Hz 的稳定交流电源,0---400V DC的直流电源)。 ?一个均方根值交流电压表来测量输入电源电压,众多的数字功率计能精确计量V A WPF。 ?一个精密直流电压表,具备至少高于待测物调整率十倍以上,一般应用5位以上高精度数字表。 ?连接至待测物输出的可变电子负载。 *测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,分别于低输入电压(Min),正常输入电压(Normal),及高输入电压(Max)下测量并记录其输出电压值。 电源调整率通常以一正常之固定负载(NominalLoad)下,由输入电压变化所造成其输出电压偏差率

开关电源类产品设计的安全规范

仅供参考[整理] 安全管理文书 开关电源类产品设计的安全规范 日期:__________________ 单位:__________________ 第1 页共14 页

开关电源类产品设计的安全规范 1.范围 1.1本规范规定了0公司户内使用、额定电压≤600V的开关电源类产品的设计安全要求,它包括参考标准资料、标志说明、一般要求和试验一般条件、电气技术参数规格、材料和结构、电气试验、机械试验、环境可靠性试验、包装、存放、出货和附录项内容。 1.2它主要以信息技术设备,包括电气事务设备及与之相关设备的安全标准为基础编写。 2.主要参考资料 2.1IEC60950-1999:信息技术设备的安全。 2.2IEC61000-4(所有系列):电磁兼容--试验和测量技术。 2.3IEC61000-3-2-1998:电磁兼容第3部分:限值第2章低压电气及电子设备发出的谐波 电流限值(设备每相输入电流≤16A)。 2.4IEC61000-3-3-1998:电磁兼容第3部分:限值第3章标称电流≦16A的低压电气及电子设备的供电系统中电压波动和变化的限值。 2.5IEC60384-14-1993:电子设备用固定电容器第14部分:分规范拟制电源电磁干扰用固定电容器。 2.6CISPR22-1998:信息技术设备的无线电干扰特性的限值和测量方法。 2.7CISPR24-1997:信息技术设备的无线电抗干扰特性的限值和测量方法。 2.8IEC60695-10-2:1995:着火危险试验第10部分:减少着火对电子技术产品而引起的不正常发热效应的指南和试验方法第2部分: 第 2 页共 14 页

常用电子元器件大全

第一章电子元器件 第一节、电阻器 1.1 电阻器的含义:在电路中对电流有阻碍作用并且造成能量消耗的部分叫电阻. 1.2 电阻器的英文缩写:R(Resistor)及排阻RN 1.3 电阻器在电路符号:R 或WWW 1.4 电阻器的常见单位:千欧姆(KΩ), 兆欧姆(MΩ) 1.5 电阻器的单位换算: 1兆欧=103千欧=106欧 1.6 电阻器的特性:电阻为线性原件,即电阻两端电压与流过电阻的电流成正比,通过 这段导体的电流强度与这段导体的电阻成反比。即欧姆定律:I=U/R。 表 1.7 电阻的作用为分流、限流、分压、偏置、滤波(与电容器组合使用)和阻抗匹配等。 1.8 电阻器在电路中用“R”加数字表示,如:R15表示编号为15的电阻器。 1.9 电阻器的在电路中的参数标注方法有3种,即直标法、色标法和数标法。 a、直标法是将电阻器的标称值用数字和文字符号直接标在电阻体上,其允许偏差则用百 分数表示,未标偏差值的即为±20%. b、数码标示法主要用于贴片等小体积的电路,在三为数码中,从左至右第一,二位数表示 有效数字,第三位表示10的倍幂或者用R表示(R表示0.)如:472 表示47×102Ω(即4.7K Ω);104则表示100KΩ、;R22表示0.22Ω、 122=1200Ω=1.2KΩ、 1402=14000Ω=14KΩ、R22=0.22Ω、 50C=324*100=32.4KΩ、17R8=17.8Ω、000=0Ω、 0=0Ω. c、色环标注法使用最多,普通的色环电阻器用4环表示,精密电阻器用5环表示,紧靠电阻体一端头的色环为第一环,露着电阻体本色较多的另一端头为末环.现举例如下:如果色环电阻器用四环表示,前面两位数字是有效数字,第三位是10的倍幂, 第四环是 色环电阻器的误差范围(见图一) 四色环电阻器(普通电阻) 标称值第一位有效数字 标称值第二位有效数字 标称值有效数字后0的个数(10的倍幂) 允许误差 颜色第一位有效值第二位有效值倍率允许偏差黑0 0 0 10 棕 1 1 1 10±1% 红 2 2 2 10±2% 橙 3 3 3 10 黄 4 4 4 10

开关电源技术教学大纲

《开关电源技术》课程教学大纲 课程代码: 060432005 英文名称: Switching Power Supply Technology 总学时: 32 其中实践学时: 0 适用专业:电气工程及其自动化 大纲编写(修订)时间:2017.11 一、课程目的与任务 本课程是电气工程及其自动化专业的专业选修课程,是一门理论性和实践性都很强的 课程。通过本课程的学习,使学生了解和掌握了开关电源最常用拓扑的基本原理(例如BUCK、BOOST、FLYBACK、正激电路等等)、磁性元件的设叶、开关电源的闭环控制系统设计和驱动 保护电路设计等,为今后从事电气设备或电子设备领域的研究和技术工作打下必要的专业 基础。 二、教学基本要求 学生通过本课程的学习,在知识、能力和素质上应达到的基本要求如下:了解和掌握开关电源的基本理论和分析方法,能够根据应用要求进行开关电源的拓扑电路选择,熟悉主要 的电路拓扑,例如BUCK、BOOST、FLYBACK、正激电路等,能够根据负载特性进行主电路拓 扑的主要元件的参数计算,能够根据负载特性选择合适的驱动管(MOSFET或者IGBT等等), 能够根据负载特性要求设计恰当合适的闭环控制系统的类型和参数 三、教学内容(按章、节、目三个层次详细编写,含具体要求、重难点内容和学时分配) 1.开关电源的基本理论和分析方法(8学时) 1.1开关电源的应用场合(2学时): 1.2开关电源的基本概念(2学时) 1.3开关电源的基本分析方法(2学时) 1.4开关电源设计的一般考虑(2学时) 要求了解和掌握开关电源的设计要求的制定以及各项指标的内涵等等。 2。开关电源的电路拓扑(8学时) 2.1开关电源的电路拓扑综述(2学时) 2.2 BUCK电路拓扑(2学时) 2.3 BOOST和FLYBACK电路拓扑(2学时) 2.4正激电路拓扑(2学时) 要求了解和掌握两大类电路拓扑的各自特点,能够进行BUCK和FLYBACK开关电源主电路拓扑的设计计算。 3.元件选择(8学时) 3.1 MOSFT和IGBT(2学时) 3.2磁性元件(4学时)

开关电源工作原理详细解析

开关电源工作原理详细解析 个人PC所采用的电源都是基于一种名为―开关模式‖的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC 交流电转化为脉动电压(配图1和2中的―3‖);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的―4‖);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC 直流电输出了(配图1和2中的―5‖) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的―开关电源‖其实是―高频开关电源‖的缩写形式,和电源本身的关闭和开启式没有任何关系的。

3842开关电源常见故障的分析及维修

3842开关电源常见故障的分析及维修3842开关电源是以美国Unitorde公司生产的一种性能优良的电流控制型脉宽调制芯片UC3842(KA3842)为主控芯片,IGBT(绝缘栅双极场效应晶体管)为“开”“关”器件,配合LM324(四运放)或LM358(双运放)及光电耦合器(PC817)作为输出负载反馈器件,以及TL431(高精密并联稳压器),高频变压器为主要元件所组成的脉冲宽度调制(PulseWidthModulation,缩写为PWM)式开关电源。3842各脚功能: 1. 误差放大输出(输出补偿)3.4伏 2. 误差放大器反相输入端(电压反馈)2.4伏 3. 电流感应放大器同相输入端(电流检测)0.1伏 4. 内接振荡器外接rc(定时)元件1.9伏 5. 接地0伏 6. 驱动信号输出端 2伏 7. 电源供电端、欠压保护端17伏 8. 5伏基准电压输出5伏 1.2开关电源的工作原理 220V的交流电经交流滤波电路滤除外来的杂波信号,同时也防止电源本身产生的高频杂波对电网的干扰。再经二极管桥式整流电路和滤波电路,整流滤波后得到约300V的直流电,送给功率变换电路进行

功率转换。功率变换电路中的开关功率管(IGBT)就在脉冲宽度调制(PWM)控制器(UC3842)输出的脉冲控制信号和驱动下,工作在“开”“关”状态,从而将300V直流电切换成宽度可变的高频脉冲电压。把高频脉冲电压送给高频变压器,高频变压器的次级(二次侧)就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波。经高频整流滤波后便可得到我们所需的各种直流电压。输出电压下降或上升时,由取样电路将取样信号通过光电耦合器 (PC817),送入控制电路,经过其内部调制,由控制电路的输出端将变宽的或变窄的驱动脉冲送到开关功率管的栅极(G极),使变换电路产生的高频脉冲方波也随之变宽或变窄,由此改变输出电压平均值的大小,从而使直流电压基本稳定在所须的电压值上。开关电源的电路原理图如下: 开关电源电路原理图 一.开关电源的常见故障分析及维修 2.1开关电源的常见故障分析及维修 由于开关电源的输入部分工作在高压,大电流的状态下,故障率最高,如高压大电流整流二极管,滤波电容,开关功率管等较易损坏。其次就是输出整流部分的整流二极管,保护二极管,滤波电容,限流电阻等较易损坏;再就是脉宽调制控制器的反馈部分和保护部分。 下面就对开关电源常见故障产生的原因作一分析及如何排除这些故障的维修方法。

开关电源PCB布局指南AN-1229中文版

SIMPLE Array SWITCHER ? PCB ? AN-1229? 2002 National Semiconductor Corporation AN200426 https://www.360docs.net/doc/f719009377.html,

https://www.360docs.net/doc/f719009377.html, 2 A N -1229 ? ? 20042601 1. 1a ? ? ? ? ? ? ? ? CBYPASS ? ? CIN ? ? ?? ? 1b ? ? ? ? ? ? ? ? ? ? 1c ? ? ??? ? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ?? PCB ? ? ? ? ? ? ? ? ? ? ? ? PWM ? ? ? ?? ?? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? , ? ? ? ? ???

AN-1229 https://www.360docs.net/doc/f719009377.html, 3 ? ? ǖ ? ? ? ? ? ? ? ? ? ? ? ? ? ?ǖ ? ? ?? ? ǜ ? ? V ǚIR ? ? ? ?? ? ? ? 1.4 0.5 1 ? 20 ?? 1 ? 1A ? 2.5 ? ? ?? IC ? ? ? ? PCB ? ? ? ? ? 20 ?? ? ? ? SIMPLE SWITCHER ? V ǚL*dI/dt ? ?? ? ? ? 1A ? ? ? ? ? dI/dt ? ? 1a 1b ? ? ? ? 1c ? dI/dt ? ? ? ǖ ? ? ? ? 1.2?? 0.8?? ? ? ? ?? FET , LM267x 30ns ? , LM259x 75ns ? ? ? ? ? ? ? ? ?? ? ? ? 30ns ? 1 ? 1A 0.7V ? ? 2.5mV ? ?? 2 ? 3A 4V ? 1c ? ? 1a 1b ? ??? ? , IC ? ?? ?SW ?? ? ? ? ?? , ?? ?VIN ?? ? ? ?? 1c ? ? ? ?VIN ? ? ? ? , ? ? ?? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Np/Ns ?? ? RCD ? ? ? ? ? ?? ?? ? ? ? ? ? ?? ? ?? ? ? ? ? , ǖ EMI ? ? ? ? ? ? IC ? ? ? ? ? IC ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ǜ ?? ? ? ?? ? ? ? V*dt ǚL*dI ? , L ? ?V*dt ? ? ? , ? ??? ? ? ? ? ?? ? ? ? ? ? ?? ?COMP ?? ?? ? ?? ? ? ? ? ?? ?? ?? ? ?IC ? ? ? ? , ? ??

软开关技术在开关电源中的应用

软开关技术在开关电源中的应用 开关电源中的硬开关和软开关是针对开关晶体管而言的。 硬开关是不管开关管上的电压或电流,强行接通或关断开关管。当开关管(漏极和源极之间,或者集电极和发射极之间)的电压及电流较大时,切换开关管,由于开关管状态间的切换(由导通到截止,或由截止到导通)需要一定的时间,这样就会造成在开关管状态切换的某一段时间内,电压和电流有一个交越区域,这个交越造成的开关管损耗(开关管的切换损耗)随开关频率的提高而急速增加。 开关管的切换损耗与开关管的负载特性有关: 若是感性负载,在开关晶体管关断时会感应出尖峰电压。开关频率越高,关断越快,该感应电压越高。此电压加在开关器件两端,容易造成器件击穿。 若是容性负载,在开关晶体管导通瞬间的尖峰电流大。因此,当开关晶体管在很高的电压下接通时,储存在开关晶体管结电容中的能量将以电流形式全部耗散在该器件内。频率越高,开通电流尖峰越大,从而会引起开关管的过热损坏。 另外,在次级高频整流回路中的二极管,在由导通变为截止时,有一个反向恢复期,开关晶体管在此期间内接通时,容易产生很大的冲击电流。显然频率越高,该冲击电流也越大,对开关晶体管的安全运行造成危害。 最后,做硬开关运用的开关电源中,开关晶体管会产生严重的电磁骚扰。随着频率的提高和电路中的di/dt 和du/dt增大,所产生的电磁骚扰也在增大,影响开关电源本身和周围电子设备的正常工作。 上述问题严重阻碍了开关器件(开关晶体管和高频整流二极管)工作频率的提高。近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。和硬开关工作原理不同,理想的软关断过程是电流先降小到零,电压在缓慢上升到断态值,所以关断损耗近似为零。由于器件关断前电流已经下降到零,便解决了感性关断问题。理想的软开通过程是电压先降到零,电流在缓慢上升到通态值,所以开通损耗近似为零,器件结电容的电压也为零,解决了容性开通问题。同时,开通时,二极管反向恢复过程已经结束,因此二极管反向恢复问题不存在。 软开关技术还有助于电磁骚扰水平的降低,其原因是开关晶体管在零电压的情况下导通和在零电流的情况下关断,同时快恢复二极管也是软关断的,这可以明显减小功率器件的di/dt和du/dt,从而可以减小电磁干扰的电平。 一般来说软开关的效率较高(因为没有切换损);操作频率较高,PFC或变压器体积可以减少,所以开关电源的体积可以做到更小。但成本也相对较高,设计较复杂

相关文档
最新文档