差动保护的工作原理

1、变压器差动保护的工作原理

与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。

2、变压器差动保护与线路差动保护的区别:

由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使

变压器纵差动保护的特点

1 、励磁涌流的特点及克服励磁涌流的方法

(1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。

(2)产生励磁涌流的原因

因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通

应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点:

①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。

③励磁涌流的波形出现间断角。

表8-1 励磁涌流实验数据举例

条件谐波分量占基波分量的百分数(%)

直流分

基波

二次谐

三次谐

四次

谐波

五次

谐波

励磁涌流第一个周期

第二个周期

第八个周期

58 58 58100 100 10062 63 6525 28 304 57 2 33

内部短路故障电流电流互感器

饱和电流互

感器不饱和

38 0100 100 4 932 49 7 2 4

(4)克服励磁涌流对变压器纵差保护影响的措施:

采用带有速饱和变流器的差动继电器构成差动保护;

②利用二次谐波制动原理构成的差动保护;

③利用间断角原理构成的变压器差动保护;

④采用模糊识别闭锁原理构成的变压器差动保护。

2、不平衡电流产生的原因

(1)稳态情况下的不平衡电流

①变压器两侧电流相位不同

电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。

②电流互感器计算变比与实际变比不同

由于变比的标准化使得其实际变比与计算变比不一致,从而产生不平衡电流。

【实例分析1】由电流互感实际变比与计算变比不等产生的不平衡电流分析

在表8-2中,变压器型号、变比、Y,d11 接线。计算由于电流互感器的实际变比与计算不等引起的不平

衡电流。计算结果如表8-2。由表8-2可见,由于电流互感器的实际变比与计算变比不等,正常情况将产生的不平衡电流。

表8-2 计算变压器额定运行时差动保护臂中的不平衡电流

电压侧(KV)()

额定电流(A)120()733

电流互感器接线方式ΔY

电流互感器计算变比733/5

电流互感器的实际变

300/5=601000/5=200

差动臂的电流60=()733/200=

不平衡电流()=()

③变压器各侧电流互感器型号不同

由于变压器各侧电压等级和额定电流不同,所以变压器各侧的电流互感器型号不同,它们的饱和特性、励磁电流(归算至同一侧)也就不同,从而在差动回路中产生较大的不平衡电流。

④变压器带负荷调节分接头

变压器带负荷调整分接头,是电力系统中电压调整的一种方法,改变分接头就是改变变压器的变比。整定计算中,差动保护只能按照某一变比整定,选择恰当的平衡线圈减小或消除不平衡电流的影响。当差动保护投入运行后,在调压抽头改变时,一般不可能对差动保护的电流回路重新操作,因此又会出现新的不平衡电流。不平衡电流的大小与调压范围有关。

(2)暂态情况下的不平衡电流

暂态过程中不平衡电流的特点:

①暂态不平衡电流含有大量的非周期分量,偏离时间轴的一侧。

②暂态不平衡电流最大值出现的时间滞后一次侧最大电流的时间(根据此特点靠保护的延时来躲过其暂态不平衡电流必然影响保护的快速性,甚至使变压器差动保护不能接受)。

减小不平衡电流的措施

(1)减小稳态情况下的不平衡电流

变压器差动保护各侧用的电流互感器,选用变压器差动保护专用的D级电流互感器;当通过外部最大稳态短路电流时,差动保护回路的二次负荷要能满足10%误差的要求。

(2)减小电流互感器的二次负荷

这实际上相当于减小二次侧的端电压,相应地减少电流互感器的励磁电流。减小二次负荷的常用办法有:减小控制电缆的电阻(适当增大导线截面,尽量缩短控制电缆长度);采用弱电控制用的电流互感器(二次额定电流为lA)等。

(3)采用带小气隙的电流互感器

这种电流互感器铁芯的剩磁较小,在一次侧电流较大的情况下,电流互感器不容易饱和。因而励磁电流较小,有利于减小不平衡电流。同时也改善了电流互感器的暂态特性。

(4)减小变压器两侧电流相位不同而产生的不平衡电流采用相位补偿

①采用适当的接线进行相位补偿法。

图8-10 Y,d11接线变压器差动保护接线图和相量图

如变压器为Y,d11接线其相位补偿的方法是将变压器星形侧的电流互感器接成三角形,将变压器三角形侧的电流互感器接成星形,如图8-10(a)所示,以补偿30°的相位差。图中为星形侧的一次电流,

为三角形侧的一次电流,其相位关系如图8-10(b)所示。采用相位补偿接线后,变压器星形侧电流互感器二次回路侧差动臂中的电流分别为,它们刚好与三角形侧电流互感器二次回路中的电流同相位,如图8-10(c)所示。这样,差回路中两侧的电流的相位相同。

②数值补偿

变压器星形侧电流互感器变比

变压器三角形侧电流互感器变比

③软件校正

微机保护中采用软件进行相位校正

(5)减小电流互感器由于计算变比与标准变比不同而引起的不平衡电流采用数值补偿

①采用自耦变流器。

②利用BCH型差动继电器中的平衡线圈。

③在变压器微机保护的软件中采用补偿系数使差动回路的不平衡电流为最小。

(6)由变压器两侧电流互感器型号不同而产生的不平衡电流

在差动保护的整定计算中加以考虑。

(7)由变压器带负荷调整分接头而产生的不平衡电流

在变压器差动保护的整定计算中考虑。

在稳态情况下,变压器的差动保护的不平衡电流可由下式决定

(8)减小暂态过程中非周期分量电流的影响

①差动保护采用具有速饱和特性的中间变流器,

②选用带制动特性的差动继电器或间断角原理的差动继电器等,利用其它方法来解决暂态过程中非周期分量电流的影响问题。

和差式比率制动式差动保护原理

1.双绕组变压器比率制动的差动保护原理。

(1)和差式比率制动的动作判据

①差动电流:

②制动电流:

③差动保护动作的第一判据:

④制动比率系数:

⑤外部故障时,保护可靠地不动作。应满足如下判据:

⑥差动保护动作的第二判据

2.比率制动特性的整定

(1)最小启动电流I act0

(2)拐点制动电流I brk0可选取

(3)最大制动系数和制动特性斜率S

①最大制动系数

②比率制动特性曲线如下图

③比率制动系数的整定值D取~

④比率制动特性的斜率S,由上图可知

当I brk0《和I act0《,则上式可得

即比率制动特性的折线BC过坐标原点,在任何制动电流下有相同的制动系数。

(4)内部故障灵敏度校验

在系统最小运行方式下,计算变压器出口金属性短路的最小短路电流(周期分量),同时计算相应的制动电流,由相应的比率制动特性查出对应与的起动电流则灵敏系数

要求K sen>

3.三绕组变压器比率制动的差动保护原理。

对于三绕组变压器,其差动保护的原理与双绕组变压器的差动保护原理相同,但差动电流和制动电流及最大不平衡电流应做相应的更改。差动电流和制动电流分别为

在有的变压器差动保护直接取三侧中最大电流为制动电流,即

最大不平衡电流的计算公式如下:

在微机保护中,考虑采用数值补偿系数后误差非常小Δm≈0,则上式为

4.励磁涌流闭锁原理

采用二次谐波制动原理

在变压器励磁涌流中含有大量的二次谐波分量,一般约占基波分量的40%以上。利用差电流中二次谐波所占的比率作为制动系数,可以鉴别变压器空载合闸时的励磁涌流,从而防止变压器空载合闸时保护的误动。

在差动保护中差电流的二次谐波幅值用表示,差电流中二次谐波所占的比率可表示为如下式:

如选二次谐波制动系数为定值D3,那么只要大于定值D3,就可以认为是励磁涌流出现,保护不应动作。在值小于D3,同时满足比率差动其他判据时才允许保护动作。

∴比率差动保护的第三判据应满足下式

二次谐波制动系数D3,有、、三种系数可选。

5.差动速断保护

(1)采用差动速断保护的原因

一般情况下比率制动原理的差动保护能作为电力变压器主保护,但是在严重内部故障时,短路电流很大的情况下,TA严重饱和使交流暂态传变严重恶化,TA的二次侧基波电流为零,高次谐波分量增大,反应二次谐波的判据误将比率制动原理的差动保护闭琐,无法反映区内短路故障,只有当暂态过程经一定时间TA 退出暂态饱和比率制动原理的差动保护才动作,从而影响了比率差动保护的快速动作,所以变压器比率制动原理的差动保护还应配有差动速断保护,作为辅助保护以加快保护在内部严重故障时的动作速度。差动速断保护是差动电流过电流瞬时速动保护。

(2)差动速断的整定值按躲过最大不平衡电流和励磁涌流来整定

6.变压器比率差动保护程序逻辑框图

(1)变压器差动保护程序逻辑框图

(2)变压器差动保护程序逻辑原理

在程序逻辑框图中D1=I act0、D2=K rel I d/I brk为比率制动系数整定值,D3为二次谐波制动系数整定值。可见比率差动保护动作的三个判据是“与”的关系(图8-14中的与门Y2),必须同时满足才能动作于跳闸。而差动速断保护是作为比率差动保护的辅助保护。其定值为D4=,在比率差动保护不能快速反映严重区内故障时,差动速断保护应无时延地快速出口跳闸。因此这两种保护是“或”的逻辑关系(图8-14中的或门H3)。比率差动保护在TA二次回路断线时会产生很大的差电流而误动作,所以必须经TA断线闭锁的否门再经与门Y3才能出口动作。当TA断线时与门Y3被闭锁住,不能出口动作。

差动保护线路的工作原理

差动保护线路的工作原理 差动保护是一种常见且重要的电力保护装置,广泛应用于电力系统的高压线路、变压器等设备中。差动保护的主要作用是保护被保护设备免受劣质或故障电流的影响,以防止设备因电流过载、短路等故障而受损。下面将从差动保护线路的工作原理、结构、特点和应用方面进行解析。 差动保护线路的工作原理是通过比较电流输入和输出,判断设备正常还是存在故障,并根据判断结果触发保护动作。其基本原理是基于法拉第定律,即从线圈周围的总磁通等于通过该线圈的电流的积分。差动保护线路通过将需要保护的电流通过互感器转化为电压信号,然后将这些信号输入到差动保护装置中进行比较。当输入信号之和等于输出信号时,系统认为设备正常;当输入信号之和不等于输出信号时,系统判断设备存在故障,此时差动保护装置将触发保护动作,如跳闸或断开故障设备。 差动保护线路的结构通常由互感器、匝数比较器、差动继电器和输出装置组成。互感器将电流信号转换成电压信号,匝数比较器将输入信号之和与输出信号进行比较,差动继电器根据比较结果触发保护动作,输出装置负责将触发信号发送到断路器等保护设备,以进行相应的操作。 差动保护线路的特点有以下几个方面。首先,差动保护具有高灵敏度和快速动作的特点,能够在故障发生的瞬间进行准确判断和保护动作,有效地防止设备故障的扩大。其次,差动保护具有较强的适应性和稳定性,能够适应不同类型和容量

的电气设备,并能够在复杂的电力系统环境中稳定运行。此外,差动保护具有一定的误动特性,能够排除外界因素的影响,确保准确判断故障信号。 差动保护在电力系统中有着广泛的应用。首先,差动保护广泛应用于高压线路和变压器等重要设备中,可以及时发现和隔离设备故障,确保电力系统的正常运行。其次,差动保护还广泛应用于电气设备的原理保护和后备保护中,可以提高电力设备的可靠性和安全性。此外,差动保护还可以与其他保护装置相结合,形成多重保护系统,提供全面的保护措施,从而降低设备的维修和更换成本。 总之,差动保护线路是一种常见且重要的电力保护装置,通过比较输入和输出电流信号,判断设备正常与否,并根据判断结果触发相应的保护动作。差动保护具有高灵敏度、快速动作、稳定性和可靠性的特点,在电力系统中有着广泛的应用,能够有效防止设备故障的扩大,提高电力设备的可靠性和安全性。

差动保护基本原理

差动保护基本原理 1、母线差动保护基本原理 母线差动保护基本原理,用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的。因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同。如果母线发生故障,这一平衡就会破坏。有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电范围 2、什么是差动保护?为什么叫差动?这样有什么优点? 差动保护是变压器的主保护,是按循环电流原理装设的。 主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。 在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间并联接入电流继电器。在继电器线圈中流过的电流是两侧电流互感器的二次电流只差,也就是说差动继电器是接在差动回路的。 从理论上讲,正常运行及外部故障时,差动回路电流为零。实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡点流Iumb流过,此时流过继电器的电流IK为Ik=I1-I2=Iumb 要求不平衡点流应尽量的小,以确保继电器不会误动。 当变压器内部发生相间短路故障时,在差动回路中由于I2改变了方向或等于零(无电源侧),这是流过继电器的电流为I1与I2之和,即 Ik=I1+I2=Iumb 能使继电器可靠动作。 变压器差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备、以及连接这些设备的导线。由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区内故障时,可以瞬时动作。 3、为什么220KV高压线路保护用电压取母线TV不取线路TV 事实上,两个电压都接入保护装置的,它们的作用各不相同 母线电压,一般用来判别正方向故障和反方向故障,通过电流与电压之间的夹角来判别 线路电压,一般用来重合闸的时候用,作为线路有压无压的判据 现在220kV线路保护比较常用的就是一套光纤电流差动以及一套高频距离保护 也有采用两套光纤电流,两套高频的比较少了 4、变压器差动保护的基本原理 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应

差动保护的工作原理

1、的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、与线路的区别: 由于高压侧和低压侧的额定电流不相等再加上各侧电流的相位往往不相同。因此,为了保证纵的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组,应使 纵的特点 1 、的特点及克服的方法 (1): 在空载投入或外部故障切除后恢复供电等情况下在空载投入或外部故障切除后恢复供电等情况下,励磁电流的数值可达额定6~8倍励磁电流通常称为。 (2)产生的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时铁芯将严重饱和,通过图8-7可知此时的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成。 (3)的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。 ②中含有明显的高次谐波,其中以2次谐波为主。

③的波形出现间断角。 表8-1 实验数据举例 (4)克服对纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成; ②利用二次谐波制动原理构成的; ③利用间断角原理构成的; ④采用模糊识别闭锁原理构成的。

2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流 ①两侧电流相位不同 电力系统中常采用Y,d11接线方式,因此,两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。 ②电流互感器计算变比与实际变比不同 由于变比的标准化使得其实际变比与计算变比不一致,从而产生不平衡电流。 【实例分析1】由电流互感实际变比与计算变比不等产生的不平衡电流分析 在表8-2中,型号、变比、Y,d11 接线。计算由于电流互感器的实际变比与计算不等引起的不平衡电流。计算结果如表8-2。由表8-2可见,由于电流互感器的实际变比与计算变比不等,正常情况将产生的不平衡电流。 表8-2 计算额定运行时臂中的不平衡电流

差动保护的工作原理

差动保护的工作原理 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保 证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 n TA2 【2°【2

变压器纵井动保护的原理接线图 832变压器纵差动保护的特点 1、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6?8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-①m。但由于铁心中的磁通不能突变,因此将岀现一个非周期分量的磁通+①m,如果考虑剩磁O r,这样经过半过周期后铁心中的磁通将达到2①m+①r,其幅值为如图8-6所示。此时变压器铁芯将严重饱和, 通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6?8倍,形成励磁涌流。

变压器卒载投入时的电压和磁通波形图

驻相变压器励磁电流的图解法 (a)变压器铁心的磯化曲线(b)励磁涌流 (3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

差动保护基本原理

精心整理差动保护基本原理 1、母线差动保护基本原理 母线差动保护基本原理,用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的。因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同。如果母线发生故障,这一平衡就会破坏。有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电范围 2、什么是差动保护?为什么叫差动?这样有什么优点? 差动保护是变压器的主保护,是按循环电流原理装设的。 主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。 I1与I2之和,即 3、 现在 4、 1 ?? 2、变压器差动保护与线路差动保护的区别: ??由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得

正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应 使 1. 2.单侧 为0.5秒左右。由上图可以看出本线路末端故障k1与下线路始端故障k2两种情况下,保护测量到的电流、电压几乎是相同的。如果为了保证选择性,k2故障时保护不能无时限切除,则本线路末端k1故障时也就无法无时限切除。可见单侧测量保护无法实现全线速动的根本原因是考虑到互感器、保护均存在误差,

不能有效地区分本线路末端故障与下线路始端故障。3.双侧测量保护原理如何实现全线速动为了实现全线速动保护,保护判据由线路两侧的电气量或保护动作行为构成,进行双侧测量。双侧测量时需要相应的保护通道进行信息交换。双侧测量线路保护的基本原理主要有以下三种:(1)以基尔霍夫电流定律为基础的电流差动测量;(2)比较线路两侧电流相位关系的相位差动测量;(3)比较两侧线路保护故障方向判别结果,确定故障点的位置。 上图为电流差动保护原理示意图, 点的总电流为零,正常运行时或外部故障时,线路内部故障时,即。忽略了线路电容电流后,在下线路始端发生故障时,差动电流为零;在本线末端发生故障时,差动电流为故障点短路电流,有明显的区别,可以实现全线速动保护。电流差动原理用于线路纵联差动保护、线路光纤分相差动保护 以及变压器、发电机、母线等元件保护上。 上图为相位差动保护(简称“相差保护”)原理示意图,保护测量的电气量为线路两侧电流的相位差。正常运行及外部故障时,流过线路的电流为“穿越性“的,相位差为1800;内部故障时,线路两侧电流的相位差较小。相位差动保护以线路两侧电流相位差小于整定值作为内部故障的判据,

差动保护工作原理(一)

差动保护工作原理(一) 差动保护工作原理介绍 什么是差动保护? 差动保护是电力系统中一种常见的保护方式,用于检测和保护电 气设备和电网免受电流故障的损害。差动保护通过测量电流的进出差 值来判断设备是否存在故障,并采取相应的保护措施,以防止设备损 坏和电力系统的继续故障。 差动保护的原理 差动保护的原理基于基尔霍夫电流定律和安培定律。当电设备正 常工作时,进出设备的电流应该是相等的。如果设备发生故障,比如 短路或接触不良,就会导致电流变得不平衡,差动保护系统会检测到 这个差值,从而触发保护动作。 差动保护的具体工作流程 差动保护的工作流程可以分为以下几个步骤: 1.测量进出电流:差动保护系统通过电流互感器或电流 传感器测量进出设备的电流。 2.计算差动电流:差动保护系统根据进出电流的测量值, 计算出差动电流,即进出电流的差值。

3.设定差动电流动作值:根据设备的特性和保护要求, 差动保护系统设置差动电流的动作值,一般是根据设备的额定电流和故障电流来确定。 4.比较差动电流和动作值:差动保护系统会将计算得到 的差动电流与设定的差动电流动作值进行比较。 5.触发保护动作:如果差动电流超过了设定的差动电流 动作值,差动保护系统会触发相应的保护动作,比如跳闸、报警等。 差动保护的优点和局限性 优点: •高速动作:差动保护可以实时地检测电流的差值,实现对设备故障的快速判断和保护动作,从而减少故障对系统的影响。 •灵敏度高:差动保护的动作值可以根据设备的额定电流和故障电流进行设定,可以灵活地适应不同设备的保护需求。 •适用范围广:差动保护适用于各种电力系统,包括发电厂、变电站和配电系统等。 局限性: •误动作风险:差动保护系统可能受到设备的非故障电流(如启动电流)等因素的影响,导致误动作的风险。

差动保护工作原理

差动保护工作原理 差动保护是电力系统中常用的一种保护方式,其主要作用是检测和定位电力系统中的故障,保护电力设备的安全运行。差动保护通过对电流进行比较来判断电力系统中是否存在故障,从而触发保护动作,切断故障电路,保护设备不受损害。 差动保护的工作原理是基于电流的差值来进行判断和保护动作。差动保护装置通常由一个比较单元和一个触发单元组成。比较单元负责对电流进行比较,触发单元负责根据比较结果触发保护动作。 在差动保护中,通常会选择一对或多对与故障电路相连的电流互感器,将其输出电流接入比较单元。比较单元会将这些输入电流进行比较,并计算出它们之间的差值。如果差值超过了设定的阈值,就意味着电流之间存在差异,可能是电力系统中发生了故障。触发单元会根据比较结果判断是否触发保护动作。 差动保护的精度和可靠性是其工作原理的关键。为了保证差动保护的精度,通常会对比较单元进行校准和调试,确保其能够准确地计算电流的差值。同时,还需要对阈值进行设置和调整,以适应不同故障类型和电力设备的需求。 差动保护在电力系统中的应用非常广泛。它可以用于保护发电机、变压器、母线以及输电线路等电力设备。在故障发生时,差动保护能够迅速切断故障电路,避免故障扩大,保护设备的安全运行。同

时,差动保护还可以帮助定位故障的位置,为故障的排除提供有力的依据。 差动保护的工作原理可以通过以下步骤来概括:首先,将电流互感器的输出电流接入比较单元;其次,比较单元对输入电流进行比较,并计算出电流的差值;然后,触发单元根据比较结果判断是否触发保护动作;最后,触发动作会切断故障电路,保护设备的安全运行。 差动保护是一种常用的电力系统保护方式,其工作原理是基于电流的差值来进行判断和保护动作。差动保护通过对电流进行比较,判断电力系统中是否存在故障,并采取相应的保护措施。差动保护在电力系统中的应用广泛,并且具有精度高、可靠性强的特点,能够有效保护电力设备的安全运行。

差动保护的基本原理

差动保护的基本原理 差动保护是电力系统中常用的一种保护方式,用于检测电气设备发生故障时的电流差异,从而及时采取动作措施,防止故障扩大并保护设备安全运行。本文将从差动保护的基本原理、差动保护的主要应用领域以及差动保护的发展趋势等方面进行详细介绍。 差动保护的基本原理 差动保护是基于电流差动原理而建立的。其基本原理是通过比较电流的进出差异来检测设备是否发生故障。在理想情况下,正常工作时电流的进出应该是相等的,即电流之差为零。如果设备发生故障,则电流发生偏差,进出电流之差将不为零,这时差动保护系统将发出动作信号,切断故障部分的电源,保护系统的正常运行。 差动保护系统主要由主保护和备用保护两部分组成。主保护负责实现差动保护的主要功能,备用保护则在主保护系统发生故障时起到备份作用。主保护系统通常由差动电流继电器、比较器以及动作执行器等组成。差动电流继电器负责将进出电流进行比较,发现差异时输出信号给比较器,比较器再将信号转化为动作信号给动作执行器。 差动保护的主要应用领域 差动保护广泛应用于电力系统的各个环节,包括发电厂、变电站以及配电网等。在发电厂中,差动保护用于发电机组、变压器等设备的保护。在变电站中,差动保护则用于变压器、电缆线路等高压设备的

保护。而在配电网中,差动保护主要应用于低压设备,如配电变压器、电缆线路等。 差动保护的发展趋势 随着电力系统的不断发展和现代化要求的提高,差动保护也在不断 演变和完善。目前,差动保护已经实现了微机保护的发展,并结合了 现代的通信技术。微机保护使得差动保护系统的功能更加强大,可实 现更精确的测量和判断。通信技术的应用使得差动保护系统能够实现 远程控制和监控,提高了运维效率和安全性。 此外,差动保护系统还在趋向智能化和自适应方向发展。智能化差 动保护系统能够实现自动分析故障类型和区域,准确识别故障类型并 采取相应的保护措施。自适应差动保护系统则能够根据电网的实际运 行情况对差动保护参数进行动态调整,提高保护系统的适应性和准确性。 总结 差动保护作为电力系统中的一种重要保护方式,其基本原理是通过 比较电流的进出差异来检测设备是否发生故障。差动保护广泛应用于 发电厂、变电站以及配电网等领域,并且在不断发展和演变中。未来,差动保护系统将朝着微机保护、智能化和自适应方向发展,以更好地 适应电力系统的现代化要求。

差动保护基本原理

差动保护根本原理 1、母线差动保护根本原理 母线差动保护根本原理,用通俗的比喻,就是按照收、支平衡的原理进展判断和动作的。因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位一样。如果母线发生故障,这一平衡就会破坏。有的保护采用比拟电流是否平衡,有的保护采用比拟电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电围 2、什么是差动保护?为什么叫差动?这样有什么优点? 差动保护是变压器的主保护,是按循环电流原理装设的。 主要用来保护双绕组或三绕组变压器绕组部与其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。 在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,那么将同级性端子相连,并在两接线之间并联接入电流继电器。在继电器线圈中流过的电流是两侧电流互感器的二次电流只差,也就是说差动继电器是接在差动回路的。 从理论上讲,正常运行与外部故障时,差动回路电流为零。实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡点流Iumb流过,此时流过继电器的电流IK为 Ik=I1-I2=Iumb 要求不平衡点流应尽量的小,以确保继电器不会误动。 当变压器部发生相间短路故障时,在差动回路中由于I2改变了方向或等于零〔无电源侧〕,这是流过继电器的电流为I1与I2之和,即 Ik=I1+I2=Iumb 能使继电器可靠动作。 变压器差动保护的围是构成变压器差动保护的电流互感器之间的电气设备、以与连接这些设备的导线。由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区故障时,可以瞬时动作。 3、为什么220KV高压线路保护用电压取母线TV不取线路TV 事实上,两个电压都接入保护装置的,它们的作用各不一样 母线电压,一般用来判别正方向故障和反方向故障,通过电流与电压之间的夹角来判别 线路电压,一般用来重合闸的时候用,作为线路有压无压的判据 现在220kV线路保护比拟常用的就是一套光纤电流差动以与一套高频距离保护 也有采用两套光纤电流,两套高频的比拟少了 4、变压器差动保护的根本原理 1、变压器差动保护的工作原理与线路纵差保护的原理一样,都是比拟被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别:由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不一样。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,与各侧电流相位的补偿

差动保护工作原理电力配电知识

差动爱护工作原理 - 电力配电学问 差动爱护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作抱负变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。当变压器内部故障时,两侧(或三侧)向故障点供应短路电流,差动爱护感受到的二次电流和的正比于故障点电流,差动继电器动作。 差动爱护原理简洁、使用电气量单纯、爱护范围明确、动作不需延时,始终用于变压器做主爱护。另外差动爱护还有线路差动爱护、母线差动爱护等等。 变压器差动爱护是防止变压器内部故障的主爱护。其接线方式,按回路电流法原理,把变压器两侧电流互感器二次线圈接成环流,变压器正常运行或外部故障,假如忽视不平衡电流,在两个互感器的二次回路臂上没有差电流流入继电器,即:iJ=ibp=iI-iII=0。 假如内部故障,ZD点短路,流入继电器的电流等于短路点的总电流。即:iJ=ibp=iI2+iII2。当流入继电器的电流大查看开关位置显示及其电流表,确认主变跳闸,报调度,汇报初步现象。查看并记录光字牌,确认是主变差动爱护。停止站内的全部工作票,观看其它剩下的主变有无过负荷,油温有无过高,派人到现场把其他主变的冷却器全部投入,加强对主变的巡察和监视中心信号屏的主变负荷状况和油温。主变过负荷,可向调度汇报,要求压负荷。假如是#1主变跳闸,则应当检查站用变是否自投成功,站用电是否正常,充电机是否正常工作。还应当合上其它三台主变的其中一台的变高和变中中

性点接地刀闸。 在保证站内的其它设备不受事故影响其正常运行后,将主变及其三侧开关转换为检修,进行下列检查: 1)主变套管有无裂开放电现象; 2)在主变差动爱护区内有无短路或放电现象; 3)差动爱护接线、整定有无错误、电流互感器二次回路是否开路,旁路代主变开关时有无切换电流互感器二次回路; 4)向调度了解在跳闸的同时系统有无短路故障; 5)查看瓦斯继电器内有无气体,主变油位、油色、防爆装置有无特别。 检查结果确认差动爱护动作正确,但不是变压器内部故障引起,而是差动范围内变压器外的短路故障引起,若故障点在高压侧,则在故障处理完毕,检查变压器无特别后,经调度同意可将主变重新投入运行;若故障点在中低压侧,则应进行绕组变形测试、取油样化验、测直流电阻、绝缘电阻等,确认变压器正常,且故障处理完毕后,还必需经过总工程师同意才能将变压器重新投入运行; 检查结果确认是差动爱护误动作,在其它爱护(重瓦斯、复合过流)正常的状况下,经调度员同意可将差动爱护退出,恢复变压器运行。于动作电流,爱护动作断路器跳闸。

差动保护的工作原理

1、变压器差动保护的工作原理与线路纵差保护的原理一样,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不一样。因此,为了保证纵差动保护的正确工作,须适中选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 变压器纵差动保护的特点 1 、励磁涌流的特点及抑制励磁涌流的方法 〔1〕励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 〔2〕产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将到达2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,到达额定电流的6~8倍,形成励磁涌流。〔3〕励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。 ②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现连续角。 表8-1 励磁涌流实验数据举例

〔4〕抑制励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用连续角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 〔1〕稳态情况下的不平衡电流 ①变压器两侧电流相位不同 电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如以下图所示,Y侧电流滞后△侧电流30°,假设两侧的电流互感器采用一样的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。

相关主题
相关文档
最新文档