钛合金铣削加工的技术要点

钛合金铣削加工的技术要点
钛合金铣削加工的技术要点

钛合金铣削加工的技术要点

newmaker

与其他大多数金属材料加工相比,钛加工不仅要求更高,而且限制更多。这是因为钛合金所具有的冶金特性和材料属性可能会对切削作用和材料本身产生严重影响。但是,如果选择适当的刀具并正确加以使用,并且按照钛加工要求将机床和配置优化到最佳状态,那么就完全可以满足这些要求,并获得令人满意的高性能和完美结果。传统钛金属加工过程中碰到的许多问题并非不可避免,只要克服钛属性对加工过程的影响,就能取得成功。

钛的各种属性使之成为具有强大吸引力的零件材料,但其中许多属性同时也影响着它的可加工性。钛具备优良的强度-重量比,其密度通常仅为钢的60%。钛的弹性系数比钢低,因此质地更坚硬,挠曲度更好。钛的耐侵蚀性也优于不锈钢,而且导热性低。这些属性意味着钛金属在加工过程中会产生较高和较集中的切削力。它容易产生振动而导致切削时出现震颤;并且,它在切削时还容易与切削刀具材料发生反应,从而加剧月牙洼磨损。此外,它的导热性差,由于热主要集中在切削区,因此加工钛金属的刀具必须具备高热硬度。

稳定性是成功的关键所在

某些机加工车间发现钛金属难以有效加工,但这种观点并不代表现代加工方法和刀具的发展趋势。之所以困难,部分是因为钛金属加工是新兴工艺,缺少可借鉴的经验。此外,困难通常与期望值及操作者的经验相关,特别是有些人已经习惯了铸铁或低合金钢等材料的加工方式,这些材料的加工要求一般很低。相比之下,加工钛金属似乎更困难些,因为加工时不能采用同样的刀具和相同的速率,并且刀具的寿命也不同。即便与某些不锈钢相比,钛金属加工的难度也仍然要高。我们固然可以说,加工钛金属必须采取不同的切削速度和进给量以及一定的预防措施。其实与大多数材料相比,钛金属也是一种完全可直接加工的材料。只要钛工件稳定,装夹牢固,机床的选择正确,动力合适,工况良好,并且配备具有较短刀具悬伸的ISO 50主轴,则所有问题都会迎刃而解——只要切削刀具正确的话。

但在实际铣削加工中,钛金属加工所需的条件不容易全部满足,因为理想的稳定条件并不总是具备。此外,许多钛零件的形状复杂,可能包含许多细密或深长的型腔、薄壁、斜面和薄托座。要想成功加工这样的零件,就需要使用大悬伸、小直径刀具,这都会影响刀具稳定性。在加工钛金属时,往往更容易出现潜在的稳定性问题。

必须考虑振动和热

非理想环境还包含其它因素,其中之一就是大多数机床目前装配的是IS0 40主轴,如果高强度地使用机床,就无法长时间保持新刀状态。此外,如果零件结构较复杂的话,通常就不易有效夹紧。当然挑战还不止于此,切削工序有时必须用于全槽铣、侧削或轮廓铣削,所有这些都有可能(但并非必定)产生振动及形成较差的切削条件。重要的是,在设定机床时,必须始终注意提高稳定性以避免振动趋势。振动会造成刀刃崩碎、刀片损坏并产生不可预见和不一致的结果。一种改进措施便是采用多级夹紧,使零件更靠近主轴以有助于抵消振动。

由于钛金属在高温下仍能保持其硬度和强度,因而切削刃会遭遇高作用力和应力,再加上切削区中产生的高热,就意味着很可能出现加工硬化,这会导致某些问题产生,特别是不利于后续切削工序。因此,选择最佳的可转位刀片牌号和槽形是加工能否取得成功的关键。过去的历史证明,细晶粒非涂层刀片牌号非常适用于钛金属加工;如今,具有PVD钛涂层的刀片牌号更可大大改进性能。

精度、条件和正确的切削参数

刀具轴向和径向上的跳动精度也很重要。例如,如果未将刀片正确地安装到铣刀中,则铣刀周围的切削刃会迅速损坏。在切削钛金属时,其它一些因素,例如刀具制造公差不良、磨损和刀具受损、刀柄有缺陷或质量差、机床主轴磨损等等,都会在很大程度上影响到刀具寿命。观察结果表明,在所有加工表现不佳的案例中,80%都是由这些因素所造成。尽管大多数人喜欢选用正前角槽形刀具,但事实上稍带负前角槽形的刀具能以更高的进给去除材料,并且每齿进给量可达0.5mm。但是这同时也意味着必须保持最佳稳定状态,即机床应非常坚固,且装夹应极其稳定。

除进行插铣(最好使用圆刀片)之外,应尽量避免使用90主偏角,这样做通常有助于提高稳定性和获得总体性能,当在浅切深下使用时尤应如此,在进行深腔铣时,一种值得推荐的做法是通过刀具接柄而使用长度可变的刀具,而不是在整个工序中使用单一长度的长刀具。

调整切削参数以克服因降低每齿进给量而引起的振动是传统的解决方法,但这种方法并不恰当,因为它会对刀具寿命和切削性能产生灾难性影响。可转位刀片需要一定量的切削刃倒圆,以增加切削刃强度和获得更好的涂层粘附力。

在铣削钛金属时,要求刀具至少以最小的进给量工作——通常为每齿0.1mm。如果仍有振动趋势,则刀片损坏或刀具寿命缩短问题将不可避免。可能的解决方法包括精确计算每齿进给量,并确保它至少为0.1mm。

另外也可降低主轴转速,以达到最初的进给率。如果使用最小的每齿进给量,而

主轴转速却不正确,则对刀具寿命的影响可高达95%。降低主轴转速通常可提高刀具寿命。

一旦确立了稳定工况,就可相应地提高主轴转速和进给量来获得最佳性能。另一种做法是从铣刀中取出一些刀片或选择含刀片较少的铣刀。(end)

钛合金特性及加工办法

精心整理 钛合金特性及加工方法 钛合金以其强度高、机械性能及抗蚀性良好而成为飞机及发动机理想的制造材料,但由于其切削加工性差,长期以来在很大程度上制约了它的应用。随着加工工艺技术的发展,近年来,钛合金已广泛应用于飞机发动机的压气机段、发动机罩、排气装置等零件的制造以及飞机的大梁隔框等结构框架件的制造。我公司某新型航空发动机的钛合金零件约占零件总数的11%。本文是在该新机试制过程中积累的对钛合金材料切削特性以及在不同加工方法下表现出的具体特点的认识及所应采取工艺措施的经验总结。 1钛合金的切削加工性及普遍原则 钛合金按金属组织分为a 相、b 相、a+b 相,分别以TA ,TB ,TC 表示其牌号和类型。我公司某新型发动 600 损严重。 要保持刀刃锋利,以保证排屑流畅,避免粘屑崩刃。 切削速度宜低,以免切削温度过高;进给量适中,过大易烧刀,过小则因刀刃在加工硬化层中工作而磨损过快;切削深度可较大,使刀尖在硬化层以下工作,有利于提高刀具耐用度。 加工时须加冷却液充分冷却。 切削钛合金时吃刀抗力较大,故工艺系统需保证有足够的刚度。由于钛合金易变形,所以切削夹紧力不能大,特别是在某些精加工工序时,必要时可使用一定的辅助支承。 以上是钛合金加工时需考虑的普遍原则,事实上,用不同的加工方法时及在不同的条件下存在着不同的矛盾突出点和解决问题的侧重点。 2钛合金切削加工的工艺措施

车削 钛合金车削易获得较好的表面粗糙度,加工硬化不严重,但切削温度高,刀具磨损快。针对这些特点,主要在刀具、切削参数方面采取以下措施: 刀具材料:根据工厂现有条件选用YG6,YG8,YG10HT。 刀具几何参数:合适的刀具前后角、刀尖磨圆。 较低的切削速度。 适中的进给量。 较深的切削深度。 选用的具体参数见表1。 表1车削钛合金参数表工序车刀前角go ° ° mm m/min mm mm/r 粗车56 精车56 铣削 了3 此外,为使钛合金顺利铣削,还应注意以下几点: 相对于通用标准铣刀,前角应减小,后角应加大。 铣削速度宜低。 尽量采用尖齿铣刀,避免使用铲齿铣刀。 刀尖应圆滑转接。 大量使用切削液。 为提高生产效率,可适当增加铣削深度与宽度,铣削深度一般粗加工为 1.5~3.0mm,精加工为0.2~0.5mm。 磨削 磨削钛合金零件常见的问题是粘屑造成砂轮堵塞以及零件表面烧伤。其原因是钛合金的导热性差,使磨削区产生高温,从而使钛合金与磨料发生粘结、扩散以及强烈的化学反应。粘屑和砂轮堵塞导致磨削比显著

《车削加工技术》课程标准

《车削加工技术》课程标准 一、课程名称:《车削加工技术》 二、教案对象:三年制中职数控专业 三、教案课时:96 学时<4 周) 四、学分: 4 五、课程目标: 本课程是中等职业学校数控专业专业通用课, 课程要求结合企业车工岗位地生产实际及技能需求,突出车削加工基本技能训练及职业素养地培养,同时, 兼顾各专业课程之间地关系,由 浅入深, 将专业理论知识及岗位职业素养要求融入各训练项目, 使学生在技能训练过程中能够 主动学习并掌握基本理论,通过操作训练, 达到国家普通车工初级职业资格相应地知识和技能要求. 职业能力目标:能使学生具有较高地职业素质、良好地职业道德和较强地质量意识能熟练操作普通车床, 并能对普通车床进行日常维护与保养能熟练使用车床通用夹具进行零件装夹与定位 能正确使用车削加工地各种工、量具, 并能独立刃磨一些通用刀具能熟练阅读车削加工工艺文件, 加工带有阶台、沟槽、锥体及孔地轴类零件能熟练车削各类成形面及三角形螺纹* 能加工偏心工件* 六、设计思路 本课程针对中等职业学校学生地实际,贯彻“工作过程导向”地设计思路, 在教案理念上坚持理实一体化地原则, 注重学生基本职业技能与职业素养地培养, 将岗位素质教育和技能培养有机地结合.同时,课程中 增加了知识拓展内容,使课程地教案更加方便、灵活, 提高了学生对车工技能地适应性. 七、标准内容纲要 项目一普通车床地操作 教案目标 最终目标会独立操作普通车床 促成目标1 、能识别普通车床各部位, 了解各部位地功用, 分析普通车床地传动路线 2、能阅读车床各铭牌表并通过手柄变换调整加工参数

3、能操作普通车床 4、能维护车床并按生产现场定置管理要求摆放各类工、量具 模块一:熟悉普通车床 一. 工作任务 识别普通车床各部位, 了解各部位地功用, 会分析普通车床地传动路线. 二. 实践知识 1.观察机床外形特征, 并结合任务指导书要求, 认识各部分名称; 2.根据机床部件地位置, 理解各部件地功能、切削加工及动力地传动路线; 三. 理论知识 1.普通车床地加工范围 2.车床结构与传动系统。 3.车加工进给运动; 模块二:操作普通车床 一. 工作任务 会操作普通车床、调整切削参数 二. 实践知识 1.会开关普通车床; 2.会通过调节联轴器实现光杠与丝杠地切换; 3.会根据车床转速铭牌表, 变换车床转速; 4.会根据车床进给铭牌表, 变换车床进给量; 5.会用挂轮变换调节普通车床转速. 三. 理论知识 1.普通车床地加工表面。 2.切削三要素、切削用量计算及选用;模块三:车床维护与工量具地定置管理一. 工作任务 会维护普通车床并能规范摆放各类工量具

钛及钛合金机械加工要求综述

钛及钛合金机械加工要求 一、钛及钛合金切削特点: 1、变形系数小:变形系数小于或接近于1,切削在前刀面上滑动摩擦的路程大大增大,加速刀具磨损。 2、切屑温度高:在相同的切削条件下,切削温度可比切削45号钢时高出一倍以上。 3、单位面积上的切削力大:容易造成崩刃,加大刀具磨损并影响零件的精度。 4、冷硬现象严重:降低零件的疲劳强度,加剧刀具磨损。 5、刀具磨损:在切削温度高和单位面积上切削力大的条件下,刀具很容易产生粘结磨损。 二、刀具选择 1、切削加工钛及钛合金应从降低切削温度和减少粘结两方面出发,选用红硬性好,抗弯强度高,导热性能好,与钛合金金亲和性差的刀具材料。 2、常选用YG类硬质合金刀具比较适合,常用的硬质合金刀具材料为:YG8、YG 3、YG6X、YG6A、813、643、YS2T和YD15等。 3、也可以选用金刚石和立方氮化硼作刀具。 三、加工设备要求 1、设署专用加工场地,确定专用加工钛及钛合金的机床。 2、工作区域辅设橡胶板或木地板,以免碰伤、擦伤钛材表面。

3、与钛及钛合金接触的所有工具、夹具、机床或其它装置必须洁净。 4、经清洗过的钛合金零件,要防止油脂或指印污染,否则以后可能造成盐(氯化钠的应力腐蚀。 5、禁止使用铅、铜、锡、镉及其合金,锌基合金制作的工具,夹具与钛,钛合金接触。 四、切削加工的要求 1、由于钛及钛合金的弹性模量小,工件在加工中的夹紧变形和受力变形大,会降低工件的加工精度,工件安装时夹紧力不宜过大,必要时可增加辅助支承。 2、切削液选用不含氯化物的切削液。 3、切削时,应大量浇注切削液,使钛及钛合金加工时充分得到冷却。 4、加工时,应防止切屑在机床上堆积。 5、刀具用钝后立即进行更换,或降低切削速度,加大进给量以加大切屑厚度。 6、加工时如一旦着火,应采用滑石粉,石灰石粉末,干砂等灭火器材进行扑灭,严禁使用四氯化碳,二氧化碳灭火器,也不能浇水。

(完整版)钛合金铣削用量选择

TA15、TB6两种钛合金材料具有重量轻、强度高、耐热、耐腐蚀、疲劳性能好等一系列 优良的力学、物理性能,成为航空航天、核能、船舶等领域理想的结构材料之一。但由于该材料价格昂贵,难加工,尤其是铣削加工制造周期长、成本高,制约了它的应用。而新一代航空产品需要具备更优异的性能新材料、新结构、新工艺被广泛应用。同时,为了竞争的需 要,研制周期短和制造成本低是取胜的关键,因此,开展对TA15、TB6两种钛合金材料切削加工的研究是必要的,特别是铣削高效加工的探索尤其显得紧迫和重要。 TA15、TB6钛合金材料主要特征 TA15α钛合金是α相固熔体组成的单相合金。该合金室温强度在930MPa以上,耐热性高于纯钛,组织稳定,抗氧化能力强,500~600 ℃下仍保持其强度,抗蠕变能力强,但不能进行热处理强化。 TB6β钛合金是β相固熔体组成的单相合金。该合金室温强度在1105MPa 以上,但热稳定性较差,不宜在高温下使用。 TA15、TB6钛合金的切削加工工艺特性 摩擦系数大,导热系数低,刀尖切削温度高。钛合金热导率仅为钢的1/4 、铝的1/14 、铜的1/25 , 因而散热慢,不利于热平衡。切削时产生的切削热都集中在刀尖上,使刀尖温度很高,易使刀尖很快熔化或粘结磨损而变钝。 弹性模量小。钛合金的弹性模量只有30CrMnSi的56% ,这说明零件的刚性差,切削 时易产生弹性变形和振动,不仅影响零件的尺寸精度和表面质量,而且还影响刀具的使用寿命;同时造成已加工面的弹性恢复较大,刀具后面摩擦增加导致刀具过快磨损。 化学活性大。在300℃以上时有强烈的吸氢、氧、氮的特性,造成加工表面易产生脆 硬的化合物,切屑形成短碎片状,使刀具极易磨损。 钛合金化学亲和力较强,极易与其他金属亲和结合。在加工中切屑与刀具的粘结现象严重,使刀具的粘结和扩散磨损加大。 TA15、TB6钛合金零件切削用量和刀具参数的选择 主要加工方法 钛合金零件的加工余量比较大,有的部位很薄(2~3mm) ,主要配合表面的尺寸精度、 形位公差又较严,因此每项结构件都必须按粗加工→半精加工→精加工的顺序分阶段安排工序。主要表面分阶段反复加工,减少表面残余应力,防止变形,最后达到设计图的要求。其主要的加工方法有铣削、车削、磨削、钻削、铰削、攻丝等。

钛合金的铣削加工技术

钛合金的铣削加工技术 钛及钛合金因密度小、比强度高、耐腐蚀、耐高温、无磁、焊接性能好等优异综合性能,在航空航天等领域得到越来越广泛应用。但是,钛合金的一些物理力学性能给切削加工带来了许多困难。切削时钛合金变形系数小、刀尖应力大、切削温度高、化学活性高、粘结磨损及扩散磨损较突出、弹性恢复大、化学亲合性高等特点,因此在切削加工过程中容易产生粘刀、剥落、咬合等现象,刀具温度迅速升高,导致刀具磨损,甚至完全破坏。 正因为钛合金具有比强度高、耐腐蚀性好、耐高温等优点,从20世纪50年代开始,钛合金在航空航天领域中得到了迅速的发展。钛合金是当代飞机和发动机的主要结构材料之一,可以减轻飞机的重量,提高结构效率。在飞机用材中钛的比例,客机波音777为7%,运输机C-74为10.3%,战斗机F-4为8%。但是由于钛合金价格高,耐磨性差等原因,限制了其使用领域。 近几十年以来,国内外针对航天航空应用所研究的钛合金等均取得了很大进步,许多合金也得到广泛应用。本文针对航天航空产品中钛合金铣削加工技术进行论述,供同行们参考。 1. 钛合金简介 钛是同素异构体,熔点为1 720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,钛合金有三种基体组织,钛合金也就分为以下三类: (1)α钛合金它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。 (2)β钛合金它是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1 372~1 666MPa;但热稳定性较差,不宜在高温下使用。 (3)α +β钛合金它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400~500℃的温度下长期工作,其热稳定性次于α钛合金。 三种钛合金中最常用的是α钛合金和α +β钛合金;α钛合金的切削加工性最好,α+β钛合金次之,β钛合金最差。α钛合金代号为TA,β钛合金代号为TB,α +β钛合金代号为2. 钛合金铣削加工时切屑的形成 由于钛合金工件材料有不同的种类,各种材料的切削加工性不同,切削条件不同,切削变形的程度也就不同,因而所产生的切屑形态也就多种多样。归纳起来,可分为以下四种类型:带状切屑、节状切屑(锯齿状切屑)、粒状切屑及崩碎切屑,如图1所示。锯齿状切屑

钛合金切削加工知识

合金磨削刀具-钛合金的切削加工 首页>行业信息>行业信息> 合金磨削刀具-钛合金的切削加工 摘要:文件地点传真-500kV世博输变电工程设备采购招标混凝土机械设备-我国混凝土泵车的研发趋势器 材行业企业-2008年是纺织机械发展预测除尘器粉尘气体-现代锅炉除尘设备简介控制器技术空调-我国将 制定变频控制器标准终结市场混乱新产品功能水平-中联环卫机械公司五款新产品通过验收波兰装配厂-扩 大欧洲市场份额徐工波兰装配厂落成叉车鸟巢开幕式-龙工叉车为奥运鸟巢极速“变装”出力(图)刀具加工 刀片-Kennametal公司推出KB9640新刀具工程机械企业-工程机械租赁业发展前景广阔1.钛合金可分为哪几类?钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以 上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,合金,磨削,刀具,丝锥,切屑,砂轮,磨损,铰刀,硬质合金,温度, 1.钛合金可分为哪几类? 钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,钛合金有三种基体组织,钛合金也就分为以下三类: (1) α钛合金:它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500℃~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。 (2) β钛合金:它是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1372~1666 MPa;但热稳定性较差,不宜在高温下使用。 (3) α+β钛合金:它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400℃~500℃的温度下长期工作,其热稳定性次于α钛合金。 三种钛合金中最常用的是α钛合金和α+β钛合金;α钛合金的切削加工性最好,α+p钛合金次之,β钛合 金最差。α钛合金代号为TA,β钛合金代号为TB,α+β钛合金代号为TC。 2.钛合金有哪些性能和用途? 钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。99.5%工业纯钛的性能为:密度ρ=4.5g/cm3,熔点为1800℃,导热系数 λ=15.24W/(m.K),抗拉强度σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa,硬度HB195。 (1)比强度高:钛合金的密度一般在4.5g/cm3左右,仅为钢的60%,纯钛的强度接近普通钢的强度,一些高强度钛合金超过了许多合金结构钢的强度。因此钛合金的比强度(强度/密度)远大于其他金属结构材料, 见表7-1,可制出单位强度高、刚性好、质轻的零、部件。目前飞机的发动机构件、骨架、蒙皮、紧固件 及起落架等都使用钛合金。

钛合金加工工艺技术研究

钛合金加工工艺技术研究 发表时间:2018-11-17T18:52:43.813Z 来源:《建筑模拟》2018年第24期作者:翁刚 [导读] 选择一种科学合理的钛合金加工工艺技术,能够加强钛合金加工结构的稳定性能,从而确保钛合金加工结构的寿命。 翁刚 中国电子科技集团第四十九研究所黑龙江哈尔滨 150001 摘要:选择一种科学合理的钛合金加工工艺技术,能够加强钛合金加工结构的稳定性能,从而确保钛合金加工结构的寿命。但是由于钛合金加工的工艺技术可能会对加工结构的本身造成影响出现加工结构变形等问题,因此必须要选择一种科学合理的钛合金加工工艺技术,确保工艺技术的实际操作效能。 关键词:钛合金加工工艺 一、钛合金的认识 钛是20世纪50年代发展起来的一种重要的结构金属,钛合金强度高、耐蚀性好、耐热性高。20世纪50~60年代,主要是发展航空发动机用的高温钛合金和机体用的结构钛合金。70年代开发出一批耐蚀钛合金,80年代以来,耐蚀钛合金和高强钛合金得到进一步发展。因为这些优点,钛合金应用很广泛。例如,钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。加工既要保证质量,又要使其变形尽可能地小,这样才能使尺寸不变,所以工艺就尤为的重要。 二、钛合金加工 2.1加工变形的原因 加工是个局部加热的过程,因为在加工中受到了不均匀、不全面的加热会造成加工缝隙和周边部位的温度升高,但是此时离缝隙较远距离的部位因为受到的加热不够甚至没有受到加热而温度极低,这样就会造成钛合金在加工中在热胀冷缩的原理下,在加工表面形成不同横向和纵向的纹路收缩,导致不同方向的纹路收缩交织在一起造成钛合金加工变形。这一过程是不可避免的,因为在加热过程中的受热面积不易控制,因此在钛合金加工中会经常发生。 2.2减少变形的措施 根据以往的工作和实践经验,并且通过相关理论知识的积累,相关工作人员应该对不同的钛合金加工工艺方案进行商讨,以便确定最佳钛合金加工供工艺方案,以此确保钛合金加工的无损检验工作顺利开展。同时,也要选择合适恰当、科学合理的钛合金加工手段,严格按照加工工序来进行钛合金加工工作,此外,要注意加大钛合金加工的约束力,以此来有效减少钛合金加工变形的可能性。另外,要注意选择恰当的钛合金加工缝隙的接口参数以及恰当的钛合金加工规范参数。以上这些方法和措施都能够有效保证钛合金加工工作的有效进行,从而为钛合金加工工艺工作打下良好的基础,保证钛合金加工工作的高质量。 三、钛合金加工工艺技术 3.1绿色的钛合金工艺技术 近几年我国大力推崇绿色生产、绿色经营,这些概念就意味着我国绝大多数制造业和大型机械设备制造业都开始向节能减排的绿色生产技术的方向发展。因此,我国现在在钛合金工艺技术方面也在进行着绿色检测,这也就意味着我国采用的工艺技术将会是对环境友好的方法,而逐步淘汰那些传统落后并且不利于环境保护的工艺方法。例如钛合金加工中的着色渗透检测技术,由于过多采用对环境可持续发展不利的磁粉探测,已经逐步被相关人员淘汰,转而使用漏磁无损监测技术,这一技术具有极高的灵敏度,可以在钛合金加工中进行智能及可视化工艺。同时,钛合金加工中采用的数字荧光和图像荧光工艺技术能够与传统的胶片相媲美,但是其相对于胶片技术来说却更加的绿色环保,并且易于储存、能够远距离传递信息,还可以进行循环利用。因此,绿色环保的钛合金工艺技术将会被越来越多的采用。 3.2钛合金加工的信息化和智能化工艺技术 随着我国科学技术和计算机技术的发展,制造业中对于信息化和智能化技术的应用也越来越普遍。因此,钛合金加工的工艺,也就利用了信息化和智能化的检测技术,通过这一手段可以通过晶片传感技术,通过结合计算机和信息技术,对于钛合金加工的各环节信息进行集成化的收集和记录,并且通过利用发达的信息系统功能及智能化的高科技检测设备对钛合金加工的工作成果进行监测,真正让钛合金加工工艺技术变得更为方便快捷。此外,这一技术还能够减少相关工作人员的工作量,最大程度的保证工作人员的工作效率和工作效果。 3.3钛合金加工的超声波工艺技术 钛合金加工工艺技术应用较为普遍的还有超声波工艺技术,这一技术是利用不同的媒介中超声波的传播速度不同的原理进行工作的。一旦钛合金加工中出现失误或者错误,会导致钛合金的内部构造的材质不同,这一不同可以通过运用钛合金加工的超声波工艺技术检测出来,确定钛合金加工中的具体失误位置及其由于失误造成的缺陷的缺陷大小,确保能够制定出相应的科学合理的钛合金加工工艺方案。此外,利用这一工艺技术还能够保证有缺陷的钛合金加工的工艺的准确性。同时,利用这一技术还能够及时分析出钛合金加工的缺陷,有助于相关工作人员及时进行钛合金加工的补救工作,从而保证钛合金加工的工作效果。另外,超声波技术的使用会让钛合金在加工中能够满足钛合金在现实生活中的应用需求,极大的促进了钛合金加工技术的发展。 3.4钛合金加工的射线工艺技术 在钛合金加工中也应用到了射线工艺技术,最常用的一种就是在X射线的条件下进行加工的工艺,这一技术能够将钛合金内部有缺陷的部位进行全面检测,能够确保钛合金加工的工艺技术的完整性。这一技术的工作原理是,钛合金在加工中会形成厚度差异,不同的厚度在相同时间里吸收的射线是不同的,通过深入分析钛合金加工面所吸收的射线种类,然后进行对比分析就可以确定钛合金加工的缺陷位置,并且能够确定缺陷位置的具体性质和表面积。通过应用钛合金加工的射线工艺技术,能够加强钛合金加工结构的服务性功能,不仅能够及时准确的分析出缺陷的具体位置,还能够保障钛合金加工结构的使用寿命,及时消除在使用钛合金加工结构中可能存在的安全隐患,确保钛合金加工结构的使用效能。 四、结束语 通过以上分析可以看出,科学合理的应用钛合金加工的工艺技术,能够在一定程度上加大加工结构的使用范围,同时能够提升钛合金加工结构的抗压能力和承载能力。但是通过以上钛合金加工工艺技术的分析可以了解到,不同的工艺技术,其检测机理和检测效果是不同

纯钛及钛合金热加工性能全参数

纯钛热加工性能参数 1. 来料牌号及化学成分 注:合金牌号对应标准GB/T3620.1-2007 2.纯钛的物理性能 熔点1668±4℃ 密度ρ=4.5g/cm3 弹性模量E=1.17×105MPa、G=0.44×105Mpa(约为钢的54%)导热系数λ=19.3Wm-1K-1 热膨胀系数10.2×10-6/℃(室温-700℃) 泊松比υ=0.33

3.常温下力学性能 4. 加热规范 板坯在热轧前需要在加热炉中均匀加热, 为防止氧扩散,应限制加热温度和时间,因此,从成材率、表面质量考虑,该扩散层的厚度越薄越好,为此,热轧带卷加热温度的设定应在保证稳定轧制并可卷制成带的情况下,尽可能低。通常工业纯钛在加热炉内最好加热至800~920℃。 纯钛料轧制时的加热制度和终轧温度 5. 轧制过程控制 热轧分为粗轧和精轧。粗轧通常使用可逆式轧机,从厚板坯(80~300mm )的轧制到供精轧机轧制的板材厚度(25~40mm ),需经5~7个道次的轧制。纯钛的粗轧终轧温度为790℃。精轧工序在6~7台串列式轧机进行,可将25~40mm 的板坯连续加工成钛带材(厚3~6mm ),轧制速度可达

300~600m/min。 轧制过程温度控制参数为:钛板坯在加热炉中加热到800~920℃,在910℃出炉;粗轧终轧温度为790℃,连续热轧时钛坯温度控制在650~800℃范围,终轧温度为670℃;在470~490℃温度范围进行卷取。轧制后立即将钛带在输出辊道上用水冷或空冷的方法,以大于5~10℃/s的速度冷却,在低于500℃时卷取,以保证带卷材质均匀。 其它工艺要点有:严格控制初轧及连轧时各机架压下量和各机架上带材的温度;避免辊道对带材表面划伤;每轧3~4块清理一下辊道上的金属沾污;热轧带卷初始阶段,需要建立一个稳定的、大于4MPa/mm2的后张力,防止因带材卷乱或松卷引起划伤。 轧制温度对纯钛的单位压力的影响

钛合金特性及加工方法

钛合金特性及加工方法文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

钛合金特性及加工方法 钛合金以其强度高、机械性能及抗蚀性良好而成为飞机及发动机理想的制造材料,但由于其切削加工性差,长期以来在很大程度上制约了它的应用。随着加工工艺技术的发展,近年来,钛合金已广泛应用于飞机发动机的压气机段、发动机罩、排气装置等零件的制造以及飞机的大梁隔框等结构框架件的制造。我公司某新型航空发动机的钛合金零件约占零件总数的11%。本文是在该新机试制过程中积累的对钛合金材料切削特性以及在不同加工方法下表现出的具体特点的认识及所应采取工艺措施的经验总结。 1 钛合金的切削加工性及普遍原则 钛合金按金属组织分为a相、b相、a+b相,分别以TA,TB,TC表示其牌号和类型。我公司某新型发动机所用材料为TA,TC两种。一般铸、锻件采用TA系列,棒料用TC系列。 特点及切削加工性 钛合金相对一般合金钢具有以下优点: 比强变高:钛合金密度只有4.5g/cm3,比铁小得多,而其强度与普通碳钢相近。 机械性能好:钛合金熔点为1660℃,比铁高,具有较高的热强度,可在550℃以下工作,同时在低温下通常显示出较好的韧性。

抗蚀性好:在550℃以下钛合金表面易形成致密的氧化膜,故不容易被进一步氧化,对大气、海水、蒸汽以及一些酸、碱、盐介质均有较高的抗蚀能力。 另一方面,钛合金的切削加工性比较差。主要原因为: 导热性差,致使切削温度很高,降低了刀具耐用度。 600℃以上温度时,表面形成氧化硬层,对刀具有强烈的磨损作用。 塑性低、硬度高,使剪切角增大,切屑与前刀面接触长度很小,前刀面上应力很大,刀刃易发生破损。 弹性模量低,弹性变形大,接近后刀面处工件表面回弹量大,所以已加工表面与后刀面的接触面积大,磨损严重。 钛合金切削过程中的这些特点使其加工变得十分困难,导致加工效率低,刀具消耗大。 切削加工的普遍原则 根据钛合金的性质和切削过程中的特点,加工时应考虑以下几个方面:尽可能使用硬质合金刀具,如钨钴类硬质合金与钛合金化学亲和力小、导热性好、强度也较高。低速下断续切削时可选用耐冲击的超细晶粒硬质合金,成形和复杂刀具可用高温性能好的高速钢。 采用较小的前角和较大的后角以增大切屑与前刀面的接触长度,减小工件与后刀面的摩擦,刀尖采用圆弧过渡刃以提高强度,避免尖角烧损和崩刃。

钛合金的切削加工及刀具设计

钛合金的切削加工及刀具设计 核心提示:分析了钛合金的相对可切削性,阐述了钛合金切削加工条件;以钛合金车加工和孔加工为例介绍了钛合金加工刀具的设计. 1.引言 钛及钛合金不仅是制造飞机、导弹、火箭等航天器的重要结构材料,而且在机械工程、海洋工程、生物工程及化学工程中的应用也日益广泛。如在阀门制造中,将不锈钢阀门与钛制阀门同时在酸性介质中使用,钛制阀门具有更好的使用寿命。 在钛中加入合金元素形成钛合金,其强度显着提高,σb可从350~700MPa提高到1200 MPa,因此在工业上应用钛合金的意义更具重要性。通常按使用状态下的组织将钛合金分为α钛合金(以TA表示)、β钛合金和(α+β)钛合金(以TC表示)三类,三种钛合金中最常用的是α钛合金和(α+β)钛合金。由于钛合金可切削性极差,因此给实际应用带来很多困难。笔者从钛合金的相对可切削性研究出发,根据多年生产经验提出较实用的刀具,供读者应用时参考。 2.钛合金可切削性的研究 若以45号钢的可切削性为100%,则钛合金的可切削性约为20~40%,其可切削性比不锈钢差,但比高温合金稍好。在钛合金中又按β型钛合金、α+β型钛合金、α型钛合金为序其可切削性逐步改善,而纯钛的可切削性最好。即在一般情况下,材料硬度愈高,加入合金元素越多,材料的可切削性越差。加工钛合金时,若材料硬度小于HB 300将会出现强烈粘刀现象,而硬度大于HB370时加工又极其困难,因此最好使钛合金材料的硬度在HB300~370之间。 2.1 钛合金切削机理的研究 (1)气体杂质的影响 各种气体杂质对于钛合金的可切削性有很大影响,其中最显着的是氧、氢和氮;钛合金的可切削性随着气体在钛合金中的含量增加而恶化。

钛合金加工工艺技术研究_李富长

钛合金加工工艺技术研究 李富长,宋祖铭,杨典军 (南京机电液压工程研究中心,江苏南京211102) 摘 要:钛合金材料是目前较难加工的材料之一,因其热传导系数小、比热低、化学性能活泼等特点,给机械加工带来一定的难度。本文通过某产品钛合金摇臂的工艺性及工艺难点分析,并通过工装、刀具、冷却液、切削参数等方面分析和选择,总结出钛合金加工的普遍原则。 关键词:钛合金加工;加工难点;加工方法 中图分类号:TG146.23 文献标志码:B Research on Titanium Alloy Machining Technology LI F uchang,SON G Zuming,Y A NG Dianjun (N anjing Engineering Institute of A ircraft Sy stems,Nanjing211102,China) A bstract:Titanium alloy material is hard to process.T he machining of titanium alloy material is quite challenging due to its small the rmal co nductivity,low specific heat and active chemical proper ty features,etc.T his a rticle analy ze s the manu-facturability and technical challenges w hen machining tita nium allo y rocker arm fo r so me aviation pro ducts,a nd then sum-ma rizes the g ener al principle s fo r titanium alloy machining based on analysis and selection of too l,fix tur es,co olant,cutting pa rameters,etc. Key words:T itanium alloy machining,M achining challenges,M achining me tho ds 钛合金以其质量轻、强度高、力学性能及抗蚀性能良好而成为飞机及发动机理想的制造材料,特别是未来新型战机将大量使用钛合金,这有助于提高飞机的耐热性、减轻机体质量、增大机体强度。但由于钛合金材料导热系数低、塑性低、硬度高、弹性模量低、弹性变形大等特点,造成钛合金材料切削加工性差,长期以来在很大程度上制约了它的应用。 本文通过介绍某型号方向舵机中输出摇臂的机械加工,通过工艺难点分析、工装、刀具、冷却液的选择等几方面对钛合金加工进行阐述,为今后钛合金材料零件的加工提供借鉴。 1 工艺性分析 该零件为某型号方向舵机中输出摇臂(零件示意图见图1),该零件主要加工特性有:1)零件为模锻件,材料为TC6;2)零件外形复杂,不规则;3)内部加工难点是一处内孔18+0.02  0mm,长120±0.05 mm,为基准孔;4)4处不连续的10+0.016  0mm孔,最长孔70mm;5)1处6+0.013  0mm,长60mm的不连续孔,内孔表面粗糙度为0.8μm,各孔同轴度允差0.04mm,相对基准A平行度允差0.05m m。 由于钛合金材料强度高,导热系数低,因此在切削加工过程中,易于在切削区域形成高温,散热慢,不利于热平衡,散热和冷却效果很差,加工后零件变形回弹大,易引起变形。为了阻止变形对加工精度的影响,必须合理安排工艺路线,采用合理的刀具及切削参数,并要采取热处理(人工时效,消除加工应力)措施。根据对零件材料性质、设计要求和加工要素的分析,确定加工流程见图2。 粗加工阶段,主要是为了加工定位基准面(孔),对精度要求不高的外部轮廓直接加工到图样要求的尺寸;精度要求高的孔(如18+0.02  0m m孔、 10+0.016  0 m m孔、6+0.013  0mm孔)和平面(如两端面)留有余量,待精加工完成。粗加工阶段以后,安排热处理工序(人工时效,消除加工应力),目的是消除粗加工阶段产生的加工应力。精加工阶段主要采用加工中心、座标镗、平磨、研磨等精加工工序完成零件的加工。 2 工艺难点及解决措施 2.1 工艺难点 1)钛合金的切削加工性比较差,主要因为: a.导热性差,致使切削温度很高,降低了刀具耐用度; b.加工表面温度达到600℃以上时,零件表面形成氧化硬层(硬化层厚度约为0.1~0.15m m),对刀具有强烈的磨损作用; c.塑性低、硬度高,使剪切角增大,切屑与前刀面接触长度很小,前刀面上应力很大,刀刃易发生破损; d.弹性模量低,弹性变形大,接近后刀面处工件表面回弹量大,所以已加工表面与后刀面的接触面积大,磨损严重。钛合金切削过程中的这些特点使其加

钛及钛合金牌号和化学成分汇总

《钛及钛合金牌号和化学成分》(2009/11/30 15:05) (引用地址:未提供) 目录:行业知识 浏览字体:大中小 《钛及钛合金牌号和化学成分》 目前,金属钛生产的工业方法是可劳尔法,产品为海绵钛。制取钛材传统的工艺是将海绵钛经熔铸成锭,再加工而成钛材。按此,从采矿到制成钛材的工艺过程的主要步骤为: 钛矿->采矿->选矿->太精矿->富集->富钛料->氯化->粗 TiCl4->精制->纯TiCl4->镁还原->海绵钛->熔铸->钛锭->加工->钛材或钛部件上述步骤中如果采矿得到的是金红石,则不必经过富集,可以直接进行氯化制取粗TiCI4。另外,熔铸作业应属冶金工艺,但有时也归入加工工艺。 上述工艺过程中的加工过程是指塑性加工和铸造而言。塑性加工方法又包括锻造、挤压、轧制、拉伸等。它可将钛锭加工成各种尺寸的饼材、环材、板材、管材、棒材、型材等制品,也可用铸造方法制成各种形状的零件、部件。

钛和钛合金塑性加工具有变形抗力大;常温塑性差、屈服极限和强度极限比值高、回弹大、对缺口敏感、变形过程易与模具粘结、加热时又易吸咐有害气体等特点,塑性加工较钢、铜困难。 故钛和钛合金的加工工艺必须考虑它们的这些特点。 钛采用塑性加工,加土尺寸不受限制,又能够大批量生产,但成材率低,加工过程中产生大量废屑残料。钛材生产的原则流程如图1—1。 针对钛塑性加工的上述缺点,近年来发展了钛的粉末冶金工艺。钛的粉末冶金流程与普通粉末冶金相同,只是烧结必须要在真空下进行。它适用乎生产大批量、小尺寸的零件,特别适用于生产复杂的零部件。这种方法几乎无须再经过加工处理,成材率高,既可充分利用钛废料作原料,又可以降低生产成本,但不能生产大尺寸的钛件。钛的粉末冶金工艺流程为:钛粉(或钛合金粉)->筛分->混合->压制成形->烧结->辅助加工->钛制品。

钛合金材料铣削加工

钛合金材料铣削加工 1钛合金材料的优势 钛合金具有高强度、高断裂韧性以及良好的抗腐蚀性和可焊接性。随着飞机机身越来越多地采用复合材料结构,钛基材料用于机身的比例也将日益增大,因为钛与复合材料的结合性能远远优于铝合金。例如:与铝合金相比,钛合金可使机身结构的寿命提高60%。 钛合金极高的强度/密度比(达20∶1,即重量可减轻20%)为减轻大型构件的重量(这是对飞机设计师的主要挑战)提供了解决方案。此外,钛合金固有的高耐蚀性(与钢材相比)可以节省飞机日常运行和维护保养的成本。 2需要更大加工能力 由于比普通合金钢的加工更为困难,因此通常认为钛合金属于难加工材料。典型钛合金的金属去除率仅为大多数普通钢或不锈钢的25%左右,因此加工一个钛合金工件需要花费的时间约为加工钢件的4倍。 为了满足航空制造业对钛合金加工日益增长的需求,制造商需要增加生产能力,因此需要更好地理解钛合金加工策略的有效性。典型的钛合金工件的加工是从锻造开始的,直到80%的材料被去除而获得最终的工件外形。 随着航空零部件市场的快速增长,制造商们已经感到力不从心,加上因钛合金工件加工效率较低而增加的加工需求,导致钛合金加工能力明显处于紧张状态。一些航空制造业的领军企业甚至公开质疑现有的机械加工能力能否完成全部新型钛合金工件的加工任务。由于这些工件通常是由新型合金制成,因此需要改变加工方式和刀具材料。 3钛合金Ti-6Al-4V 钛合金有三种不同的结构形式:α钛合金、α-β钛合金和β钛合金。商用纯钛和α钛合金不能进行热处理,但通常具有良好的可焊接性;α-β钛合金可进行热处理,大多数也具有可焊接性;β和准β钛合金完全能进行热处理,且一般也具有可焊接性。 用于涡轮发动机和机身构件的大部分普通α-β钛合金为Ti-6Al-4V(Allvac Ti-6-4,简称Ti-6-4),本文用Ti-6-4代表ATI Allvac公司生产的钛合金,该公司是钛合金的主要供应商(最近与波音公司签订了一项25亿美元的钛合金长期供货合同)。另外,与ATI Allvac公司合作开发加工解决方案的ATI Stellram公司也采用这些钛合金代号来描述加工要求。 Ti-6-4具有优异的强度、断裂韧性和抗疲劳综合性能,可制成各种产品形态。退火态的Ti-6-4可广泛应用于结构件。通过化学成分的微小变化以及不同的热机械处理工艺,用Ti-6-4可生产出各种不同用途的零部件。 4钛合金Ti-5Al-5V-5Mo-3Cr Ti-5Al-5V-5Mo-3Cr(简称Ti-5-5-5-3)是一种颇具市场影响力的新型钛合金。与β钛合金和α-β钛合金相比,这种准β钛合金可以提供在要求更高抗张强度的飞机构件应用中所需的疲劳断裂韧性。 与传统钛合金(如Ti-6-4和Ti-10-2-3)相比,Ti-5-5-5-3具有的可锻造成复杂形状、热处理后最终抗张强度可达180ksi(每平方英寸数千磅)等性能使其成为制造飞机高级构件和起落装置最有前途的材料。 通过在β转变温度以下进行溶解热处理或在β转变温度以上进行退火处理,同时适当控制显微结构中的晶粒尺寸和沉淀,Ti-5-5-5-3可获得优异的机械性能。β转变温度是合成物的特定温度,在此温度下合金从α-β显微结构转变为全β显微结构。 化学性能与微观结构的变化使钛合金可获得宽范围的性能组合,并因此在航空构件中获得广泛应用。Ti-5-5-5-3的加工难度与Ti-6-4相比大约增加了30%,因此应用这种新型合金的零件制造商正致力于开发能够不缩短刀具寿命、不延长生产周期的相应的加工工艺。

钛合金加工性能

一,钛合金大类综述 钛合金具有强度高而密度又小,机械性能好,韧性和抗蚀性能很好。另外,钛合金的工艺性能差,切削加工困难,在热加工中,非常容易吸收氢氧氮碳等杂质。还有抗磨性差,生产工艺复杂。 钛合金是航空航天工业中使用的一种新的重要结构材料,比重、强度和使用温度介于铝和钢之间,但比强度高并具有优异的抗海水腐蚀性能和超低温性能。钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。 室温下,钛合金有三种基体组织,钛合金也就分为以下三类:α合金,(α+β)合金和β合金。中国分别以TA、TC、TB表示。 钛合金性能特点: ①使用温度高,在中等温度下仍能保持所要求的强度,可在450~500℃的温度下长期工作。②钛合金在潮湿的大气和海水介质中工作,其抗蚀性远优于不锈钢;对点蚀、酸蚀、应力腐蚀的抵抗力特别强;对碱、氯化物、氯的有机物品、硝酸、硫酸等有优良的抗腐蚀能力。但钛对具有还原性氧及铬盐介质的抗蚀性差。③钛合金在低温和超低温下,仍能保持其力学性能。低温性能好,间隙元素极低的钛合金,如TA7,在-253℃下还能保持一定的塑性。因此,钛合金也是一种重要的低温结构材料。 二,典型牌号分析 三,难加工原因 钛合金的硬度大于HB350时切削加工特别困难,小于HB300时则容易出现粘刀现象,也难于切削。 ①,变形系数小:这是钛合金切削加工的显著特点,变形系数小于或接近于1。切屑 在前刀面上滑动摩擦的路程大大增大,加速刀具磨损。 ②,切削温度高:由于钛合金的导热系数很小,切屑与前刀面的接触长度极短,切削 时产生的热不易传出,集中在切削区和切削刃附近的较小范围内,切削温度很高。 在相同的切削条件下,切削温度可比切削45号钢时高出一倍以上。 ③,单位面积上的切削力大:主切削力比切钢时约小20%,由于切屑与前刀面的接触 长度极短,单位接触面积上的切削力大大增加,容易造成崩刃。同时,由于钛合金的弹性模量小,加工时在径向力作用下容易产生弯曲变形,引起振动,加大刀具磨损并影响零件的精度。因此,要求工艺系统应具有较好的刚性。 ④,冷硬现象严重:由于钛的化学活性大,在高的切削温度下,很容易吸收空气中的 氧和氮形成硬而脆的外皮;同时切削过程中的塑性变形也会造成表面硬化。冷硬现象不仅会降低零件的疲劳强度,而且能加剧刀具磨损,是切削钛合金时的一个很重要特点。 ⑤,刀具易磨损:毛坯经过冲压、锻造、热轧等方法加工后,形成硬而脆的不均匀外 皮,极易造成崩刃现象,使得切除硬皮成为钛合金加工中最困难的工序。另外,由于钛合金对刀具材料的化学亲和性强,在切削温度高和单位面积上切削力大的条件下,刀具很容易产生粘结磨损。 四,拟采取的措施 1,刀具材料 切削加工钛合金应从降低切削温度和减少粘结两方面出发,选用红硬性好、抗弯强度高、导热性能好、与钛合金亲和性差的刀具材料,YG类硬质合金比较合适。常用的硬质合金刀具材料有YG8、YG3、YG6X、YG6A、813、643、YS2T和YD15等。2,刀具几何参数

钛合金3-钛合金加工工艺分析

钛合金的加工工艺 钛合金有着与钛金属类似的大气高温污染(吸收氢氧氮)、强度高导致的刀具寿命短、导热性差导致的粘刀等等一系列麻烦。此外,热加工带来的金属相不均匀,晶粒粗大,残余应力,等等,也是钛合金热加工的难题。因此,工业纯钛和钛合金基材,在国际上基本是自由贸易(这与高性能碳纤维复合材料的禁运有很大的差异。详情见拙文《浅析碳纤维复合材料在航空航天领域的应用https://www.360docs.net/doc/f72436632.html,/s/blog_56c70d4b010165l9.html》)然而,买得起未必用得起,正是加工工艺的复杂,将绝大多数国家挡在了钛合金应用的门外。 下面,我们来看***钛合金加工工艺的情况。 一、下料切割工艺 钛合金制件之前,先要将大块钛合金进行初步切割,做下料准备。钛合金的切割,不像一般金属,很难用火焰方法进行,否则高温污染会导致材料脆化。因此多用等离子切割、激光切割、铣切来进行。但是这些方法,要么是材料容易产生热应力离散变形(如激光切割)、或者成本太高无法满足大量生产(如离子束切割),要么是残料率高(如铣切)。因此,人们想出了另一种常温切割方式:高压水切割。 水切割,就是水刀,呵呵。以前咱听说水滴石穿,那可要万年功夫。这次是水切钛断,立等可取啊。 中国航空报载,沈飞公司工艺研究所的首席专家蒲永伟,对水切割技术有深厚积累,潜心研究此项技术的钛切割应用,获得成功,顺利实施了40~100毫米厚的钛合金板材切割。由于是常温操作,切割质量好,且其效率是常规切割方法的50倍以上,材料费大大节约。至今,钛合金的水切割方式,在国内的应用已经接近10年。 二、铸造工艺

铸件加工,需要熔化钛合金进行浇注。同样,由于钛合金的化学活性,熔化的液态钛合金,几乎与所有的耐火材料起反应。因此其熔化和浇注必须在惰性气体(如氩气)保护或者真空环境下进行。 国内应用方面: 中国船舶新闻网报道,中国在消化吸收国外先进技术的基础上,掌握和发展了金属型、捣实型、机加工石墨型,以及氧化物面层陶瓷型壳等钛合金铸造技术,可以生产最大直径达150 0毫米X400毫米,最小壁厚为0.8毫米,单重达到近800千克的整体钛合金铸件,每年铸造钛合金用量达5000吨,具备了钛及钛合金精密铸件的基本生产技术。 根据热加工论坛的报道:我国航天用铸造钛合金的应用始于20世纪80 年代中期,现已有ZTi3,ZTiAl4,ZTiAl5Sn2. 5,ZTiAl6V4,ZTiAl6Zr2MoV等品牌(品牌的第一个字母Z,代表铸造)。 2001年,由北航、华中理工研制的ZTC4 钛合金(即对TC4进行铸造加工后的合金件),利用热等静压和熔模精密铸造成型技术,研制了某型飞机用钛合金精铸件。该铸件外型尺寸为6 30mm ×300mm ×130mm ,最小壁厚2. 5mm ,为复杂的框形结构。 中科院金属研究所网站报道: 2011年5月,沈阳向中国科学院金属研究所研发的钛铝母合金制备技术,通过了英国罗罗公司(Rolls-Royce)的质量审核。 2013年4月17日,罗罗航空发动机公司在沈阳,正式向该所颁发了钛铝涡轮叶片精密铸造技术质量认证证书。

相关文档
最新文档