电传操纵系统

电传操纵系统
电传操纵系统

电传操纵系统

“电传操纵系统”是英文"Fly by wire flight control system"(FBW)的中文意译,也被译为“线传操纵系统”。它是一种先进的电子飞行控制系统。

1简介

从飞机发明直到现在,飞机的操纵系统仍然主要是机械式的操纵系统。机械操纵系统在操纵装置(操纵杆、脚蹬)和飞机的舵机之间存在着一套相当复杂的机械联动装置和液压管路,飞行员操纵操纵杆和脚蹬,通过上述联动装置控制舵机位置,从而使飞机达到希望的姿态和航向。

早期的飞机只是直接人工机械操纵。随着飞机的尺寸和速度的增加,驾驶员再直接通过钢索去拉动舵面感到困难,于是作为驾驶员辅助操纵装置的液压助力器安装在操纵系统中。它由一个并联的液压作动器来增大驾驶员施加在操纵钢索上的作用力,目前液压助力器仍在许多飞机上使用。

第二次世界大战后不久,出现了全助力操纵系统。在这种系统中,操纵钢索从驾驶杆直接连到作动器的伺服阀上,不再与操纵面发生直接机械联系。使用全助力操纵的主要原因是在跨音速飞行时,作用在操纵面上的力变化很大而且非线性很历害。这样,操纵时从操纵面反传到驾驶杆上的力从操纵品质的观点来说是难以接受的。全助力操纵系统本身是不可逆的,因此不受跨音速飞行中非线性力的影响,由于这种操纵方法不再需要飞行员的体力去改变舵面状态,使得飞行员无法直观地感受到飞机所处的状态,于是就借助一些力反馈装置来提供人工杆力,这种人工杆力虽然在移动操纵面时不需要,但在操纵飞机时给飞行员提供适当的操纵品质还是必要的,人工杆力的设计可以使人的操纵感觉从亚音速飞行平滑地过渡到超音速飞行阶段。

随着飞机尺寸的继续增加和性能的进一步提高,增加稳定性帮助飞行员操纵变得十分迫切,于是从全助力操纵系统发展到增稳系统,如偏航增稳系统、俯仰增稳系统和横滚增稳系统。系统通过传感器反馈的飞机状态,在程序控制下自动控制舵机偏转,以保证飞机静稳定性。这种增稳系统与驾驶杆或脚蹬是互相独立的,因而增稳系统的工作不影响驾驶员的操纵。

从增稳系统发展到电传操纵(FBW)系统只是很小的一步,通过加上一个离合器或其它使机械系统在不使用时断开的方法便可以实现,“协和”超音速客机上就装有这种系统。

把电传操纵系统中的机械备份完全去掉就变成了全电传操纵(FFBW)系统。

在这里我们已经能够给电传操纵系统下一个定义了:电传操纵(Flying By Wire)系统是将飞行员的操纵信号,经过变换器变成电信号,通过电缆直接传输到自主式舵机的一种系统。它去掉了传统的飞机操纵系统中布满飞机内部的从操纵杆到舵机之间的机械传动装置和液压管路。电传操纵系统的主要组成部分包括运动传感器、中央计算机、作动器和电源,它相当于动物的感觉器官、大脑和肌肉。由飞机操纵系统的发展我们可以体会到,任何事物的发展都是由需要和可能这两个因素决定的,电传操纵系统的发展也是如此。它是随着飞机(包括某些飞行器)的飞行控制技术的不断提高以及科学技术的发展而逐渐发展起来的。

电传操纵的重要性在于打破了飞机设计中需要保持静稳定性的布局,设计师们可以为战斗任务选择和优化最有效的布局,然后由储存在飞行控制计算机软件中的相应控制律增加人工稳定性。现役战斗机中已经有多种飞机采用电传操纵系统,例如F-16、幻影2000、“狂风”战斗机、F-15、Su-27、F/A-18等等。

2资料1

尽管确实存在仅仅依靠电子线路将操纵信号传递到舵机上的所谓“直接电气传动系统”的电传飞行控制系统,但工业上普遍将电传操纵系统定义为“一种利用反馈控制原理,将飞行器的运动作为受控参数的电子飞行控制系统”。由于没有机械结构,电传操纵系统的可靠性比起传统的机械式飞行控制系统要可靠很多。同时因为加入了反馈控制,使飞行员的操纵压力大大减小。

一套典型的电传操纵系统是由传感器组(各种陀螺、加速度计等惯性测量器件和迎角传感器等大气测量器件)、输入设备、飞行控制计算机、舵机和电气传输线路组成。电传操纵系统一般按照远见的电器特性分类。采用了模拟传感器、模拟式计算机和输入输出设备的系统被称之为模拟式电传操纵系统;采用了数字式传感器、数字计算机和输入输出设备的被称之为全数字式电传操纵系统。但事实上,纯数字式传感器至今也没有研制成功,因此实际上在使用的都是模拟式传感器,数字式计算机的半数字式电传操纵系统。

3资料2

一般电传操纵系统都采用余度备份系统。主要的传感器和飞行控制计算机都要留有几组完全相同且同时工作的系统,通过专门的余度管理计算机进行最后的输出。一般现代电传操纵系统都是4余度系统,也有少数3余度,或者采用解析余度的单余度系统。除了主要系统之外,电传操纵系统还留有被大大简化的备份系统。有些还留有机械备份。

电传操纵系统最早是为了解决飞行器的稳定性而开发。在二十世纪60年代后,某些飞行器为了降低阻力而造成稳定性急剧下降。还有某些飞行器在整个飞行包线内稳定性变化较大,这样导致飞行员控制压力加大,甚至根本无法控制飞机。为此,设计机构将陀螺仪加入飞机的机械控制系统中,用来产生一个辅助的控制信号,通过一套机械机构将增稳信号叠加到飞行员输入的控制信号中。在SR-71高速侦察机中,美国首次将模拟式计算机加入了作为辅助的陀螺增稳信号中。这样的系统被称之为控制增稳系统。随着70年代末电子技术的大发展,西方最早开始尝试直接将飞行员的操纵信号直接接入计算机,从而放弃了全部机械控制系统,构成了完全由电气设备组成的电传操纵系统。

4资料3

电传操纵系统的第一个用户是F-111,该机于1964年开始飞行,之后是“狂风”战斗机,F-8C,以及原西德的F-104G等短距起落运输机。而通过使用电传操纵系统使飞行器性能得到巨大提高的典范则是Su-27。Su-27因为在研制期间改用四余度模拟式电传操纵系统,从而摈弃了传统的飞机设计法则,通过使用静不稳定布局获得了性能的空前提高。而民航机中则是从A320开始使用电传操纵系统。中国的歼10也使用了4余度电传操控。使其大大提高了先进程度。[2]

飞机操纵系统发展史

飞机飞行操纵系统大作业 飞机飞行操纵系统发展史 班级: 100321 学号: 100311xx 姓名: 王尼玛 专业: 自动化 指导老师: 于黎明 二零一三年六月二十一日

飞机飞行操纵系统发展史 【摘要】 本文主要论述了的飞机飞行操纵系统的发展史,对飞机机械操纵、增稳操纵、控制增稳操纵、电传操纵、光传操纵做了详细的描述,并对未来飞机的操纵系统进行了展望。 关键词:飞机飞行操纵系统;机械操纵系统;增稳操纵系统;控制增稳操纵系统;电传操纵系统;光传操纵系统

目录 【摘要】 (1) 目录 (2) 第一章飞机操纵系统的发展历程 (3) 第二章机械操纵系统 (3) 第三章增稳操纵系统 (4) 第四章控制增稳操纵系统 (4) 第五章电传操纵系统 (4) 第六章光传操纵系统 (5) 第七章飞机操纵系统的发展趋势 (5) 参考文献 (6)

第一章飞机操纵系统的发展历程 最初的飞机操纵系统是由简单的钢索、滑轮、连杆和曲柄等机械部件组成,即我们所说的机械传动操纵系统。飞行员通过直接操纵机械传动系统来控制飞机的操纵舵面,实现对飞机姿态和飞行轨迹的控制,此时可不考虑系统本身的动特性,只需对摩擦,间隙和系统的弹性形变加以限制,便可获得满意的系统性能。随着飞机设计的发展和飞机速度的不断提高,即使使用看气动力补偿,飞行员的体力还不能适应作用于操纵舵面上的空气动力载荷,这时便产生了液压助力器,此系统实际上仍是一个除飞行员外开环的机液伺服系统。伴随着飞行包线的进一步扩大,飞机的稳定性与可操纵性之间的矛盾更加突出,相继出现了增稳操纵系统和控制增稳操纵系统,这时的系统已在局部使用了电传操纵技术,但操纵系统仍以机械通道为主控通道。为实现最佳气动布局的飞机设计,在电传操纵余度技术逐渐趋于成熟的条件下,操纵系统的机械通道有被电传通道完全取代的趋势,这便产生了现在以被广泛使用的电传操纵系统。但电传操纵系统难以克服自身易受干扰的缺陷,为了改善电传操纵系统的性能,克服自身的缺陷,在电传操纵系统内采用了新的信号传导材料——光纤。光纤作为信号传导材料与电传操纵系统相比,在抗电磁干扰、减轻重量、提高可靠性等方面有明显的优势。运用新的信号传导材料与电传操纵系统相结合所产生的操纵系统,这便是光传操纵系统的雏形。光传操纵系统对提高飞机的稳定性和满足日益提升的飞行性能产生了深远的影响。 第二章机械操纵系统 驾驶员通过机械传动装置直接偏转舵面。舵面上的气动铰链力矩通过机械联系使驾驶员获得力和位移的感觉。这种系统由两部分组成:①位于驾驶舱内的中央操纵机构;②构成中央操纵机构和舵面之间机械联系的传动装置。中央操纵机构由驾驶杆(或驾驶盘)和脚蹬组成。驾驶员前推或后拉驾驶杆可带动升降舵下偏或上偏,使飞机下俯或上仰。向左或向右压驾驶杆(或转动驾驶盘)则带动副翼偏转,使飞机向左侧或向右侧滚转。脚蹬连结着方向舵,驾驶员蹬左脚时,方向舵向左偏转,机头向左偏;反之,机头向右偏。对于各类飞机,中央操纵机构的尺寸、操纵行程和操纵力均有标准规定。通常在被操纵舵面(升降舵、副翼和方向舵)上,用气动补偿措施减少气动铰链力矩,把操纵力控制在规定范围内。机械传动装置直接带动舵面,有软式和硬式两种基本型式。软式传动装置由钢索和滑轮组成,特点是重量轻,容易绕过障碍,但是弹性变形和摩擦力较大。硬式传动装置由传动拉杆和摇臂组成,优点是刚度大,操纵灵活。软式和硬式可以混合使用。简单机械式操纵系统广泛用在亚音速飞机上。在大型高速飞机上,舵面上的气动铰链力矩很大,虽然用气动补偿的方法可以减小力矩,但很难在高低速范围内达到同样效果。40年代末出现了液压助力系统,舵面由液压助力器驱动,驾驶员通过中央操纵机构、机械传动装置控制助力器的伺服活门,间接地使舵面偏转。它同时通过杠杆系统把舵面一部分气动载荷传给中央操纵机构,使驾驶员

飞行控制系统

飞行控制系统 为了使无人机飞行控制系统具有强大的数据处理能力、较低的功耗、较强的灵活性和更高的集成度,提出了一种以SmartFusion为核心的无人机飞行控制系统解决方案。为满足飞控系统实时性和稳定性的要求,系统采用了μC/OS-Ⅱ实时操作系统。与传统的无人机飞行控制系统相比,在具有很强的数据处理能力的同时拥有较小的体积和较低的功耗。多次飞行证明,各个模块设计合理,整个系统运行稳定,可以用作下一代无人机高性能应用平台。 关键词:无人机;飞行控制系统;SmartFusion芯片;μC/OS-Ⅱ 0 引言 飞行控制系统是无人机的重要组成部分,是飞行控制算法的运行平台,它的性能好坏直接关系着无人机能否安全可靠的飞行。随着航空技术的发展,无人机飞行控制系统正向着多功能、高精度、小型化、可复用的方向发展。高精度要求无人机控制系统的精度高,稳定性好,能够适应复杂的外界环境,因此控制算法比较复杂,计算速度快,精度高;小型化则对控制系统的重量和体积提出了更高的要求,要求控制系统的性能越高越好,体积越小越好。此外,无人机飞行控制系统还要具有实时、可靠、低成本和低功耗的特点。基于以上考虑,本文从实际工程应用出发,设计了一种基于SmartFusion的无人机飞行控制系统。 1 飞控系统总体设计

飞行控制系统在无人机上的功能主要有两个:一是飞行控制,即无人机在空中保持飞机姿态与航迹的稳定,以及按地面无线电遥控指令或者预先设定好的高度、航线、航向、姿态角等改变飞机姿态与航迹,保证飞机的稳定飞行,这就是通常所谓的自动驾驶;二是飞行管理,即完成飞行状态参数采集、导航计算、遥测数据传送、故障诊断处理、应急情况处理、任务设备的控制与管理等工作。 飞行控制系统主要完成3个功能任务,其层次构成为三层:最底层的任务是提高无人机运动和突风减缓的固有阻尼——三个轴方向的阻尼器功能;第2层的任务是稳定无人机的姿态角——基本驾驶仪的功能(主要进行角运动控制);第3层的任务是控制飞行高度、航迹和飞行速度,实现较高级自动驾驶功能。飞行控制系统原理框图见图1。 由上述分析易知,飞行控制系统主要由飞行控制器、传感器(或敏感元件)、舵机3部分组成。无人机飞行控制系统的基本架构如图2所示。

飞机操控系统

飞机操纵系统发展历程和典型飞机操纵系统分析 学生: 学号: 摘要 本文简要的叙述了飞机操纵系统的发展,主要阐述了几个典型飞机操纵系统的产生和具体结构。早期的简单机械系统即可达到飞行的要求,但随着飞机速度和机动性要求的不断提高,飞机操纵系统的性能也不断完善。飞机操纵系统经历了简单机械系统、控制增稳系统、电传操纵系统和光传操纵系统这几个阶段。最后飞机操作系统的每一次改变都是航空发展史上的伟大进步。 关键词:机械操纵系统、控制增稳系统、电传操纵系统、光传操纵系统 Aircraft control system development process and typical aircraft control system analysis Student: Liu He Student ID: 11031182 Abstract This article briefly describes the development of aircraft control systems, mainly on the production and the specific structure of several typical aircraft control systems. Early flight can be achieved by a simple mechanical system, but with the constant increase in air speed and maneuverability, performance aircraft control systems are constantly

飞机操纵系统

飞机操纵系统(卷名:航空航天) aircraft control system 传递操纵指令、驱动舵面和其他机构以控制飞机飞行姿态的系统。根据操纵指令的来源,可分为人工操纵系统(由主操纵系统和辅助操纵系统组成)和自动控制系统。 主操纵系统用于控制飞机飞行轨迹和姿态,由升降舵(或全动平尾)、副翼和方向舵的操纵机构组成(图1)。主操纵系统应使驾驶员有位移和力的变化感觉,这是它与辅助操纵系统的主要差别。辅助操纵系统包括调整片、襟翼、减速板、可调安定面和机翼变后掠角操纵机构等。它们的操纵只是靠选择相应开关位置,通过电信号接通电动机或液压作动筒来完成。自动控制系统的操纵指令来自系统的传感器,能对外界的扰动自动作出反应,以保持规定的飞行状态,改善飞机飞行品质。常用的自动控制系统有自动驾驶仪、各种增稳系统、自动着陆系统和主动控制系统。自动控制系统的工作与驾驶员的操纵是各自独立、互不妨碍的。飞机主操纵系统经历了由简单初级到复杂完善的发展过程。先后出现了机械式操纵、可逆、不可逆助力操纵和电传操纵,并在电传操纵基础上发展了主动控制技术。 简单机械操纵系统驾驶员通过机械传动装置直接偏转舵面。舵面上的气动铰链力矩通过机械联系使驾驶员获得力和位移的感觉。这种系统(图1 )由两部分组成:①位于驾驶舱内的中央操纵机构;②构成中央操纵机构和舵面之间机械联系的传动装置。中央操纵机构由驾驶杆(或驾驶盘)和脚蹬组成。驾驶员前推或后拉驾驶杆可带动升降舵下偏或上偏,使飞机下俯或上仰。向左或向右压驾驶杆(或转动驾驶盘)则带动副翼偏转,使飞机向左侧或向右侧滚转。脚蹬连结着方向舵,驾驶员蹬左脚时,方向舵向左偏转,机头向左偏;反之,机头向右偏。对于各类飞机,中央操纵机构的尺寸、操纵行程和操纵力均有标准规定。通常在被操纵舵面(升降舵、副翼和方向舵)上,用气动补偿措施减少气动铰链力矩,把操纵力控制在规定范围内。机械传动装置直接带动舵面,有软式和硬式两种基本型式。软式传动装置由钢索和滑轮组成,特点是重量轻,容易绕过障碍,但是弹性变形和摩擦力较大。硬式传动装置由传动拉杆和摇臂组成,优点是刚度大,操纵灵活。软式和硬式可以混合使用。 简单机械式操纵系统广泛用在亚音速飞机上。在大型高速飞机上,舵面上的气动铰链力矩很大,虽然用气动补偿的方法可以减小力矩,但很难在高低速范围内达到同样效果。40年代末出现了液压助力系统,舵面由液压助力器驱动,驾驶员通过中央操纵机构、机械传动装置控制助力器的伺服活门,间接地使舵面偏转。它同时通过杠杆系统把舵面一部分气动载荷传给中央操纵机构,使驾驶员获得操纵力的感觉,构成所谓“机械反馈”,这就是可逆助力操纵系统。 不可逆助力操纵系统可逆助力操纵系统虽可解决杆力过大的问题,但在超音速飞机上还会出现所谓杆力反向变化的问题。由于杆力反向变化,会使驾驶员产生错觉而无法正确驾驶飞机。为此,须把可逆助力操纵系统中的机械反馈取消,即舵面气动载荷全部由液压助力器承受。为了使驾驶员获得操纵力感觉,在系统中增加了人工载荷机构(通常是弹簧的)以及其他改善操纵特性的装置,形成不可逆助力操纵系统(图2)。 在高空超音速飞行时,由于空气密度减小,飞机容易发生频率很高的俯仰和横侧振荡,驾驶员来不及作出反应。为了克服振荡,在超音速飞机上普遍安装自动增稳装置,如俯仰阻尼器和方向阻尼器等。 电传操纵系统在不可逆助力操纵系统中,存在着间隙、摩擦、弹性变形等影响,难以解决微弱信号的传递问题。又由于普遍采用增稳装置,机械联杆装置越来越复杂,重量增加。自动控制和微电子技术的发展,为取消机械传动装置创造了条件,可用电信号综合传感器信号和驾驶员的操纵指令,对飞机进行有

飞行控制系统设计

(此文档为word格式,下载后您可任意编辑修改!) 一、对最简单的角位移系统的评价 1、某低速飞机本身具有较好的短周期阻尼,采用这种简单的控制规律是可行的。它的传递函数为: open p3_6 系统根轨迹为: nem1=-12.5; den1=[1 12.5]; sys1=tf(nem1,den1); nem2=[-1 -3.1]; den2=[1 2.8 3.24 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k的增大,该系统的一对闭环复极点的震荡阻尼逐渐减小。但由于飞机本身的阻尼较大,所以当k增大致1.34时,系统的震荡阻尼比仍有0.6。k增大到6.2时系统才开始不稳定。 2、现代高速飞机的短周期运动自然阻尼不足,若仍采用上述单回路控制系统则不能胜任自动控制飞机的要求。 open p3_10 系统根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1);

nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k增大,系统阻尼迅速下降。当k=1.06时,处于临界稳定。所以无法选择合适的k值以满足系统动静态性能。为了使系统在选取较大的k值基础上仍有良好的动态阻尼,引入俯仰角速度反馈。 二、具有俯仰角速率反馈的角位移自动驾驶仪参数设计open p3_16 1、系统内回路根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1); nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 按物理概念似乎速率陀螺的作用越强,阻尼效果越显著。但根轨迹分析告诉我们,只有在一定范围内这种概念才是正确的,否则会得到相反的效果。这种现象是由舵回路的惯性造成的。舵回路具有不同时间常数时的内回路根轨迹图: Tδ=0 sys1=-1; nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) Tδ=0.1

典型飞行控制系统

三、典型飞行控制系统 1、已知某飞机的传递函数是: ) 69.19.0()4.0(5.1) () (2 +++-= ??Z s s s s s s δ?,其俯仰姿态角控制系统的 控制规律为:? Z Z Z ?K +?-?K =?+T ? ? ??δ? ? δ)()1(g s 。 (1)由控制规律画出相应的系统结构图; (2)要控制该飞机舵回路的时间常数应作何限制? (3)若飞机受到常值力矩92 .0=?M Z γ 公斤*米,已知 Z Z M δ=-1.15公斤*米/度,若要求 稳定后其静差 s θ?<0 1 ,应对Z K ? 作何限制; (4)若要保证该系统的动态性能,应如何选取Z ? K ? 的值。 (5)分析在垂直向上风干扰下,系统的动态相应过程以及稳态情况。 2、已知某飞机的传递函数是: ) 47.15.1()59.0(2.1) ()(2 +++-= ??Z s s s s s s δ?,其俯仰姿态角控制系统的控 制规律为:? Z Z Z ?K +?-?K =?+? ???δ? ? )()11.0(g s 。 (1)由控制规律画出相应的系统结构图; (2)求出内回路闭环传递函数,并绘制随参数? Z K ? 变化的根轨迹图,并求取 值时的使? Z K =? ξ87.0以及此时三个内回路闭环极点值; (3)求出外回路闭环传递函数,并绘制随参数?Z K 变化的根轨迹图,并求取 值时的使?ξZ K =8.0以及此时三个外回路闭环极点值; (4)采用根轨迹方法分析舵回路时间常数对飞行控制系统工作性能的影响; (5)分析参数? Z K ? 与?Z K 之间的关系。 ● 自动驾驶仪有哪几个工作回路? (1)同步回路 (2)舵回路 (3)稳定回路 (4)控制回路 ● 俯仰阻尼器的作用是什么? 用来改善飞机的纵向短周期运动的阻尼特性 ● 滚转阻尼器的作用是什么? 用来改善飞机—阻尼器系统的滚转特性 ● 什么是控制增稳系统?其作用是什么? 不牺牲操纵性来提高飞机的阻尼比和固有频率,又可以解决非线性操纵指令问题 ● 飞行高度控制系统需要 最基本的信号? 需要直接测量飞行高度,使用高度差传感器,根据高度差的信息来直接控制飞机的飞行姿态,从而改变航迹请教,以实现对飞行高度的闭环稳定和控制

QFT飞行控制系统设计

QFT 飞行控制系统设计 4.1 引言 在飞控系统中,被控对象(如直升机等)往往是非常复杂的多输入多输出系统,具体表现为非线性、时变、高度耦合、高阶、不稳定、模型不确定性等。因此,这对设计一个覆盖整个飞行包线的控制器带来相当大的难度。目前,国内外设计全包线控制器一般有以下几种方法: 增益调度(gain scheduling )、非线性动态逆(Non-Linear Dynamic Inversion )、定量反馈理论(QFT )、自适应控制(AC )等。其中,国内外大多数采用增益调度方法。 本章将介绍一种工程上较为容易实现的强鲁棒控制理论—定量反馈理论(QFT )。重点介绍了MIMO 系统设计QFT 控制器的原理和一般步骤。 4.2 MIMO 系统的QFT 控制器设计概述 定量反馈理论(QFT )是以色列人Horowitz 教授提出的一种强鲁棒控制理论,它针对当对象具有不确定性和存在干扰的情况下,如何利用反馈信息设计出满足一定要求的控制系统这一问题而提出的。QFT 的最初发展首先研究具有不确定性的线性时不变单输入单输出系统(LTI/SISO ),如图4.1所示。其中,P 为不确定控制对象,r 为指令输入,y 为系统输出,1d 和2d 分别表示输入干扰和输出干扰,G 和F 为要设计的控制器和前置滤波器。随着QFT 的理论研究的深入,进一步推广到多输入多输出、非最小相位/不稳定、时变及非线性等系统。LTI/SISO 系统是QFT 研究的基础,而其他的MIMO 系统等都可以通过数学变化转化为等效的LTI/SISO 系统,再进行设计。 y 图4.1 SISO 系统的QFT 控制框图 MIMO 系统QFT 研究的重点就是如何有效地将原控制系统转化成一组等效的MISO 系统,从而可以运用相对成熟的SISO 系统QFT 设计分析,这也是MIMO 系统QFT 设计相比较与SISO 系统设计的最大特点。图4.2给出了两输入两输出系统的等效过程。可以看出原系统是22?系统,等效后变成了4个结构类似的21?子系统。每个系统都有两个输入端,一个输出端。两个输入分别是指令输入和由各子系统之间耦合作用引起的输入,即“干扰”输入。 然后,就可以对每个子系统采用SISO 系统的QFT 设计方法设计对应的控制器。最后,将各子系统的设计结果综合起来就是原系统的设计结果。

飞行操纵系统自己整理

目录 ATA27-飞控系统 (2) 1. 飞机操纵系统包括哪几部分? (2) 2. 飞机的重要操纵面,各操纵什么运动? (2) 3. 操纵系统的分类及各自特点? (2) 4. 飞行操纵系统的要求? (3) 5. 软式传动与硬式传动优缺点? (3) 6. 钢索使用中的主要故障有哪些?如何彻底检查?(豆) (4) 7. 什么是钢索的“弹性间隙”,有什么危害?简述飞机操纵系统中减少“弹性间隙”采用的方法及其原因。(豆) (4) 8. 导致软性传动机构操纵灵敏性差的主要原因是什么?如何解决?(豆) (4) 9. 软式传动操纵灵敏性变差的原因,如何解决。(上一题不够的话,加上这题) (4) 10. 简述钢索导向装置有哪些,分别是什么作用?(豆) (4) 11. 软式传动机构的主要构件及其作用是什么?(豆) (4) 12. 对于简单机械操纵系统,什么是传动系数?其含义是什么?并对操纵系统传动系数的大小特性进行对比分析。(豆) (5) 13. 为什么采用非线性传动机构操纵系统? (5) 14. 四余度系统的组成和功能? (5) 15. 以典型的四余度系统为例,简述电传操纵系统中的余度管理形式?// 多重系统也称余度系统,系统应满足哪三个条件? (6) 16. 余度系统每个通道中,信号选择器以及监控器与切换装置的主要作用是什么?(豆) 6 17. 在具有A、B、C、D四套电传操纵的四余度系统中,假设C套的杆力传感器和D套的舵回路同时出现故障,系统能否工作?如何工作?(豆) (7) 18. 电传系统优缺点? (7) 19. 液压助力器的原理? (7) 20. 平衡片和调整片的作用? (8) 21. 在操纵系统的助力驱动装置中,液压和电动驱动装置分别用在什么地方?为什么?(豆) (8) 22. 水平安定面配平 (8) 23. 简述飞机的横向操纵。 (8) 24. 根据附图,简述并列式柔性互联驾驶盘机构的工作情况。(豆) (9) 25. 简述什么是副翼反向偏航,以及在副翼设计上可以用来防止副翼反向偏航的措施。(豆) 9 26. 说明副翼感觉定中凸轮机构如何产生感觉力?在副翼配平操纵中如何工作?(豆) 10 27. 输出扭力管的特点? (10) 28. 升降舵载荷感觉定中机构的特点? (11) 29. 根据附图,简述升降舵感觉定中机构的工作原理。(豆) (11) 30. 什么是飞机的“自动下俯”现象?如何避免?(豆)//叙述马赫配平机构的作用(豆) 12 31. 飞机上既然安装了速度表,现代大型运输机上为什么还要安装马赫表? (12)

飞行控制系统的故障诊断与容错控制

飞行控制系统的故障诊断与容错控制 周晓宇08010201 聆听姜斌老师的讲座后,我对飞行控制系统的故障诊断与容错控制方面有了初步的了解,并产生了较为浓厚的兴趣。 首先,飞行控制系统的被控对象包括飞艇、飞机、近空间飞行器、火箭、导弹、人造地球卫星、空间探测器、载人飞船、航天站、航天飞机等,而飞机又包含客机、运输机、直升机、无人机、战斗机等类型。我们对飞行控制系统进行飞行控制的主要目的大概有四个方面:(1)稳定飞行,主要指姿态稳定,这是任何飞行器的首要任务;(2)轨迹控制,包括航迹、高度、航向、起飞着陆等;(3)目标跟踪,主要针对目标的跟踪和拦截;(4)轨迹跟踪,主要指队预定轨迹(进场着陆)实时路径规划轨迹。以上是飞行控制系统的一些基本概念,为达到设计者期望的技术指标,需要详细了解飞行器的特性、控制要求、控制方法和验证方法。 其次,在飞行控制系统方面,让我感慨较深的有两个方面,分别是光传飞行控制系统和飞行控制系统的建模问题。 对于光传飞行控制系统,它是飞行控制系统发展中较高级的阶段,和之前出现的简单飞行操纵系统、机械操纵系统、控制增稳系统、电传飞行控制系统相比,它不仅可有效地防御电磁干扰、雷电冲击、核爆辐射、消除各信号通道间的串扰,而且还可以极大地减轻飞机重量,增加飞机上的可用空间,同时这种方法可使光纤传输损耗低、频带宽。可以说,随着计算机技术和控制理论的发展,飞行控制系统的

设计方法也发生了变化,从最初的经典控制方法,发展到了自适应控制、模糊控制、神经网络控制、容错控制等现代控制方法。飞行器结构的复杂化和种类的多样化注定了飞行控制系统必将成为现代控制理论研究的热点领域。 除了光传飞行控制系统外,我对飞行控制系统的建模问题也产生了一些想法。通过建模方程,我们可以把一些抽象的问题用数学模型的方法表示出来,譬如,我们可以建立飞行器姿态测量系统,对飞机的姿态角、航向、转动角速度等使用专业仪器测量后,在多维坐标系中进行问题的分析和研究。又比如,飞机模型的线性化问题,我们可以采用小扰动法将含有扰动运动参数与基准运动参数间差值的高阶小项略去,并同时在平衡点上利用泰勒级数对化简式进行展开并仅保留一次项,由此即可得到雅可比矩阵形式的线性化状态方程。 通过对以上两个例子的分析,我有两点心得体会,一是要学会学以致用,将所学到的知识融会贯通,分类组合,只有这样,才能将看似复杂的问题简单化;其二,就是上面提到过的,大自然中的物理量,绝大部分是模拟量,然而如果我们想对事务进行深入的分析和研究的话,最好的办法还是将它们转化为数字量,其实也就是真实事物的建模问题。 通过这场讲座,我除了对飞行控制系统有了一个大致的了解外,还对飞行系统的故障诊断与容错控制方面有了更深入的了解。 近几年,随着经济的快速发展,民航运载任务越来越重,民航飞机朝着大型、多载重方向发展,飞机系统的复杂性也在不断增加,故

电传操作系统常见故障

在维护某型新机时,经常会遇到СДУ电传操纵系统故障,其特点为类型复杂、多变,排故较为困难。以下作一系统归纳总结。 一、СДУ通道故障的产生及显示 СДУ电传操纵系统是纵向(包括横向补课断开部分)四余度、横向(可断开部分)和航向通道为三余度的系统。СДУ通道故障主要通过以下几个方式显示: 1、右前面板CAC信号盘上红色“СДУ”告警信号灯亮; 2、飞行、开车或加压检查时ЗKPAH有时会打印如下故障信息: ДBA KAHAЛA СДУ——СДУ两个通道(УЛ-98) ABTOMAT Kш——Kш自动(УЛ-99) ABTOMAT HOCKOB——前端襟翼自动 ABTOMAT ФЛAΠEPOH——襟副翼自动 ДEMΠфEP KУPCA——航向阻尼(УЛ-99) ДEMΠфEP KPEHA——倾斜阻尼(УЛ-99) OΠP——极限状态(УЛ-98) PEЗEPB БOK KAHAЛA——侧向通道备份(УЛ-99) ДИффУΠPABЛEHИE——平尾差动操纵(УЛ-99) ДEMΠфEP KУPCA——航向阻尼器(УЛ-99) ДEMΠфEP KPEHA——倾斜阻尼器(УЛ-99) BKЛЮЧИДEMΠфEP KУPCA KPEHA ——接通倾斜、航向阻尼器 3、通过①、②、③、④个通道信号灯常亮、闪亮来显示; 4、在地面检查没有故障现象,而飞机在空中某个状态时有通道故障存

在。 二、故障的通道分布及识别 СДУ电传操纵系统是由俯仰通道、侧向通道、方向通道,前缘襟翼通道(K УH)、襟副翼通道(KУф)和极限状态限制通道(OΠP)组成,分别按余度技术分布、运算于四个通道中。当任何一个子通道发生故障时,相应的通道信号灯亮。若为假故障,按压故障灯后灯应灭,故障随即消失,再次检查故障不应再出现;若按压通道灯后常亮,或再次检查故障继续出现,则代表故障稳定。当纵向通道和平尾差动故障时,由ΠУ-220操纵台上的①、②、③、④灯显示,而横向和航向通道故障时,“СДУ”红色警告灯应亮。 三、常见的通道故障 1、纵向通道故障 ⑴当有两个通道灯亮,ЗKPAH打印“СДУ两个通道”,即说明是纵向两个子通道故障。其可能原因主要为:①2台BT-455(BT1);②2台BT-457-01(BT2);③2台УСa或УСn;④2个ωz;⑤2个Πy;⑥2个通道的ДΠP;⑦2个通道CΠn或CΠп;⑧2个通道CΠn或CΠп(伺服传动机构)。排除此类故障可按由易到难的顺序逐步展开。 ⑵当三个通道灯亮,ЗKPAH打印“СДУ”双通道、且“СДУ”红色告警灯亮,说明纵向三个子通道故障。其可能原因主要为;①3个BT1;②3个УСa或УСn;③3个BT2;④3个ωz;⑤3个Πy;⑥3个通道的ДΠP(杆位移传感器);⑦3个通道的PΠл或PΠп;⑧3个BPЗ(接通加油状态时); ⑨3个CΠл或CΠп(伺服传动机构) 2、倾斜和航向通道故障

西工大飞行控制系统总复习

总复习 第一章 飞行动力学 一、概念: 1、体轴系纵轴ox 在飞机对称平面内;速度轴系纵轴a ox 不一定在飞机对称平面内;稳定轴系纵轴ox 在飞机对称平面内,与体轴系纵轴ox 相差一个配平迎角0α。 2、俯仰角θ的测量轴为地轴系横轴g oy ;滚转角φ(倾斜角)的测量轴为体轴系纵轴ox ;偏航角ψ的测量轴为地轴系铅锤轴g oz 。 3、迎角α:空速向量在飞机对称平面内投影与机体纵轴ox 夹角。 以的投影在ox 轴之下为正。 4、β(侧滑角):空速向量v 与飞机对称平面的夹角。以v 处于对称面右为正。 5、坐标系间的关系 机体轴系b S 与地轴系g S 之间的关系描述为飞机姿态角(ψφθ、、); 速度轴系a S 与机体轴系b S 之间的关系描述为气流角(βα、); 速度轴系a S 与地轴系g S 之间的关系描述为航迹角(χμγ、、)。 6、舵偏角符号 升降舵偏角e δ:平尾后缘下偏为正0>e δ,产生低头力矩。0a δ,产生左滚转力矩 0r δ,产生左偏航力矩0

飞机电传操纵系统

电传操纵系统概况 一、电传操纵系统的概念及发展概况 1、电传操纵系统的概念 电传操纵系统是将从驾驶员的操纵装置发出的信号转换成电信号,通过电缆直接传输到自主式舵机的一种系统。也就是说,电传操纵系统也是一个全时、全权限的“电信号系统+控制增稳”的飞行操纵系统。电传操纵系统是人工操作和自动控制在功能上和操纵方式上较好地融为一体。电传操纵系统主要依靠电信号传递驾驶员的操纵指令,所以这种系统不再含有机械操纵系统。带有机械备份的电传操纵系统成为准电传操纵系统。控制增稳系统是电传操纵系统不可分割的组成部分,只有具备控制增稳功能的电信号系统才能称为电传操纵系统。 2、电传操纵系统发展概况 20世纪前半期,采用闭环反馈原理的自动控制技术作为机械操纵系统的辅助手段,其主要作用是针对已设计好的飞机刚体动力学特性的缺陷进行补偿,实现精确的姿态和航迹控制,减轻驾驶员长期、紧张工作的负担。到了20世纪60年代,飞机的发展遇到了一些重大难题。例如:大型飞机挠性机体气动弹性模态问题,进一步提高战斗机机动性和战斗生存性问题等。这些问题仅靠气动力、结构和动力装置协调设计技术已经不能解决,或者要在性能、重量、复杂性和成本方面付出巨大代价才能得到某种折衷的解决方案。研制设计者将注意力转向采用闭环反馈原理的自动控制技术,通过对一系列单项技术和组合技术的研究、开发和验证,产生了两个具有划时代意义的新飞行控制概念:主动控制技术(ACT)和电传飞行控制(FBW)系统。这两项新技术的出现对飞机的发展产生了巨大的影响。 1.采用主动控制技术的电传操纵系统 采用主动控制技术的电传操纵系统,可使飞机的飞行控制、推力控制和火力控制的主要控制功能综合成为可能,从而极大地改善了飞机的性能。如采用主动控制技术的电传操纵系统后,放宽静稳定性(RSS)控制技术使B-52轰炸机平尾面积减少45%,结构总重量减少6.4%,航程增加了4.3%;使战斗机升阻比提高了8%~15%。机动载荷控制NILC)技术使C-5A运输机翼根弯曲力矩减少30%~50%;使F4E

1 飞行控制系统的硬件设计

1 飞行控制系统的硬件设计 本文设计的飞行控制系统在硬件方面主要分为控制器、传感器、电源、执行机构和遥控接收等模块, 1.2 传感器 1.2.1 陀螺仪 陀螺仪能够对检测指示器中的数据加以显示,是自动控制系统当中的一个非常重要的组成。应用的陀螺仪是MPU6050三轴形式的陀螺仪,具有16位的模拟、数字转换器,使输出模拟量实现向可输出数字量的转化。 1.2.2 加速度传感器 在多旋翼的飞行控制系统当中,加速传感器应该说是一个非常重要的元器件。这不仅是由于加速度传感器具有动态载体的特性校正功能,并且它能够针对加速度实施积分,继而得出载体速度以及位置之类的基本信息。我们所选取的ADI公司研发的ADXL345传感器,同时兼具SPI以及I2C的数字输出功能,其分辨率较高,同时体积也比较小。 1.2.3 GPS模块 当无人机在天空飞行的时候定位系统是十分重要的,需要对无人机所呈现的姿态加以实时的测量,可以说在无人机系统当中,GPS模块占据着一定的主导地位。我们选取了U-BLOX公司所研发和生产的CJMCU-6M当作GPS的接收机,该传感器具有接口较为方便,而且定位的速度也比较快,不用长时间等待的特征。其利用串口输出的形式RS-232数据传输,继而结合协议而解算无人机所处的坐标、高度和时间之类的信息。 1.3 电源 电源模块主要的功能是为飞控系统当中的其他模块供给电量,从而确保飞行顺利。电源模块当中主要包含一个电源接口,以及一个稳压器,稳压器所具备的功能是对电压加以转换,避免因为高电压而导致电路板和一些其他元器件的损坏。本文中选择系统稳压器的标准为5V 输入,主控板的供电输出是3.3V,而最大的输出电流是500mA。 1.4 执行机构驱动 多旋翼无人机的飞行系统想要达成自主悬停功能,这就需要飞行器必须要在飞行不稳的情况之下能够迅速地改变成为平稳的状态,也就是在这种情况之下,执行机构要在非常短的时间之内做出相应的反应,让无人机所呈现的速度能够高速地提升或降低。本文所设计的系统当中采用直流无刷电机当作执行机构,继而配合无刷电调来应用,这个电机具备周期较长,而且效率较高等特征。电机是一种十分关键的执行机构,是对飞行器的姿态加以控制的动力。而我们所选择的直流无刷电机是想让四旋翼形式的飞行器形成多种飞行的姿态,工作的主要原理为对空气动力学的利用,从而使旋翼形成多种转速,继而达到想要的效果,完成各种飞行姿态。直流无刷的电机所接收到的控制信号是PWM波所发出的。而结合DSP所发出的具

电传操纵系统

电传操纵系统 “电传操纵系统”是英文"Fly by wire flight control system"(FBW)的中文意译,也被译为“线传操纵系统”。它是一种先进的电子飞行控制系统。 1简介 从飞机发明直到现在,飞机的操纵系统仍然主要是机械式的操纵系统。机械操纵系统在操纵装置(操纵杆、脚蹬)和飞机的舵机之间存在着一套相当复杂的机械联动装置和液压管路,飞行员操纵操纵杆和脚蹬,通过上述联动装置控制舵机位置,从而使飞机达到希望的姿态和航向。 早期的飞机只是直接人工机械操纵。随着飞机的尺寸和速度的增加,驾驶员再直接通过钢索去拉动舵面感到困难,于是作为驾驶员辅助操纵装置的液压助力器安装在操纵系统中。它由一个并联的液压作动器来增大驾驶员施加在操纵钢索上的作用力,目前液压助力器仍在许多飞机上使用。 第二次世界大战后不久,出现了全助力操纵系统。在这种系统中,操纵钢索从驾驶杆直接连到作动器的伺服阀上,不再与操纵面发生直接机械联系。使用全助力操纵的主要原因是在跨音速飞行时,作用在操纵面上的力变化很大而且非线性很历害。这样,操纵时从操纵面反传到驾驶杆上的力从操纵品质的观点来说是难以接受的。全助力操纵系统本身是不可逆的,因此不受跨音速飞行中非线性力的影响,由于这种操纵方法不再需要飞行员的体力去改变舵面状态,使得飞行员无法直观地感受到飞机所处的状态,于是就借助一些力反馈装置来提供人工杆力,这种人工杆力虽然在移动操纵面时不需要,但在操纵飞机时给飞行员提供适当的操纵品质还是必要的,人工杆力的设计可以使人的操纵感觉从亚音速飞行平滑地过渡到超音速飞行阶段。 随着飞机尺寸的继续增加和性能的进一步提高,增加稳定性帮助飞行员操纵变得十分迫切,于是从全助力操纵系统发展到增稳系统,如偏航增稳系统、俯仰增稳系统和横滚增稳系统。系统通过传感器反馈的飞机状态,在程序控制下自动控制舵机偏转,以保证飞机静稳定性。这种增稳系统与驾驶杆或脚蹬是互相独立的,因而增稳系统的工作不影响驾驶员的操纵。 从增稳系统发展到电传操纵(FBW)系统只是很小的一步,通过加上一个离合器或其它使机械系统在不使用时断开的方法便可以实现,“协和”超音速客机上就装有这种系统。 把电传操纵系统中的机械备份完全去掉就变成了全电传操纵(FFBW)系统。 在这里我们已经能够给电传操纵系统下一个定义了:电传操纵(Flying By Wire)系统是将飞行员的操纵信号,经过变换器变成电信号,通过电缆直接传输到自主式舵机的一种系统。它去掉了传统的飞机操纵系统中布满飞机内部的从操纵杆到舵机之间的机械传动装置和液压管路。电传操纵系统的主要组成部分包括运动传感器、中央计算机、作动器和电源,它相当于动物的感觉器官、大脑和肌肉。由飞机操纵系统的发展我们可以体会到,任何事物的发展都是由需要和可能这两个因素决定的,电传操纵系统的发展也是如此。它是随着飞机(包括某些飞行器)的飞行控制技术的不断提高以及科学技术的发展而逐渐发展起来的。 电传操纵的重要性在于打破了飞机设计中需要保持静稳定性的布局,设计师们可以为战斗任务选择和优化最有效的布局,然后由储存在飞行控制计算机软件中的相应控制律增加人工稳定性。现役战斗机中已经有多种飞机采用电传操纵系统,例如F-16、幻影2000、“狂风”战斗机、F-15、Su-27、F/A-18等等。

电传操纵系统第1章(03)

第1章飞行控制系统概述 1.1现代飞机飞行控制系统 1.1.1现代飞行控制系统的功能 自从上世纪初,世界上第一架重于空气的飞机诞生以来,驾驶员主要是通过机械操纵系统操纵相应舵面对飞机进行控制的。但随着飞行任务的不断复杂化,不仅飞行距离远,高度高,而且还要求有良好的操纵品质。为了解除驾驶员在长距离飞行中的疲劳,并使其集中精力完成飞行任务和改善飞机的操纵品质,故希望有一种装置和系统,控制飞机实现自动飞行并改善飞机的飞行特性。这套系统就是现代飞机上安装的飞行控制系统。 归纳起来,现代飞机的飞行控制系统主要作用是: 1.实现飞机的自动飞行: 飞机的自动飞行控制就是利用一套专门的系统,在无人参与的条件下,自动操纵飞机按规定的姿态和航迹飞行,通常可实现对飞机的三轴姿态角及飞机三个方向空间位置的自动控制与稳定。例如,对于完全无人驾驶的飞行器,如无人机或导弹等,实现完全的飞行自动控制。对现代有人驾驶飞机(如民用客机或军用飞机),虽然有人参与驾驶,但在某些飞行阶段(如巡航等),驾驶员可以不直接参与操纵,而由飞行控制系统实现对飞机飞行的自动控制。但飞行员应完成对自动飞行指令的设置和监督自动飞行的进行,并随时可以切断自动控制而实现人工驾驶。采用自动飞行的好处主要是: ·长距离飞行时解除驾驶员的疲劳,减轻驾驶员的工作负担; ·在一些坏的天气或复杂的环境下,驾驶员难于精确控制飞机的姿态和航迹,自动飞行控制系统可以实现对飞机姿态和航迹的精确控制; ·有一些飞行操纵任务,驾驶员难于精确完成,如进场着陆,采用自动飞行控制则可以较好地完成这些任务。 2. 实现对飞机性能的改善 一般说,飞机的性能和飞行品质是由飞机本身的气动特性和发动机特性决定的。但随着飞机的飞行高度及速度的逐渐扩大,飞机的自身特性将会变坏。如飞机在高空飞行时,由于空气稀薄,飞机的阻尼特性变坏,致使飞机角运动产生严重的摆动,靠驾驶员人工操纵将会很困难。此外,现代飞机设计时,为了减轻重量,减少阻力和提高有用升力,常将飞机设计成是静不稳定的。对于这种静不稳定的飞机,驾驶员是难于操纵的。为了解决这类问题,可以通过在飞机上安装一定类型的飞行控制系统使静不稳定的飞机变成是静稳定的,可以使阻尼特性不好的飞机变成是好的。这种系统就是现代飞机上常用的增稳系统或阻尼器系统,这种系统也是一种控制系统,但它不是用来实现飞机的自动飞行控制,而是用来改善飞机的某些特性,实现所要求的飞行品质和飞行特性。这种系统虽不实现自动飞行控制,但它们仍是一种用于飞行的控制系统,成为飞机飞行不可缺少的组成部分。 总括说来,现代飞机飞行控制系统的主要作用有两点:实现飞机的自动飞行;改善飞机的特性,实现所要求的飞行品质和飞行性能。 1.1.2飞机飞行控制的发展 早期飞机,功能简单,性能较低,完全由人工操纵即可完成飞行。但随着航空技术的发

电传飞行控制作动系统

电传飞行控制作动系统 第27卷 2007拄 第4期 O8月 飞机设计 AIRCRAFTDESIGN V01.27No.4 Aug2007 文章编号:1673-4599(2007)04-0053-08 电传飞行控制作动系统 张冰凌,张勇 (1.海军驻沈阳地区航空军事代表室,辽宁沈阳110035) (2.沈阳飞机设计研究所,辽宁沈阳110035) 摘要:YF一23A战斗机具有极大的静不安定性,在不开加力的情况下可以实现超声速巡航,其设计目标是在 亚声速和超声速均具有优于对手的机动能力,上述要求使得飞行控制作动系统必须具有空前的能力和性能. 其独特的飞行和机动包线要求其作动系统在低速时具有高的舵面偏转速率和大的行程,在超声速时要具有附 加铰链力矩输出能力,为实现上述目标,开发出具有液压与电能守恒的作动系统. 关键词:作动器;直接驱动阀;变面积作动;飞行控制 中图分类号:V227.83文献标识码:A Fly-By-WireFlightControlActuationSystem forHighPerformanceFighter ZHANGBing—ling,ZHANGYong (1.Aero-NavalMilitaryRepresentativeOfficeinShengyangBranch,Shenyang110035,Chi

na) (2.ShenyangAircraftDesign&ResearchInstitute,Shenyang110035,China) Abstract:TheYF-23AFighterwasarevolutionarystaticallyunstableaircraftthatcruisedats uperson- icspeedswithoutafterburnerandwasdesignedtooutmaneuveropponentsatsubsonicandsup ersonic https://www.360docs.net/doc/f73402833.html,biningthesedemandedaflightcontrolactuationsystemofunprecedentedpowe randper- formance.Itsuniqueflightandmaneuveringenveloprequiredhighsurfacerateandlargeactu atorex— cursionatlowfliglitspeeds,aswellasthepowertogenerateincreasedhingemomentsatsupers onic speeds.Toachievethesespecifications,hydraulicflowandelectricalpowerconservationtec hniques wasutilized. Keywords:actuator;directdrivevalve;variableareaactuation;flightcontrol YF一23A的设计目标是高机动性,超声速巡 航,武器内埋…,同时保持低的雷达和红外特 征,其主要控制面都是对称布置的包括两个全动 平尾,内外侧后缘襟翼(TEFs)和独立控制的左右 前缘襟翼(LEFs).除了前缘襟翼由电液伺服阀 (EHSV)控制之外,其他的舵面均由四余度的直 接驱动阀(DDV)控制. 收稿日期:2006—12—25:修订日期:2007—06--28 系统设计要求 基于下列的要求/约束来设计作动系统: (1)速率/铰链力矩/刚度要求; (2)作动器的频率响应/负载响应; (3)发动机的功率提取和液压流量限制;

相关文档
最新文档