实验五 活性污泥特性测定实验

实验五  活性污泥特性测定实验
实验五  活性污泥特性测定实验

实验五 活性污泥特性测定实验

一、实验目的

(1)加深对活性污泥沉降比,污泥指数和污泥浓度的理解。 (2)掌握活性污泥几个主要性能指标的测定和计算方法。 二、实验原理

活性污泥是人工培养的生物絮凝体,它是由好氧微生物及其吸附的有机物组成的。活性污泥具有吸附和分解废水中的有机物(也有些可利用无机物质)的能力,显示出生物化学活性。在生物处理废水的设备运转管理中,除用显微镜观察外,下面几项污泥性质是经常要测定的。这些指标反映了污泥的活性,它们与剩余污泥排放量及处理效果等都有密切关系。

污泥沉淀比(SV%)——指曝气池混合液在量筒内静置30分钟后,所形成沉淀污泥的体积占原混合液的体积百分率。

污泥浓度(MLSS )——指单位体积曝气池混合液中所含污泥的干重,即混合液悬浮固体浓度,单位为g/L 或mg/L 。

污泥指数(SVI )——污泥容积指数,指曝气池混合液经30分钟静沉后,1g 干污泥所占容积,单位为mL/g 。SVI 值能较好的反映活性污泥的松散程度(活性)和凝聚、沉淀性能。一般SVI 在100左右为宜。

10(%)

?=

MLSS

SV SVI (mL/g )

污泥灰分——干污泥经灼烧后(600℃)剩下的灰分。

%100污泥灰分?=干污泥质量

灰分质量

挥发性污泥浓度(MLVSS )——指单位体积曝气池混合液中所含挥发性污泥的干重,即混合液挥发性悬浮固体浓度,单位为g/L 。

1000100

?-=

灰分质量

干污泥质量MLVSS )

(L /g 在一般情况下,MLVSS /MLSS 的比值较固定,对于生活污水处理池的活性污泥混合液,其比值常在0.75左右。 三、实验装置与设备

1、过滤装置1套(包括漏斗1个,漏斗架1个,烧杯1个,定量滤纸若干,玻璃棒1个);

2、60mm 称量瓶1个;

3、100mL 量筒1个;

4、镊子1把;

5、坩埚1个;

6、电子分析天平1台;

7、烘箱1台;

8、马弗炉1台

四、实验步骤及记录

1、污泥沉降比(SV%)的测定

①将100mL量筒洗净烘干,采用虹吸法在曝气池中取混合均匀的泥水混合液100mL (V),静置,并同时开始计时;

②观察活性污泥凝聚沉淀过程,并在第1、2、3、5、10、15、20、30分钟分别记录污泥界面以下的污泥容积;

③沉降30分钟后污泥体积V2与原混合液体积(100mL)之比即为污泥沉降比;

2、污泥浓度(MLSS)的测定

④将定量滤纸置于称量瓶中放入105℃烘箱中干燥至恒重(约2h),冷却至室温称量并记录W1;

⑤将该滤纸展开放在漏斗上,将测定过污泥沉降比的100mL量筒内的污泥连同上清液倒入漏斗,进行过滤,用蒸馏水润洗量筒,润洗液也倒入漏斗;

⑥过滤后,用镊子将载有污泥的滤纸移入称量瓶中,再放入烘箱(105℃)中烘干至恒重(约4 h),冷却至室温称量并记录W2;

3、活性污泥灰分的测定

⑦瓷坩埚放在马弗炉(600℃)中烘干至恒重,冷却称重并记录W3;

⑧将经过步骤⑥后的污泥和滤纸一并放入瓷坩埚中,然后放入马弗炉内(600℃)中灼烧60分钟,待温度冷却至120度时,取出放入干燥器内冷却至室温,称重并记录W4;

4、实验记录用表。

表1 活性污泥静沉情况记录

表2 活性污泥性能参数测定实验原始记录

五、实验结果整理和分析 1. 基本参数整理

实验日期: 混合液来源: 混合液体积:V = mL

2.实验数据整理及分析

(1)污泥沉降比(SV%): %100%2

?=

V

V SV (2)12W W -=干污泥质量 (g) (3)污泥浓度(MLSS ):10001

2?-=V

W W MLSS (g/L ) (4)污泥指数(SVI ):10(%)

?=

MLSS

SV SVI (mL/g )

(5)绘出100mL 量筒中污泥容积随沉淀时间的变化曲线 (6)污泥534W W W --=灰分质量 (g ) (7)%1001

25

34?---=

W W W W W 污泥灰分

(8)挥发性污泥浓度(MLVSS ):100053412?----=V

W W W W W MLVSS )

()( (g/L )

六 实验结果讨论

1、通过实验测定的活性污泥的性能指标,判断活性污泥的性能。

2、活性污泥的各项性能指标有什么意义。

3、污泥沉降比和污泥指数二者有什么区别和联系。

喷管流动特性与管道截面变化规律的关系

喷管流动特性与管道截面变化规律的关系 摘要:针对管内流动规律的一般应用中存在的问题,着重讨论了喷管内工质流动特性与管道截面变化规律的关系,从而更准确更完整地反映了喷管内工质流动规律。 关键词:喷管;流动特性;变化规律 通常在研究喷管内工质流动特性时,只着重于对喷管外形的确定,所以总是以状态参数变化为前提,去探讨工质流动截面(即管道截面)的相应变化。这时由可逆绝热流动的基本方程组,即连续性方程、能量方程和过程方程,整理出如下两个关系式: 很明显,式(1)、(2)反映了工质流速c、压力P、截面A之间的变化关系。从数学角度而言,这几个量是可以互为变化前提的。但对具体的管内流动来说,究竟谁是其中的决定性因素,从而控制着(导致)其它两个量的相应变化,这自然是一个非常重要的问题。但这一问题在很多文献[1~3]中并无明确地阐述。 显然,要揭示清楚喷管内工质的流动规律,必须揭示清楚上式中各个量的决定与被决定关系,不然问题的实质就不会充分地显现出来,所得结论也是不完整的,也就无法满足实际应用的需要。特别是个别文献还错误地强调了这种关系,从而让人产生各种疑惑甚至是误解。这也是许多人在学习了喷管内流动特性之后,对一些管内流动现象还仍然解释不清,甚至出现概念上的错误的根本原因。 1对喷管内流动特性与管道截面变化规律关系的分析 任何一种流动都是在一定的外部条件作用下产生的。随流动条件的不同,管内流动现象才是多种多样的。就喷管流动而言,其流动条件应包括如下两个方面:(一)力学条件:即喷管前后的压差;(二)几何条件:即喷管长度L和喷管流动方向(设为x方向)的截面变化规律A=f(x)。 工质降压升速、升压减速等流动特性,即工质压力P、比容v、流速c包括流动截面A的相互变化关系,应属流体自身属性,这种属性不会自发地表现出来,它是从属于流动的外部条件而存在的。这里的力学条件是工质流动和膨胀的动力,几何条件是工质连续降压增速的保证。在流动产生前和流动过程中,其力学条件和几何条件都是客观的,两者共同确定了相应的流动特性,缺一不可。比如,即使在力学条件完全具备的情况下,若没有几何条件的保证,流体降压升速等属性也不会自发地表现出来。对此还可以用一个简单的例子来加以说明:设流动的 力学条件为初压P 1与背压P b ,在流动产生之前,只有P 1 、P b 是客观存在的,P 1 与P b 之间的其它压力以及其它参数都不是客观的。只有在流动产生之后才在各

水控实验报告

一、混凝实验 (一)实验目的和要求 ①观察混凝现象及过程,从而加深对混凝理论的理解; ②了解混凝现象的影响因素和混凝剂的筛选方法; ③选择和确定最佳的混凝工艺条件。 (二)实验原理 混凝是在废水中预先投加化学药剂来破坏胶体的稳定性,使废水中的胶体和细小悬浮物聚集成具有可分离性的絮凝体,再加以分离除去的过程。它包括使胶体悬浮物的脱稳和接着发生使颗粒增大的凝聚作用。 胶体都带有电荷,它们之间存在着静电斥力、胶体的布朗运动和胶粒表面的水化作用,因而使胶体颗粒保持分散的悬浮状态,即稳定性。脱稳的胶粒相互凝聚。另外混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒间起吸附架桥作用,使颗粒逐渐结大,形成粗大絮凝体,即矾花。形成矾花最佳的条件是要求PH值在等电离点或接近等电离点。同混凝剂的反应必须有足够的碱度,对于碱度不足的废水应投加NaCO3 、NaOH或石灰。 在脱稳之后,凝聚促使矾花增大,以便使矾花随后能从水中去除。在凝聚阶段将近结束时,投加0.2~0.1mg/L长链阴离子或非离子聚合物,通过架桥吸附作用,有助于矾花的聚集和长大。 整个混凝过程经历三个阶段:混合、絮凝、沉淀。胶体脱稳发生在混合阶段,混合时间T为10~30s,最多不超过2min,速度梯度G为500~1000s-1,絮凝阶段生成大矾花,要保证足够的反应时间,速度梯度G为10~75s-1,沉淀阶段矾花与水分离。 (三)实验试剂、设备 1、实验用水 自配水 2、实验药品 聚合硫酸铝、聚合硫酸铁、聚丙烯酰胺、0.1mol/L盐酸、1mol/L氢氧化钠、石灰 3、主要实验装置及设备 ①化学混凝实验装置采用可编程的六联电动搅拌器,其结构图如下图所示。

减压器特性实验指导书

减压器特性实验 1 实验目的 (1)深入了解减压器工作原理及其工作特性。 (2)研究减压器的静态特性,掌握测定减压器静态特性的方法,掌握减压器静态特性的一般规律。 (3)了解减压器的过渡过程压力曲线测定方法,增加对减压器动态特性的感性认识。 2 实验背景 2.1减压器的应用 减压器不仅广泛应用于油、气工业、化工行业、能源工业、基础设施建设等行业,在航空航天领域也发挥着重要作用。在航天行业中,减压器可应用于地面设备(包括地面试验设备)、导弹/运载火箭和卫星航天器。具体而言,减压器可用于: (1)地面试验吹除系统。受系统工作压力的限制,此类减压器出口压力较低,精度要求也不是很高,但质量流量大,要求有较好的启动稳定性。 (2)地面试验或弹箭体供气系统。对于使用气体推进剂的地面发动机试验系统或弹箭体而言,其供气系统中都必须使用到减压器,以保证稳定的压力和流量供应,对减压器的精度!动态特性要求较高。 (3)地面试验或弹箭体液体推进剂输运系统。减压器为推进剂储箱提供恒定的压力,进而为发动机提供需要的推进剂,其出口压力影响到发动机的工作状态,直接关系到整个系统推进剂供应的准确性与安全性,是影响整个发动机推力稳定性的一个重要因素,因此对减压器精度要求较高。 (4)航天器的姿态和轨道控制。在卫星、探空火箭、宇航控制系统、空间站对接操纵系统中以及弹体姿态控制系统中的的冷气推进系统中,减压器出口的气体直接送至喷管进行姿态或轨道控制,具有开启次数频繁,流量变化大的特点,对动态特性、工作范围、控制精度、可靠性和寿命都有较高的要求。 (5)提供基准压力或控制其它调节器。利用减压器出口压力稳定的特点,

实验5 Matlab绘图操作实验报告

Tutorial 5 实验报告 实验名称:Matlab 绘图操作 实验目的: 1、 掌握绘制二维图形的常用函数; 2、 掌握绘制三维图形的常用函数; 3、 掌握绘制图形的辅助操作。 实验内容: 1. 设sin .cos x y x x ?? =+ ??+?? 23051,在x=0~2π区间取101点,绘制函数的曲线。 2. 已知: y x =21,cos()y x =22,y y y =?312,完成下列操作: (1) 在同一坐标系下用不同的颜色和线性绘制三条曲线; (2) 以子图形式绘制三条曲线; (3) 分别用条形图、阶梯图、杆图和填充图绘制三条曲线。 3. 已知:ln(x y x x ≤=??+>??0102 ,在x -≤≤55区间绘制函数曲线。 4. 绘制极坐标曲线sin()a b n ρθ=+,并分析参数a 、b 、n 对曲线形状的影响。 5.在xy 平面内选择区域[][],,-?-8888, 绘制函数z =的三种三维曲面图。 6. 用plot 函数绘制下面分段函数的曲线。 ,(),,x x f x x x x ?+>? ==??+

8. 在同一坐标轴中绘制下列两条曲线。 (1).y x =-205 (2)sin()cos ,sin()sin x t t t y t t π=?≤≤? =?303 实验结果: 1. 2. (1)

(2)

(3)

实验蔬菜种子的形态识别与种子质量鉴别

实验一蔬菜种子的形态识别与种子质量鉴别 一目的掌握从形态特征和解剖结构识别蔬菜种子所属种类,并观察种子结构的特点。识别种子的新、陈及其生活力;种子质量的鉴定方法。 二、材料各种蔬菜,包括种、变种、品种。几种有代表性蔬菜浸泡果的种子和新的及陈的种子。 三方法 1. 形态观察仔细观察并记载新的及陈的种子在色泽、气味等方面的区别。用肉眼和放大镜观察各种蔬菜种子的外部形态,记载其特点如:形状、颜色、种皮形态等。 2. 结构观察观察浸泡果的蔬菜种子,用解剖刀片横剖及纵剖,用放大镜观察各部分结构,并绘图说明。 3. 种子的纯度测定根据种子大小,秤出种子2份,每份5-100克,仔细清除混杂物后再秤重。根据秤重结果计算种子样品的纯洁度。 4. 千粒重的测定将上述纯净的种子平铺桌面成四方形,按对角线取样,划对角线成为四个三角形,取出其中一半种子混合,再如此继续取样,直到只有种子千粒左右时,数出1000粒秤重。 5. 发芽率及发芽势的测定取上述纯净种子,每100粒1份,各2-3份。置于垫有湿润滤纸的培养皿中,喜凉菜置于20℃;喜温菜置于25℃恒温箱中催芽。2天后每天记载发芽粒数,直到发芽终止。根据测定结果计算发芽率和发芽势。 四作业 1.根据实验结果,论述识别种子的内容及其重要性。识别种子的要点。 2. 根据所取种子样品的各项指标的测定结果,说明该种子的品质和使用价值。 1.种子的类别: A 真正的种子:仅有胚珠形成。如葫芦科(瓜类)、豆科(豆类)、十字花科(白菜、甘 蓝、芥菜部分根菜)、茄果类、苋菜等。 B 果实:有胚珠和子房构成。菊科、伞形科、黎科。 C 营养器官:鳞茎(洋葱、大蒜)、球茎(芋头、荸荠)、根状茎(生姜、莲藕)、块茎 (马铃薯、菊芋、山药) D 菌丝组织:蘑菇、草菇、木耳。 2. 种子的形态与结构

热工学实验

实验十 渐缩(缩放)喷管内压力分布和流量测定 一、实验目的 1.验证并加深对喷管中的气流基本规律的理解,树立临界压力,临界流速,最大流量等喷管临界参数的概念,把理性认识和感性认识结合起来。 2.对喷管中气流的实际复杂过程有概略的了解。 3.通过渐缩喷管气流特性的观测,要明确:在渐缩喷管中压力不可能低于临界压力,流速不可能高于音速,流量仍不能大于最大流量。 4.根据实验条件,计算喷管(最大)流量的理论值,并与实侧值进行对比。 二、实验设备 本设备由2x 型真空泵,PG -Ⅲ型喷管(见图10-1)和计算机(控制与显示设备)构成。由于真空泵的抽吸,空气自吸气口2进入进气管1,流过孔板流量计3,流量的大小可以从U 型管压差计4读出。喷管5用有机玻璃制成,有渐缩、缩放两种型式(见图10-2、10-3),可根据实验要求,松开夹持法兰上的螺丝,向右推开进气管的三轮支架6,更换所需的喷管。喷管各截面上的压力是由插在其中,外径0.2mm 的测压探针连至可移动真空表8测得,探针的顶封死,中段开有测压小孔,摇动手轮——螺杆机构9,即可移动探针,从而改变测压小孔在喷管中的位置,实现对喷管不同截面的压力测量。在喷管的排气管上装有背压真空表10,排气管的下方为真空罐12,起稳定背压的作用,背压的高低用调节阀11调节。罐前的调节阀用作急速调节,罐后的调节阀作缓慢调节,为减少震动,真空罐与真空泵之间用软管13连接。 在实验中必须观测四个变量:(1)测压孔所在截面至喷管进口的距离x ;(2)气流在该截面上压力P ;(3)背压P b ;(4)流量m 。这些变量除可分别用位移指针的位置、移动真空表,背压真空表及 U 形管压差计的读数来显示读出外,还可分别用位移电位器、负压传感器、压差传感器把它们转换为电信号,由计算机显示并绘出实验曲线。位移电位器将在螺杆之旁,它实际上是一只滑杆变阻器。负压传感器和压差传感器分别装在真空表和U 形管压差计附近,其内部结构为一直流电桥,压力和压差改变时将改变电桥中两臂的电阻,从而获得电桥的不平衡电压输出。为了使这些传感器可靠而稳定地工作,都由直流稳压电源供电。 三、实验原理 1.喷管中气流的基本规律 气流在喷管中稳定流动后,喷管任何截面上的质量流量m 均相等,有连续性方程: M= 2 2 21 1 1C A C A AC υυυ = = =定值,[kg/s] (10-1) 式中:A —— 截面积[m 2] C —— 气体流速[m/ s] υ —— 气体比容[m 3/kg] 下标1—— 喷管进口 下标2——喷管出口 气体在喷管中作绝热膨胀,C 1<C 2,工质为理想流体时,喷管的理论流量可按下式计算: ])()[(121 1 22 12112 2 2 2k k k p p p p p k k A C A m +-?-== υυ (10-2) 式中: k —— 绝热指数,对于空气k=1.4 P 1 —— 喷管进口压力(初压) [N/ m 2] P 2 —— 喷管出口压力 [N/ m 2] 喷管中气体状态参数P 、υ和流动参数C 的变化规律和流通截面积A 的变化以及喷管

物理实验数据记录、作图规范及excel使用介绍

物理实验数据记录、作图规范及Excel使用方法简单介绍 一、数据记录规范 物理实验要求采用表格记录数据,其中记录数据必须包括“表头”、“物理量”、“单位”、“数据”四部分,缺一不可。 以单摆测量重力加速度为例: 表一:摆长为70cm时不同测量次数n测得的周期T 注意:1、表头,即表格的名字,要放在表格的正上方! 2、数据记录时请仔细检查有效数字位数是否正确! 二、常见作图规范 物理实验很多时候要求依据记录的数据作出相应的图形,在作图时,图中应包括“图的名称”、“纵、横坐标物理量和单位”、“纵、横坐标轴标度值”、“数据点和拟合的趋势线”、“拟合趋势线的方程表达式和R值”和“图例”六部分,缺一不可。 以电阻应变式传感器实验作图为例说明:

Excel (以2010版本为例)在物理实验中的应用: 1、 利用Excel 作图并求出拟合曲线 操作方法: (1)、将所测数据输入到Excel 表格中,最好保证第一列为自变量,即x 轴数据:如图所示: 图的名称 物理量和 单位 图例 拟合曲线表达式及R 2 因子 合适的坐标标度 数据点及拟合的曲线

(2)、选中需要作图的数据,如图所示:选中x和y1列 (3)、在选中数据的基础上,点击菜单栏的“插入”,找到“散点图”,点击如图所示的散点图。 可以得到如下所示的结果:

(4)、选中上一步得到的图形,在菜单栏找到“布局”选项,可以看到在布局选项卡下边有“图表标题”、“坐标轴标题”、“图例”、“数据标签”、“坐标轴”等选项。每一个选项均可以设置相应的内容 其中“图标标题”请选用图标上方,然后单击图上生成的标题,拖到图的下方,同时将

污泥脱水性能实验

污泥脱水性能实验 通过这个实验能够测定污泥脱水性能,以次作为选定脱水工艺流程和脱水机械型号的根据,也作为确定药剂种类,用量及运行条件的依据。 【实验目的】 (1)加深理解污泥比阻的概念。 (2)评价污泥脱水性能。 (3)选择污泥脱水性能的药剂种类、浓度、投药量。 【实验原理】 污泥经重力浓缩或消化后,含水率约在97%,体积大不便于运输。因此一般多采用机械脱水,以减小污泥体积。常用的脱水方法有真空过滤,压滤、离心等方法。污泥机械脱水是以过滤介质两面的压力差作为动力,达到泥水分离,污泥浓缩的目的。根据压力差来源的不同,分为真空过滤法,(抽真空造成介质两面压力差)压缩法(介质一面对污泥加压,造成两面压力差)。 影响污泥脱水的因数较多,主要有, (1)污泥浓度,取决于污泥性质及过滤前浓缩程度。 (2)污泥性质,含水率, (3)污泥预处理方法。 (4)压力差大小 (5)过滤介质种类、性质。 设备 【实验步骤】 (1)准备待测污泥(消化后的污泥) (2)按表4-36所给出的因素、水平表,利用L9(3的4次幂)正交表安排污泥比阻实验。 1)测定污泥含水率,求其污泥浓度; 2)布氏漏斗内放置滤纸,用水喷湿。开动真空泵,使量筒中成为负压,滤纸紧贴漏斗,关闭真空泵;

3)把100mL调节好的泥样倒入漏斗内,再次开动真空泵,使污泥在一定的条件下过滤脱水; 4)记录不同过滤时间t的滤液体积V值; 5)记录当过滤到泥面出现皲裂,或滤液达到85mL时。所需要的时间t.此指标也可用来衡量污泥过滤性能的好坏; 6)测定滤饼浓度; 7)记录见表4-37 【注意事项】 (1)滤纸烘干称重,放到布氏漏斗内,而后再用真空泵抽吸一下,滤纸一定要贴近不能漏气。 (2)污泥倒入布氏漏斗内有部分滤液流入量筒,所以在正常开始实验时,应记录量筒内滤液体积Vo值。 【思考题】 (1)判断生污泥,消化污泥脱水性能好坏,分析其原因。 (2)在上述实验结果的条件下,重新编排一张正交表,以便通过实验能得到更好的污泥脱水条件。

喷管特性实验

压传感器读出。喷管用有机玻璃制成,配有渐缩喷管和缩放喷管各一只。根据实验的要求,可松开夹持法兰上的固紧螺丝,向左推开进气管的三轮支架,更换所需的喷管。喷管各截面上的压力是由插入喷管内的测压探针(外径φ1.2)连至“可移动真空表”测得,由于喷管是透明的,测压探针上的测压孔(φ0.5)在喷管内的位置可从喷管外部看出,它们的移动通过螺杆机构移动,标尺或位移传感器实现测量读数。喷管的排气管上还装有“背压真空表”,其压力大小用背压调节阀进行调节。真空罐直径φ400,起稳定压力的作用。罐的底部有排污口,供必要时排除积水和污物之用。为减小震动,真空罐与真空泵之间用软管连接。在实验中必须测量四个变量,即测压孔在喷管内的不同截面位置X、气流在该 、流量m,这些量可分别用位移指针的位置、可移动真截面上的压力P、背压P b 空表、背压真空表以及U形管压差计的读数来显示。 实验装置特点: 1.可方便地装上渐缩喷管或缩放喷管,观察气流沿喷管各截面的压力变化。 2.可在各种不同工况下(初压不变,改变背压),观察压力曲线的变化和流量的变化,从中着重观察临界压力和最大流量现象。 3.除供定性观察外,还可作初步的定量实验。压力测量采用精密真空表,精度0.4级。流量测量采用低雷诺数锥形孔板流量计,适用的流量范围宽,可从流量接近为零到喷管的最大流量,精度优于2级。 4.采用真空泵为动力,大气为气源。具有初压初温稳定,操作安全,功耗和噪声较小,试验气流不受压缩机械的污染等优点。喷管用有机玻璃制作,形象直观。 5.采用一台真空泵,可同时带两台实验台对配给的渐缩、缩放喷管做全工况观测。因装卸喷管方便,本实验台还可用作其他各种流道喷管和扩压管的实验。 三、实验原理 1、喷管中气流的基本规律 (1)由能量方程: 及 可得 可见,当气体流经喷管速度增加时,压力必然下降。 (2)由连续性方程: 有 及过程方程

谈谈探究实验中的数据作图与图像分析

谈谈探究实验中的数据作图与图像分析 叶鹏松 (苏州市工业园区莲花学校,215123) 摘要:本文详细阐述了中学物理探究性实验中数据作图与图像分析的基本方法与规范,并对Excel等软件在数据处理及图像分析中的具体应用进行了深入探讨.关键词:探究实验;数据作图;图像分析 数据作图和图像分析是科学研究的重要方法,它不仅可以用图示的方式直观地展示测量的结果,而且还可以清晰地揭示出各变量之间的变化关系与变化趋势,因此在各类科学研究中有着非常广泛的应用.然而现行的初高中科学类教材却对此缺乏系统介绍,以至于许多重要实验规律的获取过程被形式化或过分简约化[1],这既不利于学生科学掌握数据作图的基本方法与规范,也不利于培养学生必要的数据图形分析能力,一定程度上制约了学生综合探究能力与素养的提升.随着探究性实验活动在中学开展的不断深入,笔者认为很有必要就这一方法的科学应用作一下探讨.下面笔者将结合中学物理教学的常见案例,就探究性实验中的数据作图与图像分析及其应用向大家作分析交流. 1 作图规范 下表是探究弹簧长度与所受拉力关系时,获得的实验数据: 若以图示的形式展示这些测量结果,一般可遵循以下方法和步骤: (1)在坐标纸上建立直角坐标系,水平轴画于纸的底端,纵轴画于纸的左端,图应尽可能大一些,大的图有利于提高作图精确度. (2)明确自变量和应变量,并标于相应的坐标轴上.自变量是指那些实验中数值可以直接设定或加以控制的变量,本实验中自变量是指拉力F;应变量是指那些实验中数值无法直接加以控制的变量,它可以看作是自变量变化的结果,本实验中应变量是指弹簧长度L.根据约定,自变量应画于水平轴,应变量应画于竖直轴.另外,对于时间这一变量而言,人们总是将它画于水平轴上. (3)确定每个变量变化的范围,选择合适的比例标度,并标于相应的坐标轴上.(4)标明每个坐标轴所代表的变量名称及其单位符号.

水污染控制工程实验报告

水污染控制工程 实验报告 (环境工程专业适用) 2014年至2015 年第 1 学期 班级11环境1班 姓名吴志鹏 学号1110431108 指导教师高林霞 同组者汤梦迪刘林峰吴渊田亚勇李茹茹 程德玺 2014年4月

目录 实验一曝气设备充氧性能的测定 ------------------- 1实验二静置沉淀实验 ----------------------------- 3实验三混凝实验 --------------------------------- 6实验四测定污泥比阻实验 ------------------------ 10

实验一曝气设备充氧性能的测定 一、实验目的 1.掌握表面曝气叶轮的氧总传质系数和充氧性能测定方法 2.评价充氧设备充氧能力的好坏。 二、实验原理 曝气是指人为地通过一些机械设备,如鼓风机、表面曝气叶轮等,使空气中的氧从气相向液相转移的传质过程。氧转移的基本方程式为: dρ/dt=K La(ρs-ρ)(1)式中dρ/dt:氧转移速率,mg/(Lh); K La:氧的总传质系数,h-1; ρs:实验条件下自来水(或污水)的溶解氧饱和浓度,mg/L; ρ:相应于某一时刻t的溶解氧浓度mg/L, 曝气器性能主要由氧转移系数K La、充氧能力OC、氧利用率E A、动力效率Ep四个主要参数来衡量。下面介绍上述参数的求法。 (1)氧转移系数K La 将(1)式积分,可得 1n(ρs—ρ)=一K La t+ 常数(2)此式子表明,通过实验测定ρs和相应与每一时刻t的溶解氧浓度后,绘制1n(ρs—ρ)与t 关系曲线,其斜率即为K La。另一种方法是先作ρ-t曲线,再作对应于不同ρ值的切线,得到相应的dρ/dt,最后作dρ/dt与ρ的关系曲线,也可以求出。 (2)充氧性能的指标 ①充氧能力(OC):单位时间内转移到液体中的氧量。 表面曝气时:OC(kg/h)= K La t(20℃)ρs (标)V (3) K La t(20℃)= K La t ? 1.02420-T(T: 实验时的水温) ρs (标)=ρs (实验)?1.013?105/实验时的大气压(Pa) V:水样体积 ②充氧动力效率(Ep):每消耗1度电能转移到液体中的氧量。该指标常被用以比较各种曝气设备的经济效率。 Ep(kg/kW·h)=OC/N (4)式中:理论功率,采用叶轮曝气时叶轮的输出功率(轴功率, kW)。 ③氧转移效率(利用率,E A):单位时间内转移到液体中的氧量与供给的氧量之比。 E A= (OC/S)?100% (5)S—供给氧,kg/h。 三、实验步骤 在实验室用自来水进行实验。 (1)向模型曝气池注入自来水至曝气叶轮表面稍高处,测出模型池内水体积V(L),并记录。(2)启动曝气叶轮,使其缓慢转动(仅使水流流动),用溶解氧仪测定自来水温和水中溶解氧ρ',并记录。 (3)根据ρ'值计算实验所需要的消氧剂Na2SO3和催化剂CoCl2的量。

实验三--蔬菜良种种子品质检验

实验三--蔬菜良种种子品质检验

实验三蔬菜良种种子品质检验 一、实验目的 了解种子检验的程序及其在农业生产上的意义。初步掌握蔬菜种子播种品质检验的原理、方法及其实验技术。掌握种子含水量、种子净度、种子千粒重、种子发芽力、种子生活力等种子品质的检测方法。 二、实验原理 种子是农业生产中基本资料,同样也是农业和农民赖以发展的最基本的生产资料,其质量的优劣关系到国计民生。种子检测则是判断种子质量高低的一套科学、标准的技术体系,对农业尤其是种子生产、使用、流通乃至国际性贸易,有着重大意义。 蔬菜生产在农业生产中所占的比重和地位越来越高,蔬菜用种质量的优劣直接影响其成败。蔬菜种子播种品质检验则是根据蔬菜种子的外形形态特征、内在的生理生化状态以及给定条件下的生长发育表现,对发芽率、净度、千粒重等品质指标进行测定,鉴定其是否符合播种要求,判断其种用价值的一套科学的、标准的方法体系。 三、材料及用具 (一)材料 萝卜、豌豆、白菜、芫荽(香菜)、黄瓜种子。 (二)用具 检验桌、分样器、天平、套筛、培养皿、镊子、放大镜、毛笔、光照培养箱、滤纸、电热恒温鼓风干燥箱、铝盒、坩埚钳、干燥器等。 四、实验内容 (一)净度分析(purity analysis) 种子净度分析主要是测定供检样品中净种子、其他植物种子和杂质三种成分的百分数。净度分析测定供检样品不同成分的质量百分率和样品混合物特性,并据此推测种子批的组成。分析时将试验样品分成三种成分:净种子、其他植物种子和杂质,并测定各成分的质量分数。 种子净度是指本作物净种子的质量占样品总质量的百分率。种子净度是衡量一批种子种用价值和分级的依据。 净种子、其他植物种子、杂质的区分标准是: 1.净种子(pure seed):凡能明确地鉴别出它们是属于所分析的种(除已变成菌核、黑穗病孢子团或线虫瘿外),即使是未成熟的、瘦小的、皱缩的、带病的或发过芽的种子单位(真种子、瘦果、颖果、分果和小花等)都应作为净种子。大于原来大小一般的破损种子单位也算为净种子。

喷管特性实验

喷管特性实验 一、实验目的 1.验证喷管中气流的基本规律,加深对临界压力、临界流速和最大流量等喷管临界参数的理解。 2.比较熟练地掌握压力、压差及流量的测量方法。 3.重要概念1的理解:应明确在渐缩喷管中,其出口处的压力不可能低于临界压力,流速不可能高于音速,流量不可能大于最大流量。 4.重要概念2的理解:应明确在缩放喷管中,其出口处的压力可以低于临界压力,流速可高于音速,而流量不可能大于最大流量。 二、实验装置 整个实验装置包括实验台、真空泵(规格为1401型,排气量3200L/min)。实验台由进气管、孔板流量计、喷管、测压探针、真空表及其移动机构、调节阀、真空罐等几部分组成,如图6-4所示。 图6-4 喷管实验台 1-进气管;2-空气吸气口;3-孔板流量计;4-U形管压差计;5-喷管; 6-三轮支架; 7- 测压探针; 8-可移动真空表; 9-位移螺杆机构及位移传感器; 10-背压真空表; 11-背压用调节阀;12-真空罐;13-软管接头;14-仪表箱;15-差压传感器;16-被压传感器;17-移动压力传感器 进气管为φ57×3.5无缝钢管,内径φ50。空气从吸气口入进气管,流过孔板流量计。孔板孔径φ7,采用角接环室取压。流量的大小可从U形管压差计或微

压传感器读出。喷管用有机玻璃制成,配有渐缩喷管和缩放喷管各一只。根据实验的要求,可松开夹持法兰上的固紧螺丝,向左推开进气管的三轮支架,更换所需的喷管。喷管各截面上的压力是由插入喷管内的测压探针(外径φ1.2)连至“可移动真空表”测得,由于喷管是透明的,测压探针上的测压孔(φ0.5)在喷管内的位置可从喷管外部看出,它们的移动通过螺杆机构移动,标尺或位移传感器实现测量读数。喷管的排气管上还装有“背压真空表”,其压力大小用背压调节阀进行调节。真空罐直径φ400,起稳定压力的作用。罐的底部有排污口,供必要时排除积水和污物之用。为减小震动,真空罐与真空泵之间用软管连接。 在实验中必须测量四个变量,即测压孔在喷管内的不同截面位置X 、气流在该截面上的压力P 、背压P b 、流量m ,这些量可分别用位移指针的位置、可移动真 空表、背压真空表以及U 形管压差计的读数来显示。 实验装置特点: 1.可方便地装上渐缩喷管或缩放喷管,观察气流沿喷管各截面的压力变化。 2.可在各种不同工况下(初压不变,改变背压),观察压力曲线的变化和流量的变化,从中着重观察临界压力和最大流量现象。 3.除供定性观察外,还可作初步的定量实验。压力测量采用精密真空表,精度0.4级。流量测量采用低雷诺数锥形孔板流量计,适用的流量范围宽,可从流量接近为零到喷管的最大流量,精度优于2级。 4.采用真空泵为动力,大气为气源。具有初压初温稳定,操作安全,功耗和噪声较小,试验气流不受压缩机械的污染等优点。喷管用有机玻璃制作,形象直观。 5.采用一台真空泵,可同时带两台实验台对配给的渐缩、缩放喷管做全工况观测。因装卸喷管方便,本实验台还可用作其他各种流道喷管和扩压管的实验。 三、实验原理 1、喷管中气流的基本规律 (1)由能量方程: 221dc dh dq += 及 dp dh dq ν-= 可得 cdc dp =-ν 可见,当气体流经喷管速度增加时,压力必然下降。 (2)由连续性方程: 有 及过程方程 常数=k p ν 常数=?=??????=?=?νννc A c A c A 222111c dc d A dA -=νν

大学物理实验_常用的数据处理方法

1.7 常用的数据处理方法 实验数据及其处理方法是分析和讨论实验结果的依据。在物理实验中常用的数据处理方法有列表法、作图法、逐差法和最小二乘法(直线拟合)等。 1.7.1 列表法 在记录和处理数据时,常常将所得数据列成表。数据列表后,可以简单明确、形式紧凑地表示出有关物理量之间的对应关系;便于随时检查结果是否合理,及时发现问题,减少和避免错误;有助于找出有关物理量之间规律性的联系,进而求出经验公式等。 列表的要求是: (1)要写出所列表的名称,列表要简单明了,便于看出有关量之间的关系,便于处理数据。 (2)列表要标明符号所代表物理量的意义(特别是自定的符号),并写明单位。单位及量值的数量级写在该符号的标题栏中,不要重复记在各个数值上。 (3)列表的形式不限,根据具体情况,决定列出哪些项目。有些个别的或与其他项目联系不大的数据可以不列入表内。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。 (4)表中所列数据要正确反映测量结果的有效数字。 列表举例如表1-2所示。 表1-2铜丝电阻与温度关系 1.7.2 作图法 作图法是将两列数据之间的关系用图线表示出来。用作图法处理实验数据是数据处理的常用方法之一,它能直观地显示物理量之间的对应关系,揭示物理量之间的联系。 1.作图规则 为了使图线能够清楚地反映出物理现象的变化规律,并能比较准确地确定有关物理量的量值或求出有关常数,在作图时必须遵守以下规则。 (1)作图必须用坐标纸。当决定了作图的参量以后,根据情况选用直角坐标纸、极坐标纸或其他坐标纸。 (2)坐标纸的大小及坐标轴的比例,要根据测得值的有效数字和结果的需要来定。原则上讲,数据中的可靠数字在图中应为可靠的。我们常以坐标纸中小格对应可靠数字最后一位的一个单位,有时对应比例也适当放大些,但对应比例的选择要有利于标实验点和读数。最小坐标值不必都从零开始,以便做出的图线大体上能充满全图,使布局美观、合理。 (3)标明坐标轴。对于直角坐标系,要以自变量为横轴,以因变量为纵轴。用粗实线在坐标纸上描出坐标轴,标明其所代表的物理量(或符号)及单位,在轴上每隔一定间距标明

污泥性质实验测定方案报告

污泥性质测定实验方案 取污水厂的污泥经浓缩后的含水率在9 5 .7 4%~9 8 .0 6%之间,p H值为6 .0 ~6 .5的污泥进行实验。污泥采样后装入聚乙烯袋中,贴上标签。 1含水率测定 含水率:污泥中所含水分的重量与总重量之比的百分数。 重量法: 将6 0 ml 蒸发皿放在烘箱内,以1 0 5 ~l l 0 ℃的温度烘2 h ,取出后放在干燥器内冷却0 .5 h ,用万分之一分析天平称重,记录质量W1 。再用粗天平称污泥2 0 g置于烘干后的蒸发皿中,用水浴锅蒸干。然后放入1 0 5 ~1 1 0 ℃的烘箱内烘2 h ,取出放入干燥器内冷却0.5 h ,用万分之一分析天平称重,记录质量W2,代人下式计算含水率。

确定不同含水率所表现出来的污泥状态,以确定所需的污泥样本。2.污泥PH值测定 1)如果污泥含水量高,可取污泥上清液,用酸度计直接测定。 2)如果污泥含水率低,可取10g污泥,加入25ml无二氧化碳蒸馏水,在磁力搅拌机上搅拌1~2min,静置0.5h,用酸度计测定。 3、污泥干重的测量方法: a)将滤纸和称量瓶放在103~105℃烘箱中干燥至恒重,称量并记录W1。 b)将该滤纸剪好平铺在布氏漏斗上(剪掉的部分滤纸不要丢掉)。c)将测定过沉降比的100mL量筒内的污泥全部倒人漏斗,过滤(用水冲净量筒,水也倒人漏斗)。 d)将载有污泥的滤纸移入称量瓶重,放入烘箱(103~105℃)中烘干恒重,称量并记录W2。 e)污泥干重= W2 - W1 4、污泥热值测定 污水厂污泥具有较高的热值,在一定含水率下具有自持燃烧和用作能

源的可能性热值:污泥热值采用氧弹分析仪测定m,实验测出可直接用于燃烧的含水率(添加适当其他有机废料) 5、污泥粘滞性测定(找到最适进料含水率) 初粘性测定仪 初粘性:物体和压敏胶粘带粘性面之间以微小压力发生短暂接触时,胶粘带对物体的粘附作用称为初粘性。采用斜面滚球法,通过钢球和测试试样粘性面之间以微小压力发生短暂接触时,胶粘带、标签等产品对钢球的附着力作用来测试试样初粘性。将一钢球滚过平放在倾斜板上的胶粘带粘性面。根据规定长度的粘性面能够粘住的最大钢球尺寸,评价其初粘性大小。 6、有机物含量(BOD测定) 参考(PDF资料) 7、污泥微生物含量 活细胞计数法 平板菌落计数法,是根据每个活的细菌能长出一个菌落的原理设计的。取一定容量的菌悬液,作一系列的倍比稀释,然后将定量的稀释液进行平板培养,根据培养出的菌落数,可算出培养物中的活菌数。此法灵敏度高,是一种检测污染活菌数的方法,也是目前国际上许多国家所采用的方法。使用该法应注意:①一般选取菌落数在30~300之间的平板进行计数,过多或过少均不准确;②为了防止菌落蔓延,影响计数,可在培养基中加入O.001%一氯化三苯基四氮唑(TTC); ③本法限用于形成菌落的微生物。

果蔬质量安全监测方法

果蔬质量安全监测方法 为落实《中华人民共和国农产品质量安全法》,提高我公司蔬菜、水果质量安全水平,特制定本方案。 一、监测范围及频次 (一)蔬菜 1、例行监测 园区范围内的蔬菜生产园区由相关检测部门每月抽检一次。 2、日常监测 园区范围内的蔬菜生产园区,每周至少组织自检一次。 (二)其它专项监测 在全面开展监测的同时,根据本部门职能,与有关部门密切配合,相对集中时间、集中力量,针对重点品种、重点区域,安排专项抽检。 二、监测要求 (一)根据果蔬生产区域,随机选取抽样地点。抽样的地点及果蔬样品种类应具有代表性,能反映各生产作业区实际质量水平。 (二)果蔬例行监测结果发现问题的生产作业区,应在下一次监测中跟踪抽查,并加强督导。 (三)监测工作应严格按照有关抽样和检测标准进行,保证检测结果的公正性、科学性和可靠性。

(四)被确定的抽样作业区不得拒绝抽检,否则其产品按不合格处理。 三、监测的样品种类和数量 (一)蔬菜 监测的蔬菜主要样品种类包括菠菜、小白菜、生菜、芹菜、甘蓝、大白菜、番茄、辣椒、茄子、黄瓜、苦瓜、西葫芦、韭菜、豆角、南瓜等,可根据实际情况做适当调整。 监测点与抽取样品数量:例行监测被抽查的数量每个生产区域每次不少于5个,每个监测点每次抽取的样品数不少于8个。监督抽查、日常监测和专项监测根据实际情况作出安排。 (二)水果 监测的水果主要样品种类包括苹果、葡萄、梨、草莓、西瓜、桃、樱桃、杏、柿、石榴、李子、山楂等,可根据实际情况做适当调整。每个监测点(超市)每次抽取样品数不少于3个。 (三)其它专项监测 根据实际情况作出安排。 四、监测项目及技术依据 (一)抽样方法及要求 抽样按NY/T762-2004《蔬菜农药残留检测抽样规范》、GB/T 8855-1988《新鲜水果和蔬菜的取样方法》的规定执行。 注意做好样品的包装封存、编号工作,防止造成交叉污染和混淆。 (二)监测项目和检测依据

工程热力学喷管特性实验

实 验 报 告 评分 实验题目:喷管特性实验 实验目的:验证并进一步加深对喷管中气流基本规律的理解,建立临界压力、临界流速 和最大流量等喷管临界参数的概念;比较熟练地掌握用热工仪表测量压力(负压)、压差及流量的方法;明确渐缩喷管出口处的压力不可能低于临界压力,流速不可能高于音速,流量不可能大于最大流量;明确缩放喷管中的压力可以低于临界压力,流速可高于当地音速,而流量不可能大于最大流量;对喷管中气流的实际复杂过程有所了解,能定性解释激波产生的原因。 实验原理: 1.喷管中气流的基本原理 由连续方程、能量方程和状态方程结合声速公式KPV a =得: c dc M A dA ? ?? ? ?-=12 马赫数M=c/a 显然,要使喷管中气流加速,当M<1时,喷管应为渐缩型(dA<0);当气流M>1时, 喷管应为渐扩型(dA>0)。 2.气体流动的临界概念 喷管中气流的特征是dp<0,dc>0,dv>0,三者之间互相制约。当某一截面的速度达到当地音速时,气流处于从亚音速变为超音速的转折点,通常称为临界状态。 临界压力比112-? ?? ??+=K K K ν ,对于空气,ν=0.528 当渐缩喷管出口处气流速度达到音速或缩放喷管喉部达到音速时,通过喷管的气体流量 便达到了最大值,或成临界流量。可由下式确定: 1112 1212m i n m a x V P K K K K A m ?-??? ??++= 式中: min A —最小截面积(对于渐缩喷管即为出口处的流通截面积;对于缩放喷管即为喉部的面 积。本实验台的两种喷管最小截面积均为11.44)。 3.气体在喷管中的流动 (1)渐缩喷管 渐缩喷管因受几何条件(dA<0)的限制。有式(4)可知:气体流速只能等于或低于音速(a C ≤);出口截面的压力只能高于或等于临界压力(c P P ≥2);通过喷管的流量只能等于或小于最大流量(max m m =)。 (2)缩放喷管

污泥比阻的测定

污泥比阻的测定实验 1 .实验原理 污泥比阻是表示污泥过滤特性的综合性指标,它的物理意义是:单位质量的污泥在一定压力下过滤时在单位过滤面积上的阻力。求此值的作用是比较不同的污泥(或同一污泥加入不同量的混合剂后)的过滤性能。污泥比阻愈大,过滤性能愈差。 ▲过滤时滤液体积V (mL )与推动力p (过滤时的压强降,g/cm 2),过滤面积F (cm 2),过滤时间t (s )成正比;而与过滤阻力R (cm*s 2/mL ),滤液黏度μ[g/(cm*s)]成正比。 )(m L R pFt V μ= 定压下过滤,t /V 与V 成直线关系,其斜率为 2 2 pF C μα= C b K C b = 需要在实验条件下求出b 及C 。 b 的求法。可在定压下(真空度保持不变)通过测定一系列的t ~V 数据,用图解法求斜率 C 的求法。根据所设定义 滤液) 滤饼干重/mL ()(0g Q C Q Q C y d y -= (6-7) 式中 Q 0——污泥量,mL ; Q y ——滤液量,mL ; C d ——滤饼固体浓度,g/mL 。 根据液体平衡Q 0=Q y +Q d 根据固体平衡Q 0C 0=Q y C y +Q d C d 式中 C o ——污泥固体浓度,g /mL ; C y ——污泥固体浓度,g /mL ; Q d ——污泥固体滤饼量,mL 。 可得 d y d y C C C C Q Q --= ) (00 代入式(6-7),化简后得 滤液) 率饼干重/mL ()(0g Q C Q Q C y d y -= (6-8) 上述求C 值的方法,必须测量滤饼的厚度方可求得,但在实验过程中测量滤饼厚度是很困难的且不易量准,故改用测滤饼含水比 滤液) 滤饼干重/mL g

工程热力学喷管特性实验

工程热力学喷管特性实验 实验报告评分 实验题目:喷管特性实验 实验目的:验证并进一步加深对喷管中气流基本规律的理解,建立临界压力、临界流速 和最大流量等喷管临界参数的概念;比较熟练地掌握用热工仪表测量压力 (负压)、压差及流量的方法;明确渐缩喷管出口处的压力不可能低于临界 压力,流速不可能高于音速,流量不可能大于最大流量;明确缩放喷管中的压力可以低于临界压力,流速可高于当地音速,而流量不可能大于最大流量; 对喷管中气流的实际复杂过程有所了解,能定性解释激波产生的原因。实验原理: 1(喷管中气流的基本原理 a,KPV由连续方程、能量方程和状态方程结合声速公式得: dAdc2,,,M,1,,,,Ac 马赫数M=c/a 显然,要使喷管中气流加速,当M<1时,喷管应为渐缩型(dA<0);当气流M>1时,喷管应为渐扩型(dA>0)。 2(气体流动的临界概念 喷管中气流的特征是dp<0,dc>0,dv>0,三者之间互相制约。当某一截面的速度达到当地音速时,气流处于从亚音速变为超音速的转折点,通常称为临界状态。 K 2,,K,1,,,,K,1,, 临界压力比,对于空气,,=0.528 当渐缩喷管出口处气流速度达到音速或缩放喷管喉部达到音速时,通过喷管的气体流量便达到了最大值,或成临界流量。可由下式确定:

2P2K2,,K,11,m,A,,,maxminK,1K,1V,,1 式中: A—最小截面积(对于渐缩喷管即为出口处的流通截面积;对于缩放喷管即为喉部的面min 积。本实验台的两种喷管最小截面积均为11.44)。 3(气体在喷管中的流动 (1)渐缩喷管 渐缩喷管因受几何条件(dA<0)的限制。有式(4)可知:气体流速只能等于或低于音 P,P2cC,a速();出口截面的压力只能高于或等于临界压力();通过喷管的流量只能等 ,,m,mmax于或小于最大流量()。 (2)缩放喷管 缩放喷管的喉部dA=0,因而气流可达到音速(c=a);扩大段dA>0,出口截面处的流速可超音速(c>a),其压力可低于临界压力(P2

污泥比阻 设计实验报告

环境工程专业 学生设计性实验报告 实验课程名称混凝剂(硫酸铝)与污泥反应时间的不同对污泥比阻的影响_ 指导教师_董春欣__ ____孙镜伟_学号__12310113___专业___环境工程__班级_环工1201____

摘要:根据长期实验教学中所取得的经验,对污泥比阻实验中几个参数的确定和经常碰到的一些问题,提出了自己的看法和解决的办法,为比阻实验的可操作性提供了帮助。混凝剂种类繁多,如何根据水处理厂工艺条件、原水水质情况和处理后水质目标选用合适的混凝药剂,是十分重要的污泥比阻作为反映污泥脱水性能的主要参数,是水厂生产废水调质及脱水工艺的重要控制指标.指出了常规污泥比阻抽滤测定方法中存在的测定指标多、操作复杂、测定历时长等问题.针对自来水厂生产废水的水质特点,根据污泥比阻的测定理论。 关键词:混凝剂;污泥比阻;过滤;脱水性能等 Abstract:Thedeterminationofseveralparametersinthesludgeandproblemsusuallyoccurredint heexperimentwerediscussedandroperationonlaboratorymeasure2mentofsludgespecificresistance. with the enlargement of our country resently,Urban sewage is an enormous quantity of low concentration organic wastewater. In this paper, the urban sewage treatment technology and main structure design in an all-round way. Including the grille, collecting well, sewage pump room, sedimentation tank, adjusting pool, aeration tank, and the concentrated tank, etc. Key words:concentration organic wastewater. In this paper, the urban sewage treatment technology and main

相关文档
最新文档