abaqus中应力的理解

abaqus中应力的理解
abaqus中应力的理解

在ABAQUS中对应力得部分理解

关于abaqus中 mises, s11 s22 s33 ,s12,tresca pressure, max principal,mid principal,min principal。简单地理解,

在ABAQUS中,一般就是把X轴当做1轴,Y轴当做2轴,Z轴当做3轴;那么:

S11就就是X轴向得应力,正值为拉应力,负值为压应力;

S22就就是Y轴向得应力,正值为拉应力,负值为压应力;

S33就就是Z轴向得应力,正值为拉应力,负值为压应力;

S12就就是在YZ平面上,沿Y向得剪力;

S13就就是在YZ平面上,沿Z向得剪力;

S23就就是在XZ平面上,沿Z向得剪力;

由于剪力得对称性:S12=S21,S13=S31,S23=S32

Mises应力就是即第四强度理论,根据能量守恒原理,用于判断材料就是否屈服得应力准则,即Mises准则,一般使用于判断延性比较好得材料,对于脆性材料,一般采用第一强度理论。

使用ABAQUS计算应力强度因子

------------------------------------------------------------------------------------------------------- 如何使用ABAQUS计算应力强度因子 Simwefanhj(fanhjhj@https://www.360docs.net/doc/f75011981.html,) 2011.9.9 ------------------------------------------------------------------------------------------------------- 问题描述:以无限大平板含有一贯穿裂纹为例,裂纹长度为10mm(2a),在远场受双向均布拉应力σ=100N/mm2。按解析解,此I型裂纹计算出的应力=396.23(N.mm-3/2) 强度因子π σa K= I 以下为使用ABAQUS6.10的计算该问题的过程。 第一步:进入part模块 ①建立平板part(2D Planar;Deformation;shell),平板的尺寸相对于裂纹足够大,本例的尺寸为100×50(mm)。 ②使用Partation Face:sketch工具,将part分隔成如图1形式。 图1 第二步:进入property模块 ①建立弹性材料; ②截面选择平面问题的solid,homogeneous; ③赋予截面。

第三步:进入Assembly模块 不详述。需注意的是:实体的类型(instance type)选择independent。 第四步:进入mesh模块 除小圈内使用CPS6单元外,其它位置使用CPS8单元离散(图2)。裂纹尖端的奇异在interaction模块中(图4)考虑。 图2 第五步:进入interaction模块 ①指定裂纹special/creak/assign seam,选中示意图3中的黄色线,done! ②生成裂纹crack 1,special/crack/create,name:crack 1,type: contour integral. 当提示选择裂纹前端时,选则示意图的红圈区域,当提示裂纹尖端区域时选择红圈的圆心,用向量q表示裂纹扩展方向(示意图3绿色箭头)。用同样的方法建立crack 2(示意图3中的蓝色区域)。 special/crack/edit,对两个裂纹进行应力奇异的设置,如图4所示。

abaqus计算应力强度因子

重庆大学 课题:Abaqus计算裂纹应力强度因子 学院: 专业: 学号: 姓名:

一、计算裂纹应力强度因子

问题描述:以无限大平板含有一单边裂纹为例,裂纹长度为a=10mm,平板宽度h=30,弹性模量E=210000Pa,泊松比v=0.33,在远场受双向均布拉应力。 使用Abaqus计算该问题: 1、进入part模块 建立平板part,平板的尺寸相对于裂纹足够大,本例尺寸为50x30 (mm);使用Partation Face:sketch工具,将part分隔成如图1形式 图1 2、进入property模块 建立弹性材料;截面选择平面问题的solid,homogeneous;赋予截 面。 3、进入Assembly模块 实体的类型(instance type)选择independent。 4、进入mesh模块 划分单元格如图2所示。

图2 5、进入interaction模块 指定裂纹special/creak/assign seam;生成裂纹crack 1, special/crack/create;special/crack/edit,对两个裂纹进行应力奇异的 设置。 6、进入step模块 在initial步之后建立static,general步;在 output/history output requests/create/中创建输出变量。 7、进入load模块 定义位移和荷载边界,如图3所示。

图3 8、进入job模块,提交计算 Mises应力分布见图4,在.dat文件中(图5)查看应力强度因子。 图4

图5 计算解析解: 由公式F=1.12?0.23(a/h)+10.6(a/h)2?21.71(a/h)3+30.38(a/h)4 计算得解析解为k=1001 应力强度因子误差为0.09% 二、误差分析 改变板的长度,其他条件不变 1.当长度L=100时 误差为0.5% 2.当板长L=30

Abaqus中应力应变的理解

在ABAQUS 中对应力的部分理解 1、三维空间中任一点应力有6个分量yz xz xy z y ,,,σσσσσσ,,x ,在ABAQUS 中分别对应S11,S22,S33,S12,S13,S23。 2、一般情况下,通过该点的任意截面上有正应力及其剪应力作用。但有一些特殊截面,在这些截面上仅有正应力作用,而无剪应力作用。称这些无剪应力作用的面为主截面,其上的正应力为主应力,主截面的法线叫主轴,主截面为互相正交。主应力分别以321,,σσσ表示,按代数值排列(有正负号)为321σσσ≥≥。其中321,,σσσ在ABAQUS 中分别对应Max. Principal 、Mid. Principal 、Min. Principal ,这三个量在任何坐标系统下都是不变量。 可利用最大主应力判断一些情况:比如混凝土的开裂,若最大主应力(拉应力)大于混凝土的抗拉强度,则认为混凝土开裂,同时通过显示最大主应力的法线方向,可以大致表示出裂缝的开裂方向等。 利用最小主应力,可以查看实体中残余压应力的大小等。 3、弹塑性材料的屈服准则 3.1、Mises 屈服准则 22 13232 2 212)()()(S σ σσσσ σσ=-+-+- 其中s σ为材料的初始屈服应力。 在三维空间中屈服面为椭圆柱面;在二维空间中屈服面为椭圆。 Mises 等效应力的定义为:(牵扯到张量知识) 其中 S 为偏应力张量,其表达式为 其中为应力, I 为单位矩阵,p 为等效压应力(定义如下): , 也就是我们常见的 )(31z y x p σσ σ ++= 。 还可以具体表达为: 其中 , , 为偏应力张量(反应塑 性变形形状的变化)。 q 在ABAQUS 中对应 Mises ,它有6个分量(随坐标定义的不同而变化)S11,S22,S33,S12,S13,S23 3.2、Trasca 屈服准则 主应力间的最大差值=2k

ABAQUS定义真实应力和真实应变

ABAQUS 中定义真实应力和真实应变 在ABAQUS 中必须用真实应力和真实应变定义塑性.ABAQUS 需要这些值并对应地在输入文件中解释这些数据。 然而,大多数实验数据常常是用名义应力和名义应变值给出的。这时,必须应用公式将塑性材料的名义应力(变)转为真实应力(变)。 考虑塑性变形的不可压缩性,真实应力与名义应力间的关系为: 00l A lA =, 当前面积与原始面积的关系为: 00l A A l = 将A 的定义代入到真实应力的定义式中,得到: 00 ()nom F F l l A A l l σσ=== 其中0 l l 也可以写为1nom ε+。 这样就给出了真实应力和名义应力、名义应变之间的关系: (1)nom nom σσε=+ 真实应变和名义应变间的关系很少用到,名义应变推导如下: 0001nom l l l l l ε-= =- 上式各加1,然后求自然对数,就得到了二者的关系: ln(1)nom εε=+ ABAQUS 中的*PLASTIC 选项定义了大部分金属的后屈服特性。ABAQUS 用连接给定数据点的一系列直线来逼近材料光滑的应力-应变曲线。可以用任意多的数据点来逼近实际的材料性质;所以,有可能非常逼真地模拟材料的真实性质。在*PLASTIC 选项中的数据将材料的真实屈服应力定义为真实塑性应变的函数。选项的第一个数据定义材料的初始屈服应力,因此,塑性应变值应该为零。 在用来定义塑性性能的材料实验数据中,提供的应变不仅包含材料的塑性应变,而是包括材料的总体应变。所以必须将总体应变分解为弹性和塑性应变分量。弹性应变等于真实应力与杨氏模量的比值,从总体应变中减去弹性应变,就得到了塑性应变,其关系为: /pl t el t E ε εεεσ=-=- 其中pl ε是真实塑性应变,t ε是总体真实应变,el ε是真实弹性应变。

ABAQUS计算裂纹尖端应力强度因子有效性的算例研究

ABAQUS计算裂纹尖端应力强度因子有效性的算例研究 发表时间:2018-09-11T11:34:12.223Z 来源:《新材料.新装饰》2018年3月下作者:汪波[导读] 在实际工程领域中,相当部分的脆性材料总是不可避免的存在着裂纹或是缺陷。在实际环境中材料的受力往往是相当复杂的。基于ABAQUS平台的裂纹仿真软件,它具有简单易用的特点。(成都理工大学工程技术学院,四川乐山 614000) 摘要:在实际工程领域中,相当部分的脆性材料总是不可避免的存在着裂纹或是缺陷。在实际环境中材料的受力往往是相当复杂的。基于ABAQUS平台的裂纹仿真软件,它具有简单易用的特点。通过算例分析验证表明,该软件的计算结果具有较高的精度,完全可以用于实际工程问题的计算,通过分析验证表明该软件的设计是成功的。此外,今后可以在它的基础上进行更多功能扩展,从而使它拥有分析更为复杂问题的能力。 关键词:裂纹;应力强度因子;断裂力学;ABAQUS 引言 材料在成型和加工过程中在其内部造成了很多缺陷,而其破坏正好均源于构件内部的微小裂纹,所以研究带裂纹的物体力学性能具有十分重要的意义。 图1存在于岩石和混凝土地面中的裂缝 1920年, Griffith[1-2]提出了在材料中存在裂纹的设想,而从Irwin[]3-4]在1957年提出了应力强度因子以及其后形成的断裂韧度的概念后,断裂力学理论出现了重大的突破,奠定了线弹性断裂力学的基础。 1基本原理 近年来以数值分析为基础的手段来解决断裂力学相关问题的技术得到了广泛的发展应用,并且不断的调整完善。该技术在一定程度上较好的克服了实验条件下的不足。对于线弹性断裂力学而言,裂尖区域的位移场、应力、应变场由应力强度因子决定,故而通过有限元计算的结果来得到具体的应力强度因子的值是线弹性断裂力学中用有限元法的基本要求。 1.1 ABAQUS求解裂纹尖端的应力强度因子 传统的有限元在计算裂纹尖端的应力强度因子的时候,无可避免地遇到裂尖复杂应力场和位移场的计算,J积分则可以完全避免这种复杂的处理过程。 为了计算二维情况下的J积分,ABAQUS定义了围绕裂纹尖端由单元组成的环形的积分域,如下图所示。 图2 ABAQUS中围线的定义 ABAQUS在计算围线积分时,采用的是先计算出围线上面所取的若干个离散点处J积分值,然后乘以每个点对应的加权值后,所有点相加来近似地求解出围线积分,即J积分的值和,进而得到复合裂纹的应力强度因子和。 2两条共线裂纹应力强度因子的算例分析 2.1共线双裂纹在压缩荷载作用下应力强度因子的解析解 有许多学者对含有裂纹的无限大板,裂纹尖端的应力强度因子进行了研究。Zhu Z M[5] 等从理论和实验两个方面都做了详细的研究与探讨。基于前人的研究结果,Zhu Z M 给出了共线裂纹的应力函数及其应力强度因子的基本公式,并就共线双裂纹问题进行了研究,给出了裂纹应力强度因子精确的解析解。 图3压缩载荷作用下的含有共线双裂纹的无限大板 2.2 ABAQUS计算共线裂纹应力强度因子

abaqus6.11一个从初学到精通粘弹性的分析的经验积累

问题积累(待续) 1.abaqus如何调整图例的大小,就是云图左上角那个图框,字太小了看不清!! 直接设置图例的字体大小就可以:工具栏viewport>viewport annotation options>legend(选项卡)>text(选项)>set font(按钮)>size,修改size选项中的数字,就可以修改图例大小了。 2.cohesive element ABAQUS 在6.11使用cohesive element,定义cohesive材料属性的时候主要步骤: 1.定义一个材料的名字,比如cohesive,不要去定义任何属性(弹性,弹塑性等等)。 2.打开工具栏model--edit keywords,在inp中手动添加材料的各种属性。 PS: 定义section的时候选cohesive,element control选sweep,element type选cohesive,这些是使用cohesive element的基本步骤。 zero thickness的cohesive section设定abaqus所谓的 zero-thickness,其实就是定义cohesive section的initial thickness=1.0。你可以在定义section的时候定义(specify),也可以用系统默认的thickness(也是1.0),这样有关cohesive element 的计算当中,就有displacement(位移)=strain(应变)*thickness ( 1.0 )=strain的数值。我们知道从1914年Ingless和1921年Griffith提出断裂力学开始,一直到60年代都停留在线弹性断裂力

最新Abaqus中应力应变的理解

在ABAQUS 中对应力的部分理解 1、三维空间中任一点应力有6个分量y z xz xy z y ,,,σσσσσσ,,x ,在ABAQUS 中分别对应S11,S22,S33,S12,S13,S23。 2、一般情况下,通过该点的任意截面上有正应力及其剪应力作用。但有一些特殊截面,在这些截面上仅有正应力作用,而无剪应力作用。称这些无剪应力作用的面为主截面,其上的正应力为主应力,主截面的法线叫主轴,主截面为互相正交。主应力分别以321,,σσσ表示,按代数值排列(有正负号)为321σσσ≥≥。其中321,,σσσ在ABAQUS 中分别对应Max. Principal 、Mid. Principal 、Min. Principal ,这三个量在任何坐标系统下都是不变量。 可利用最大主应力判断一些情况:比如混凝土的开裂,若最大主应力(拉应力)大于混凝土的抗拉强度,则认为混凝土开裂,同时通过显示最大主应力的法线方向,可以大致表示出裂缝的开裂方向等。 利用最小主应力,可以查看实体中残余压应力的大小等。 3、弹塑性材料的屈服准则 3.1、Mises 屈服准则 22132322212)()()(S σσσσσσσ=-+-+- 其中s σ为材料的初始屈服应力。 在三维空间中屈服面为椭圆柱面;在二维空间中屈服面为椭圆。 Mises 等效应力的定义为:(牵扯到张量知识) 其中 S 为偏应力张量,其表达式为 其中为应力, I 为单位矩阵,p 为等效压应力(定义如下): , 也就是我们常见的)(3 1z y x p σσσ++=。 还可以具体表达为: 其中 , , 为偏应力张量(反应塑性 变形形状的变化)。 q 在ABAQUS 中对应 Mises ,它有6个分量(随坐标定义的不同而变化)S11,S22,S33,S12,S13,S23 3.2、Trasca 屈服准则 主应力间的最大差值=2k

abaqus裂纹模拟心得

abaqus裂纹模拟心得 baqus裂纹模拟心得(Contour Integral不是XFEM) 最近由于项目需要,做了一些裂纹相关的模拟,在此把一些心得体会贴到论坛上与大家分享,如有不当之处,欢迎大家指正! 本帖主要侧重于介绍裂纹定义过程中各个选项的意义,具体的操作过程论坛里已经有高手做了很好的教程,至于断裂力学理论推荐大家看一下沈成康写的《断裂力学》一书。裂纹的定义和输出需要用到interaction模块和step模块: 一、Interaction模块 1.1 预制裂纹(步骤:菜单/special/crack/assign seam) 注意:并不是作裂纹分析都要定义seam,如果你的裂纹不是一条缝,而是一个缺口,则不需要assign seam,直接走下一步(定义裂纹)就行。 1.2 创建裂纹(步骤:菜单/special/crack/create,type:contour integral) —crack front:crack front是用来定义第一围线积分的区域,2D下我们可以选择包围裂尖点的面,3D则选择包围裂尖线的面;另外还有一种定义crack front的方法,就是直接选择裂尖点(2D)或裂尖线3D),用这个方法定义crack front不需要再定义下一步的crack tip/line,比较简便,两种方法算出的结果没有明显的差别,其实只是影响积分路线的问题,但是J积分值是路径无关的,看个人喜好吧 —crack tip/line:这个比较好理解就是裂尖点(2D)或线(3D),如果我们在上一步中用方法二定义crack front,这一步就直接跳过了 —crack extension direction(定义裂纹扩展方向):这里定义的其实是一个虚拟的裂纹扩展方向,定义了这个参考方向后,我们才能通过输出的角度判断裂纹扩展方向,可以通过两种方法: o q vector:输入一个方向,用来作为计算裂纹的扩展方向的参考方向; o normal to crack plane:crack plane表示裂纹的对称面(当裂纹在一个平面内时,可能需要分开定义多个裂纹),这种方法下我们只需定义裂纹面的法线方向,通过(t表示裂纹尖端的切线), 会在每个节点得出一个q方向(如下图); o 注意:q的方向对输出的应力强度因子,J积分等都会有影响,一般情况下,q最好在裂纹平面内,且垂直于裂尖线的切线,否则算出的应力强度因子,J积分值等等在不同围线积分中会差别较大。 二、step模块 定义好了裂纹相关参数后,我们需要返回step模块定义输出变量: 步骤:菜单/output/history output requests/create,domain:crack,可以输出的值包括:J-integral,Ct-integral,stress intensity factor,T-stress —J-integral :用于应变率无关材料的准静态分析过程,包括线弹性,非线性弹性,弹塑性材料(单调加载工况)的静态分析。J-integral的优点是和积分路径无关,从而可以避开尖端塑性区的

ABAQUS计算J积分细节

ABAQUS计算J积分细节 Abaqus计算J积分,主要是指派裂纹及定义裂纹的方向,同时在step中的历程 模型:10×50 裂纹:定义一个尖端;另一方面指明裂纹的扩展方向(1.0,0.0),说白了就是X

积分数值,图中输入10,则输出10个J积分值 计算包含裂纹尖端的包络区域的面积即为J积分 避开裂纹尖端塑形区域的不可计算的特性。同时J积分的计算数值与积分路径无 从以上图例可以看出J积分数值区域稳定。

疑问:为何计算多个积分点,是否最后的稳定数值就是需要计算的J积分数值?J积分应该是数值,而不是多个不同的数值。我个人觉得最后的稳定数值应该是需要计算的积分数值。 从dat文件到inp文件,找到积分区域。 pickseted12以及pickseted13都是节点4,坐标如图所示,在cad模型中的位置如箭头指向,即裂纹尖端。 详细的需要看一下abaqus帮助文档,关于J积分的计算细节。积分点的个数的意义我还没有搞清楚。 对于应力强度因子K,表征裂纹尖端受力的一个参量,在裂纹尖端的应力场的一定范围内,不同的节点计算数值大体是相同的。

计算应力强度因子:可以利用abaqus直接输出,也可以利用公式计算应力强度因子,以下为利用有限元法计算应力强度因子: 计算应力强度因子:

从上图可以看出,计算应力强度应力的点与计算J积分的点是一致的。Abaqus计算的应力强度因子为裂尖处的应力强度因子。下面我们利用有限元法计算y=0处的应力强度因子,最后外推到裂尖处的应力强度因子。选取不同的半 Abaqus计算J积分注意事项: (1)一、Interaction模块 1.1 预制裂纹(步骤:菜单/special/crack/assign seam) 注意:并不是作裂纹分析都要定义seam,如果你的裂纹不是一条缝,而是一个缺口,则不需要assign seam,直接走下一步(定义裂纹)就行。 1.2 创建裂纹(步骤:菜单/special/crack/create,type:contour integral) —crack front:crack front是用来定义第一围线积分的区域,2D下我们可以选择包围裂尖点的面,3D则选择包围裂尖线的面;另外还有一种定义crack front的方法,就是直接选择裂尖点(2D)或裂尖线3D),用这个方法定义crack front不需要再定义下一步的crack tip/line,比较简便,两种方法算出的结果没有明显的差别,其实只是影响积分路线的问题,但是J积分值是路径无关的,看个人喜好吧 —crack tip/line:这个比较好理解就是裂尖点(2D)或线(3D),如果我们在上一步中用方法二定义crack front,这一步就直接跳过了 —crack extension direction(定义裂纹扩展方向):这里定义的其实是一个虚拟的裂纹扩展方向,定义了这个参考方向后,我们才能通过输出的角度判断裂纹扩展方向,可以通过两种方法: (1)q vector:输入一个方向,用来作为计算裂纹的扩展方向的参考方向; (2)normal to crack plane:crack plane表示裂纹的对称面(当裂纹在一个平面内时,可能需要分开定义多个裂纹),这种方法下我们只需定义裂纹面的法线方向,通过(t表示裂纹尖端的切线), 会在每个节点得出一个q方向; (3)注意:q的方向对输出的应力强度因子,J积分等都会有影响,一般情况下,q最好在裂纹平面内,且垂直于裂尖线的切线,否则算出的应力强度因子,J积分值等等在不同围线积分中会差别较大。 二、step模块 定义好了裂纹相关参数后,我们需要返回step模块定义输出变量: 步骤:菜单/output/history output requests/create,domain:crack,可以输出的值包括:J-integral,Ct-integral,stress intensity factor,T-stress —J-integral :用于应变率无关材料的准静态分析过程,包括线弹性,非线性弹性,弹塑性材料(单调加载工况)的静态分析。J-integral的优点是和积分路径无关,从而可以避开尖端塑性区的影响。 —Ct-integral:用于蠕变分析(一般较少用到) —应力强度因子: (1)只能用于分析线弹性材料,表示裂纹尖端的应力场强度; (2)有三个应力强度因子K1,K2,K3,分别对应于张开型,滑开型和撕开型裂纹的应力强度因子 (3)在输出应力强度因子时也会输出一个J-integral值,因为算法不同,这个值

abaqus6_11常见问题及解决办法

1.abaqus如何调整图例的大小,就是云图左上角那个图框,字太小了 看不清!! 直接设置图例的字体大小就可以: 工具栏viewport>viewport annotation options>legend(选项卡)>text(选项)>set font(按钮)>size,修改size选项中的数字,就可以修改图例大小了。 2.cohesive element ABAQUS 在6.11使用cohesive element,定义cohesive材料属性的时候主要步骤: 1.定义一个材料的名字,比如cohesive,不要去定义任何属性(弹性,弹塑性等等)。 2.打开工具栏model--edit keywords,在inp中手动添加材料的各种属性。 PS: 定义section的时候选cohesive,element control选sweep,element type选cohesive,这些是使用cohesive element的基本步骤。 zero thickness的cohesive section设定abaqus所谓的 zero-thickness,其实就是定义cohesive section的initial thickness=1.0。你可以在定义section的时候定义(specify),也可以用系统默认的thickness(也是1.0),这样有关cohesive element 的计算当中,就有displacement(位移)=strain(应变)*thickness ( 1.0 )=strain的数值。我们知道从1914年Ingless和1921年Griffith提出断裂力学开始,一直到60年代都停留在线弹性断裂力学(LEFM)的层次。后来由於发现在裂纹尖端进入塑性区后用LEFM仍

abaqus后处理中各应力解释个人收集修订版

a b a q u s后处理中各应力 解释个人收集修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

ABAQUS中的壳单元S33代表的是壳单元法线方向应力,S11 S22 代表壳单元面内的应力。因为壳单元的使用范围是“沿厚度方向应力为0”,也即沿着法相方向应力为0,且满足几何条件才能使用壳单元,所以所有壳单元的仿真结果应力查看到的S33应力均为0。 S11 S22 S33 实体单元是代表X Y Z三个方向应力,但壳单元不是,另外壳单元只有S12,没有S13,S23。 LE----真应变(或对数应变) LEij---真应变 ... 应变分量; PE---塑性应变分量; PEEQ---等效塑性应变 ABAQUS Field Output Stresses S stress components and invariants 应力分量和变量 SVAVG volume-averaged stress components and invariants (Eulerian only) MISESMAX 最大 Mises 应力 TSHR transverse shear stress(for thick shells)横向剪切应力 CTSHR transverse shear stress in stacked continuum shells 连续堆垛壳横向剪切应力 TRIAX stress triaxiality 应力三轴度 VS stress in the elastic-viscous network 弹粘性网格应力 PS stress in the plastic-viscous

Abaqus裂纹模拟心得(Contour Integral不是XFEM)

Abaqus裂纹模拟心得(Contour Integral不是XFEM) 最近由于项目需要,做了一些裂纹相关的模拟,在此把一些心得体会贴到论坛上与大家分享,如有不当之处,欢迎大家指正! 本帖主要侧重于介绍裂纹定义过程中各个选项的意义,具体的操作过程论坛里已经有高手做了很好的教程,至于断裂力学理论推荐大家看一下沈成康写的《断裂力学》一书。 裂纹的定义和输出需要用到interaction模块和step模块: 一、Interaction模块 1.1 预制裂纹(步骤:菜单/special/crack/assign seam) 注意:并不是作裂纹分析都要定义seam,如果你的裂纹不是一条缝,而是一个缺口,则不需要assign seam,直接走下一步(定义裂纹)就行。 1.2 创建裂纹(步骤:菜单/special/crack/create,type:contour integral) —crack front:crack front是用来定义第一围线积分的区域,2D下我们可以选择包围裂尖点的面,3D则选择包围裂尖线的面;另外还有一种定义crack front的方法,就是直接选择裂尖点(2D)或裂尖线3D),用这个方法定义crack front不需要再定义下一步的crack tip/line,比较简便,两种方法算出的结果没有明显的差别,其实只是影响积分路线的问题,但是J 积分值是路径无关的,看个人喜好吧 —crack tip/line:这个比较好理解就是裂尖点(2D)或线(3D),如果我们在上一步中用方法二定义crack front,这一步就直接跳过了 —crack extension direction(定义裂纹扩展方向):这里定义的其实是一个虚拟的裂纹扩展方向,定义了这个参考方向后,我们才能通过输出的角度判断裂纹扩展方向,可以通过两种方法: o q vector:输入一个方向,用来作为计算裂纹的扩展方向的参考方向; o normal to crack plane:crack plane表示裂纹的对称面(当裂纹在一个平面内时,可能需要分开定义多个裂纹),这种方法下我们只需定义裂纹面的法线方向,通过(t表示裂纹尖端的切线), 会在每个节点得出一个q方向(如下图); o 注意:q的方向对输出的应力强度因子,J积分等都会有影响,一般情况下,q最好在裂纹平面内,且垂直于裂尖线的切线,否则算出的应力强度因子,J积分值等等在不同围线积分中会差别较大。

Abaqus中应力应变的理解

在ABAQUS 中对应力得部分理解 1、三维空间中任一点应力有6个分量y z xz xy z y ,,,σσσσσσ,,x ,在ABAQUS 中分别对应S11,S22,S33,S12,S13,S23。 2、一般情况下,通过该点得任意截面上有正应力及其剪应力作用。但有一些特殊截面,在这些截面上仅有正应力作用,而无剪应力作用。称这些无剪应力作用得面为主截面,其上得正应力为主应力,主截面得法线叫主轴,主截面为互相正交。主应力分别以321,,σσσ表示,按代数值排列(有正负号)为321σσσ≥≥。其中321,,σσσ在ABAQUS 中分别对应Max 、 Principal 、Mid 、 Principal 、Min 、 Principal ,这三个量在任何坐标系统下都就是不变量。 可利用最大主应力判断一些情况:比如混凝土得开裂,若最大主应力(拉应力)大于混凝土得抗拉强度,则认为混凝土开裂,同时通过显示最大主应力得法线方向,可以大致表示出裂缝得开裂方向等。 利用最小主应力,可以查瞧实体中残余压应力得大小等。 3、弹塑性材料得屈服准则 3、1、Mises 屈服准则 22132322212)()()(S σσσσσσσ=-+-+- 其中s σ为材料得初始屈服应力。 在三维空间中屈服面为椭圆柱面;在二维空间中屈服面为椭圆。 Mises 等效应力得定义为:(牵扯到张量知识) 其中 S 为偏应力张量,其表达式为 其中为应力, I 为单位矩阵,p 为等效压应力(定义如下): , 也就就是我们常见得)(31z y x p σσσ++=。 还可以具体表达为: 其中 , , 为偏应力张量(反应塑 性变形形状得变化)。 q 在ABAQUS 中对应 Mises ,它有6个分量(随坐标定义得不同而变化)S11,S22,S33,S12,S13,S23 3、2、Trasca 屈服准则 主应力间得最大差值=2k 若明确了321σσσ≥≥,则有k =-)(2 131σσ,若不明确就需要分别两两求差值,瞧哪个最大。 ABAQUS 中得Trasca 等效应力就就是“主应力间得最大差值” 3、3 ABAQUS 中得Pressure----等效压应力 即为上面提到得p :, 也就就是我们常见得)(3 1z y x p σσσ++=。

含圆孔和裂纹板应力强度因子分析

《断裂力学》 大作业 题目:含圆孔和裂纹板应力强度因子分析. 姓名: 学号: 专业: 授课教师: ^

一、问题描述 含多裂纹矩形板受垂直方向拉伸载荷作用,如图 1 所示,计算中心裂纹尖端的应力强度因子KⅠ和KⅡ,并讨论其随即和参数L、h、a、D、 等的变化规律,写一篇分析报告。 图1. 含三条裂纹矩形板受垂直拉伸载荷作用 要求 (1)报告中计算所用到的分析方法和模型应阐述清楚,并写出必要的计算公式。 (2)绘制应力强度因子随几何参数的变化曲线。 (3)列出必要的参考文献 二、理论分析

— 在线弹性断裂力学中,I型裂纹尖端的应力场为: (1sin sin) 222 (1sin sin) 222 cos cos 222 3 3 3 x y xy σ σ τ θθθ θθθ θθθ ? =- ? ? ? =+ ? ? ? = ? ? I型裂纹尖端的位移场为: 1)cos(1cos) 22 1)sin sin 22 3 3 u v κ κ θθ θθ ? =-- ? ? ? ?=+ ?? 其中: 34 3 1 ν κν ν - ? ? =?- ?+ ? 平面应变 平面应力 同理,对II型裂纹尖端的应力场: (2cos cos) 222 cos sin cos 222 (1sin sin) 222 3 3 3 x y xy σ σ τ θθθ θθθ θθθ ? =+ ? ? ? = ? ? ? =- ? ? 显然,位移场和应力场均可以表示成应力强度因子的形式。通过对裂纹尖端的应力应变场分析来求解对应的应力强度因子,便是传统有限元求解应力强度因子的原理。而对于I、II复合型裂纹尖端的应力强度因子,可通过它们的叠加获得。 确定应力强度因子的方法有3大类:解析法、数值解法和实验方法。解析法只能计算简单问题,大多数问题需要采用数值解法,当前工程中广泛采用的数值解法是有限单元法。随着有限元法的发展,有限元

ABAQUS中的断裂力学及裂纹分析总结

ABAQUS中的断裂力学及裂纹分析总结(转自simwe) (1) 做裂纹ABAQUS有几种常见方法。最简单的是用debond命令, 定义 *FRACTURE CRITERION, TYPE=XXX, 参数。。。 ** *DEBOND, SLAVE=XXX, MASTER=XXX, time increment=XX 0,1, …… ...... time,0 要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在 *INITIAL CONDITIONS, TYPE=CONTACT中定义 master, slave, 及指定的Nset 这种方法用途其实较为有限。 (2) 另一种方法,在interaction模块,special, 定义crack seam, 网格最好细化,用collapse element模拟singularity. 这种方法可以计算J积分,应力强度因子等常用的断裂力学参数. 裂尖及奇异性定义: 在interaction-special,先定义crack, 定义好裂尖及方向, 然后在singularity选择:midside node parameter: 输入0.25, 然后选Collapsed element side, duplicate nodes,8节点单元对应(1/r)+(1/r^1/2)奇异性。 这里midside node parameter选0.25对应裂尖collapse成1/4节点单元。如果midside nodes 不移动到1/4处, 则对应(1/r)奇异性, 适合perfect plasticity的情况. 网格划分: 裂尖网格划分有一些技巧需要注意,partition后先处理最外面的正方形,先在对角线和边上

ⅠⅡ复合型裂纹的应力强度因子有限元计算分析.

机械设计与制造 20 文章编号:1001—3997(2009)08—0020—02 Machinery Design&Manufacture 第8期2009年8月 I一Ⅱ复合型裂纹的应力强度因子有限元计算分析 陈芳王生楠 (西北工业大学航空学院,西安710072) l—IIMixed—modecrackstressintensityfactorofthefiniteelementcalculationandanalysis ? CHENFang,WANGSheng-nan (SchoolofAeronautics,NorthwesternPolytechnicalUniversity,Xi’an710072,China) !oo●oO●oo●co●oo?。‘?r’?r‘?-1?f 7)?‘ ?

?一?L“◆。。?一一?一?’二?r‘?r’?‘‘◆n“●‘ ? ●~。?u。?。v?。一?一一◆。?c‘?r’◆’1◆V一◆,?一?LJ?oo●o‘●o?●o々●oo! ;【摘 要】ABAQUS软件对中心穿透斜裂纹板及边斜裂纹板进行了有限元模拟。计算复合型裂纹的i ;应力强度因子K。和KⅡ,并将计算结果与现有理论结果进行了比较;分析了裂纹尺寸和裂纹角对应力强度; ;因子的影响。结果表明:裂纹角从。增大到900,裂纹类型由复合型向纯I型转变;用ABAQUS软件计算;;复合型裂纹的应力强度因子相对误差保持在5%之内,计算精度完全满足工程要求。; i; 0 关键词:复合型裂纹;裂纹角;应力强度因子【Abstract】Finite crack elementsimulation ;of; j ●

ABAQUS中的断裂力学及裂纹分析总结

也许要暂别simwe一段时间了,在论坛获益良多,作为回报把自己这段时间在ABAQUS断裂方面的一些断断续续的心得整理如下,希望对打算研究断裂的新手有一点帮助,大牛请直接跳过。本贴所有内容均为原创,转贴请注明,谢谢。 引言:我们知道从1914年Ingless和1921年Griffith提出断裂力学开始,一直到60年代都停留在线弹性断裂力学(LEFM)的层次。后来由於发现在裂纹尖端进入塑性区后用LEF仍然无法解决stress singularity的问题。1960年由Barenblatt 和Dugdale率先提出了nonlinear/plastic fracture mechnics的概念,在裂纹前端引入了plastic zone,这也就是我们现在用的cohesive fracture mechnics的前身。当时这个概念还没引起学术界的轰动。直到1966年Rice发现J-integral及随后发现在LEFM中J-integral是等于energy release rate的关系。随后在工程中发现了越来越多的LEFM无法解释的问题。cohesive fracture mechnics开始引起更多的关注。在研究以混凝土为代表的quassi-brittle material时,cohesive fracture mechnics提供了非常好的结果,所以在70年代到90年代,cohesive fracture mechnics被大量应用于混凝土研究中。目前比较常用的方法主要是fictitious crack approach和effective-elastic crack approach或是称为equivalent-elastic crack approach. 其中fictitious crack approach只考虑了Dugdale-Barenblatt energy mechanism而effective-elastic crack approach只考虑了基於LEFM的Griffith-Irwin energy dissipation mechanism,但作了一些修正。 做裂纹ABAQUS有几种常见方法。最简单的是用debond命令, 定义 *FRACTURE CRITERION, TYPE=XXX, 参数。。。 ** *DEBOND, SLAVE=XXX, MASTER=XXX, time increment=XX 0,1, …… ...... time,0 要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在 *INITIAL CONDITIONS, TYPE=CONTACT中定义 master, slave, 及指定的Nset 这种方法用途其实较为有限。 例子如图 [本帖最后由 yaooay 于 2008-10-31 00:48 编辑] debond example.png(157.24 KB, 下载次数: 488)

Abaqus中应力应变的理解

1、三维空间中任一点应力有6个分量y z xz xy z y ,,,σσσσσσ,,x ,在ABAQUS 中分别对应S11,S22,S33,S12,S13,S23。 2、一般情况下,通过该点的任意截面上有正应力及其剪应力作用。但有一些特殊截面,在这些截面上仅有正应力作用,而无剪应力作用。称这些无剪应力作用的面为主截面,其上的正应力为主应力,主截面的法线叫主轴,主截面为互相正交。主应力分别以321,,σσσ表示,按代数值排列(有正负号)为321σσσ≥≥。其中321,,σσσ在ABAQUS 中分别对应Max. Principal 、Mid. Principal 、Min. Principal ,这三个量在任何坐标系统下都是不变量。 可利用最大主应力判断一些情况:比如混凝土的开裂,若最大主应力(拉应力)大于混凝土的抗拉强度,则认为混凝土开裂,同时通过显示最大主应力的法线方向,可以大致表示出裂缝的开裂方向等。 利用最小主应力,可以查看实体中残余压应力的大小等。 3、弹塑性材料的屈服准则 、Mises 屈服准则 22132322212)()()(S σσσσσσσ=-+-+- 其中s σ为材料的初始屈服应力。 在三维空间中屈服面为椭圆柱面;在二维空间中屈服面为椭圆。 Mises 等效应力的定义为:(牵扯到张量知识) 其中 S 为偏应力张量,其表达式为 其中为应力,I 为单位矩阵,p 为等效压 应力(定义如下):, 也就是我们常见的)(3 1z y x p σσσ++=。 还可以具体表达为: 其中 , , 为偏应力张量(反应塑性变形形状的变化)。 q 在ABAQUS 中对应 Mises ,它有6个分量(随坐标定义的不同而变化)S11,S22,S33,S12,S13,S23 、Trasca 屈服准则 主应力间的最大差值=2k 若明确了321σσσ≥≥,则有k =-)(2 131σσ,若不明确就需要分别两两求差值,看哪个最大。 ABAQUS 中的Trasca 等效应力就是“主应力间的最大差值” ABAQUS 中的Pressure----等效压应力

abaqus裂纹模拟问题汇总

关键字:crack,裂纹,断裂,cohesive,XFEM 这个问题不大好总结,比较复杂,我能想到什么就说些什么吧,这个任务已经托了很长时间了,抱歉!有新的想法我会更新。 求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。俩者不是一个概念,断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等;损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。 如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这个就是基于断裂力学的方法,大家可以参考敦诚版主做的这个例子(一个简单的裂纹模拟例子:https://www.360docs.net/doc/f75011981.html,/thread-858322-1-1.html),这种方法可以计算裂纹的应力强度因子,J积分及T-应力等,详细情况可以参考下这个帖子:https://www.360docs.net/doc/f75011981.html,/thread-821531-1-1.html 考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等,详细情况可参看yaooay的这个帖子,总结的相当不错!https://www.360docs.net/doc/f75011981.html,/thread-853029-1-1.html 除VCCT(虚拟裂纹闭合技术)和低周疲劳判据外,其他debond技术只能适用于二维模型,所以应用范围受到很大的限制。VCCT是基于线弹性断裂力学的应变能释放率判据,适用于模拟脆性断裂扩展,且只能沿着事先确定的扩展面扩展,分析前需指定初始裂纹(缺陷),详细信息请查看分析手册11.4.3。 cohesive模型属于损伤力学模型,最先由Barenblatt引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。这样就避免了裂纹尖端的奇异性。Cohesive模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。Cohesive界面单元要服从cohesive分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。关于cohesive单元在abaqus里的基本用法,请参看dava的这个经典帖子(dava独家原创:cohesive element 例子的详细图解:https://www.360docs.net/doc/f75011981.html,/thread-749722-1-1.html)。 此外,Abaqus6.9还引入了扩展有限元法(XFEM),让我们拭目以待,现在可以参看下shock111版主的这个帖子:https://www.360docs.net/doc/f75011981.html,/thread-858750-1-1.html 先看看一些资料的评述:扩展有限元法是迄今为止求解不连续问题最有效的数值方法,它在

相关文档
最新文档