第3章动量守恒定律和能量守恒定1

第3章动量守恒定律和能量守恒定1
第3章动量守恒定律和能量守恒定1

第三章动量守恒定律和能量守恒定律

问题解答

3-1如图所示,设地球在太阳引力的作用下,绕太阳作匀速圆周运动。试问:

在下述情况下,(1 )地球从点 A 运动到点B ,( 2 )地球从点 A 运动到点C ,( 3) 地球从点A 出发绕行一周又返回点 A ,地球的动量增量和所受的冲量各为多少?

丄 Mm mv

2

解由G 盲 盲可得,地球绕太阳作圆周

:.... C

(1) 地球从A 到B ,动量增量的大小为

方向与B 点速度方向成45°角。

在运动过程中,地球只受到引力作用,由动量定理可知,地球所受的冲量等于

方向与B 点速度方向成45°角。

(2) 同理,地球从 A 运动到C ,动量增量大小为

此过程中地球所受的冲量为I AC P AC 2

m

,方向与C 点速度方向相同。

(3) 当地球绕行一周回到 A 时,动量增量为零,地球所受到的冲量也为零。

3-2假使你处在摩擦可略去不计的覆盖着冰的湖面上,周围又无其它可以利用 的工具,你怎样依靠自身的努力返回湖岸呢?

解可以将身上所带的物品往后扔,由于动量守恒,人自身会向前进。

3-3质点系的动量守恒,是否意味着该系统中,一部分质点的速率变大时,另 部分质点的速率一定

会变小?

运动的速率为v

,方向沿轨道切线方向。

V A

P AB m V AB m . 2v

动量的增量,即

I AB P AB m 2

GM

P AC m V AC

2mv 2m 冒,方向与C 点速度方向相同。

2GM

解 不一定,因为动量是矢量,既有大小也有方向。例如炸弹爆炸,产生的碎 片获得的速率相对爆炸前都增大,但方向不一。

3-4 一人在帆船上用电动鼓风机正对帆鼓风, 帆船是前进,还是后退?为什么?

解 帆船仍然静止,鼓风机所鼓的风对帆及其自身都有作用力,对于整个帆船 来看,风对帆和鼓风机的力属于内力,动量守恒。

3-5在大气中,打开充气气球下方的塞子,让空气从球中冲出,气球可在大气 中上升。如果在真空中打开气球的塞子,气球也会上升吗?说明其道理。

解 气球会上升,由动量守恒,从气球中乡下冲出的空气会给气球一个向上的 冲力。

3-6在水平光滑的平面上放一长为

L 、质量为m 的小车,车的一端站有质量为

m 的人,人和车都是静止不动的。人以速率 此过程中人和小车相对地面各移动了多少距 离?

解 如图所示,取人与车为系统,在水平 方向系统不受外力,满足动量守恒。设小车沿 地面的速率为

V ,所以有

t

t

m

Vdt m

0Vdt (

1

)

t

地面运动的距离为 s ,所以s vdt ,s

o

ms m s

又由图示可知 s s l 由(2)( 3)可得

人对地面移动的距离为 s -^^l

m m

小车对地面移动的距离为

3-7人从大船上容易跳上岸,而从小舟上则不容易跳上岸了,这是为什么? 解 船与河岸的距离一定,人要能跳上岸,则他相对于地面的速率必须要达到 一定的值,假设这个所需的速率为 v ,设人的质量为 m ,船的质量为 m 2,并且当

起跳时人相对船的速率为

U ,由相对运动可知,此时船相对地面运动的速率为

v 相对地面从车的一端走向另一端,在

mv m v

将上式两边乘以dt ,并对时间积分

设t 时刻,人刚好走到小车另一端, 此时人相对于地面运动的距离为

s ,小车相对于

v dt ,代入(1)式有

(3)

v2u v1

取人与船为一个系统,起跳过程中,在水平方向满足动量守恒,即

m1v1m2u v1

m2

又上式分析可知,人的质量m^!、人相对地面所需的速度

W恒定,当船的质量越小,则人相对船起跳的速率也要越大,即人从小舟跳上岸要困难些。

3-8质点的动量和动能是否与惯性系的选取有关?功是否与惯性系有关?质点的动量定理和动能定理是否与惯性系有关?请举例说明。

解质点的速度v因惯性系选取的不同而不同,所以质点的动量和动能都与惯性系的选取有关;由位移dr vdt,即位移与惯性系有关,所以对于功dW F dr 也与惯性系有关;动量定理与惯性系选取无关;动能定理与惯性系有关。

例如,在一辆以速率u匀速前进的火车上,一乘客用一恒定力F拉动物体A,

使物体相对于火车由静止开始运动,则物体相对于

当运动t秒后,取地面为参考系,物体的动量为P m u at,动能为

1 2 1 2

E k ^m u at ,力F作功W ^at F,这段时间内其动量定理表达式为

一1 2 1 2 1 2

Ft m v mat,动能定理表达式为F ut at m u at mu

2 2 2

1 2

取火车为参考系,物体的动量为P mat,动能为E k m at ,动量定理

2

表达式Ft m v mat,动能定理表达式为

匚1 +2 1 + 2

F at m at

2 2

3-9关于质点系的动能定理,有人认为可以这样得到,即:“在质点系内,由于

各质点间相互作用的力(内力)总是成对出现的,他们大小相等方向相反,因而所有内力做功相互抵消。这样质点系的总动能增量等于外力对质点系做的功”。显然这与式(3-20)所表述的质点系动能定理不符。错误出在哪里呢?

解这种观点不正确,各质点间的内力虽是成对出现的,且大小相等方向相反,

但它们分别作用在不同的质点上,质点的位移并不一定相同,所以这

对内力作功之和也不一定为零。

如右图所示,两质点m、m2,相互作用力为F、F ,

在时间dt内,两质点位移分别为dr1、dr2,则这一对

内力作功为

dW F dr1 F dr2= F dr1 dr2F dr12

dm是质点m对m2的相对位移。当dr12为零时,这对内力作功才可抵消。

3-10有两个同样的物体,处于同一位置,其中一个水平抛出,另一个沿斜面无摩擦地自由滑下,问哪一个物体先到达地面?到达地面是两者的速率是相等?

解如图所示,这两个物体在竖直方向都作初速度为零、加速度为g的匀加速运动,由于起始高度相同,由运动学公式,它们到达地面所要的时间

对于沿斜面下滑的物体、斜面、地球组成的系统而言,只有

重力作功,由机械

能守恒可得物体到达地面时的速率为v1■. 2gh

对于平抛落地的物体,它到达地面时的速率为v1 ; v2 2gh

所以它们落地时速率并不相等。

3-11如果一质点P处于如图所示的方形势阱底部。若有力作用在质点上,在什么情形下,此质点的运动可以不受方形势阱的束缚;在什么情形下,质点仍要受

束缚。

解质点P受力作用,当它所获得的能量大于在势阱

底部的势能mgh时,质点不受方形势阱的束缚。

3-12举例说明用能量方法和牛顿定律各自求解哪些力学问题较方便,哪些力学

问题不方便。

解能量方法和牛顿定律是解决力学问题时经常要用到的方法,利用牛顿定律可以求得瞬时关系,但解题时必须考虑物体运动状态改变的细节,能量的方法一般适用于研究物体或系统运动状态的变化。

例如对于碰撞问题,两质点碰撞过程中的相互作用力为变力,不便利用牛顿定律来求解,而利用能量方法

F

dr

则不用考虑碰撞中的内力。

习题解答

3-1 一架以3.0 102m s1的速率水平飞行的飞机,与一只身长为0.20m、质

量为0.50kg的飞鸟相碰。设碰撞后飞鸟的尸体与飞机具有同样的速度,而原来飞鸟

对于地面的速率甚小,可以忽略不计。试估计飞鸟对飞机的冲击力(碰撞时间可用

飞鸟身长被飞机速率相除来估算)。根据本题计算结果,你对于高速运动的物体(如飞机、汽车)与通常情况下不足以引起危害的物体(如飞鸟、小石子)相碰后会产生什么后果的问题有些什么体会?

解由力的作用的相互性可知,鸟与飞机相撞,鸟对飞机的冲击力F与飞机对

鸟的冲击力F大小相等,方向相反。我们以鸟为研究对象,取飞机的飞行的方向为

Ox轴正方向。由动量定理得

F t mv 0

其中t为碰撞时间,由题意可知t Lv,代入上式可得

F 2 mv 2.25 5

l 10 N

所以飞鸟对飞机的冲击力为

F F 2.2

5

5 10 N

负号表示飞机所受冲力方向与其飞行方向相反。

由以上结果可知,尽管飞鸟质量、飞行速度都不大,但与其相撞后,飞机受到的冲击力很大,所以飞机在飞行时需要采取一些措施来避免与看似不会引起危害的物体相碰。

3-2质量为m的物体,由水平面上点O以初速为v0抛出,v0与水平面成仰角

若不计空气阻力,求:(1)物体从发射点O到最高点的过程中,重力的冲量;(2)

动量、冲量及动量守恒定律

动量、冲量及动量守恒定律

动量和动量定理 一、动量 1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v; 2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小). 4.与动能的区别与联系: (1)区别:动量是矢量,动能是标量. (2)联系:动量和动能都是描述物体运动状态的物 理量,大小关系为E k=p2 2m或p=2mE k. 二、动量定理 1.冲量 (1)定义:力与力的作用时间的乘积.公式:I=

Ft.单位:牛顿·秒,符号:N·s. (2)矢量性:方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量. (2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用 碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲) 题组一对动量和冲量的理解 1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向 B.物体的动能不变,其动量一定不变 C.动量越大的物体,其速度一定越大 D.物体的动量越大,其惯性也越大 2.如图所示,在倾角α=37°的斜面上, 有一质量为5 kg的物体沿斜面滑下,物 体与斜面间的动摩擦因数μ=0.2,求物体下滑2

动量及动量守恒定律全章典型习题精讲

动量及动量守恒定律全章典型习题精讲

————————————————————————————————作者: ————————————————————————————————日期:

动量及动量守恒定律全章典型习题精讲 一.学法指导: 动量这部分内容,本身并不复杂,主要有冲量和动量这两个概念,还有动量定理和动量守恒定律这两个重要规律.动量定理是对一个物体说的,它受到合外力的冲量等于该物体动量的增量.动量守恒定律是对相互作用的系统而言的,在系统不受外力作用的情况下,系统的总动量守 本章的难点主要在于冲量和动量都是矢量,矢量的运算比起标量的运算来要困难得多.我们中学阶段目前只要求计算同一直线上的动量问题,对于同一直线上的动量,可以用正负号表示方向,从而把矢量运算转化为代数运算. 这部分内容的另一个难点是涉及到相互作用的系统内物体的动量和机械能的综合问题,为此,我们在学习时要把动量这部分内容与机械能部分联系起来.下面三个方面的问题是我们学习中要重点理解和掌握的. 1、4个重要的物理概念,即冲量、动量、功和动能,下面把它们归纳、整理、比较如下: (1)冲量和功,都是“力”的,要注意是哪个力的冲量,哪个力做的功. 动量和动能,都是“物体”的,要注意是哪个物体的动量、哪个物体的动能. (2)冲量和功,都是“过程量”,与某一段过程相对应.要注意是哪个过程的冲量,是哪个过程中做的功. 动量和动能,都是“状态量”,与某一时刻相对应.要注意是哪个时刻的动量或动能,过程量是不能与状态量划等号的,即决不能说某力的冲量等于某时刻的动量,或说某个功等于某时刻的动能.动量定理和动能定理都是“过程关系”,它们说的是在某段过程中,物体受到的合外力的冲量或做的功,等于物体动量或动能的增量,这里“增量”又叫“变化量”,是相应过程的“始”、“末”两个状态量的差值,表示的还是某一段过程的状态的变化 此外,还有一点要注意,那就是这些物理量与参考系的关系.由于位移和速度都是与参考系有关的物理量,因此动量、功、动能都是与参考系有关的物理量,只有冲量与参考系无关.凡没有提到参考系的问题,都是以地面为参考系的. 2、两个守恒定律是物理学中的重要物理规律,下面把有关两个守恒定律的问题整理列表如下:

第1节 动量定理 动量守恒定律

第六章碰撞与动量守恒 第1节动量定理动量守恒定律 基础必备 1.(多选)对动量、冲量和动量守恒定律的认识,以下说法正确的是( BC ) A.伽利略提出,质量与速度的乘积定义为动量 B.最先提出动量概念的是法国科学家笛卡尔 C.动量是一个状态量,表示物体的运动状态;冲量是一个过程量,表示力对时间的积累效应 D.动量守恒定律和牛顿第二定律一样,只适用于宏观和低速的情况,不适用于高速和微观情况 解析:最先提出动量概念的是法国科学家笛卡儿,故A错误,B正确;动量是一个状态量,表示物体的运动状态;冲量是一个过程量,表示力对时间的积累效应,C正确;动量守恒定律是自然界普遍适用的规律,D 错误. 2.(2019·中央民大附中月考)用豆粒模拟气体分子,可以模拟气体压强产生的原理.如图所示,从距秤盘80 cm高度把1 000 粒的豆粒连续均匀地倒在秤盘上,持续作用时间为1 s,豆粒弹起时竖直方向的速度变为碰前的一半.若每个豆粒只与秤盘碰撞一次,且碰撞时间极短(在豆粒与秤盘碰撞极短时间内,碰撞力远大于豆粒受到的重力),已知1 000粒的豆粒的总质量为100 g,g取10 m/s2,则在碰撞过程中秤

盘受到的压力大小约为( B ) A.0.2 N B.0.6 N C.1.0 N D.1.6 N 解析:豆粒从80 cm高处落下时速度为v,v2=2gh, 则v== m/s=4 m/s. 设向上为正方向,且豆粒重力忽略不计,根据动量定理有 Ft=mv 2-mv1,则F== N=0.6 N.选项B正确,A,C,D错误. 3.(2019·内蒙古集宁一中期中)(多选)两个物体A,B的质量分别为m1,m2,并排静止在水平地面上,用同向水平拉力F1,F2分别作用于物体A和B上,分别作用一段时间后撤去,两物体各自滑行一段距离后停止下来,物体A,B运动的速度—时间图象分别如图中图线a,b所示,已知拉力F1,F2分别撤去后,物体做减速运动过程的速度—时间图线彼此平行(相关数据已在图中标出),g取10 m/s2,由图中信息可以得出( AB ) A.若F1=F2,则m1小于m2

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

动量与动量守恒定律练习题(含参考答案)

高二物理3-5:动量与动量守恒定律 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知 运动员的质量m =70kg ,初速度v 0=5m/s 。若经过1s 时,速度为v = 5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2 ,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s B. C. 350(-1) kg·m/s D. 350(+1) kg·m/s 2.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量p A =9kg?m/s ,B 球的动量p B =3kg?m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( ) A .p A ′=6 kg?m/s ,p B ′=6 kg?m/s B .p A ′=8 kg?m/s ,p B ′=4 kg?m/s C .p A ′=﹣2 kg?m/s ,p B ′=14 kg?m/s D .p A ′=﹣4 kg?m/s ,p B ′=17 kg?m/s 3.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶1 4.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B. 0Mv M m - C. 0mv M m - D. ()0M m v M - 5.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止 小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( ) A.v 02 B.v 06 C.v 02或v 06 D .无法确定

高中物理专题复习--动量及动量守恒定律

高中物理专题复习 动量及动量守恒定律 一、动量守恒定律的应用 1.碰撞 两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。 仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离, 弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。 ⑴弹簧是完全弹性的。Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹 性碰撞。由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:12 11 2 12 12 112,v m m m v v m m m m v +='+-='。 ⑵弹簧不是完全弹性的。Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能, 部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。这种碰撞叫非弹性碰撞。 , ⑶弹簧完全没有弹性。Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。这种碰撞叫完全非弹性碰撞。可以证明,A 、B 最终的共同速度为12 11 21v m m m v v += '='。在完全非弹性碰撞过程中,系统的动能损失最大,为:()() 2121212 2121122121m m v m m v m m v m E k +='+-=?。 例1. 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。质量为m 的小球以速度v 1向物块运动。 / ~

动量定理及动量守恒定律专题复习附参考答案

动量定理及动量守恒定律专题复习 一、知识梳理 1、深刻理解动量的概念 (1)定义:物体的质量和速度的乘积叫做动量:p =mv (2)动量是描述物体运动状态的一个状态量,它与时刻相对应。 (3)动量是矢量,它的方向和速度的方向相同。 (4)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。 (5)动量的变化:0p p p t -=?.由于动量为矢量,则求解动量的 变化时,其运算遵循平行四边形定则。 A 、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。 B 、若初末动量不在同一直线上,则运算遵循平行四边形定则。 (6)动量与动能的关系:k mE P 2=,注意动量是矢量,动能是标 量,动量改变,动能不一定改变,但动能改变动量是一定要变的。 2、深刻理解冲量的概念 (1)定义:力和力的作用时间的乘积叫做冲量:I =Ft

(2)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。 (3)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。 (4)高中阶段只要求会用I=Ft 计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。 (5)要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。特别是力作用在静止的物体上也有冲量。 3、深刻理解动量定理 (1).动量定理:物体所受合外力的冲量等于物体的动量变化。既I =Δp (2)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。 (3)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。 (4)现代物理学把力定义为物体动量的变化率:t P F ??=(牛顿第

电磁感应中动量定理和动量守恒定律的运用

高考物理电磁感应中动量定理和动量守恒定律的运用 (1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。求:(1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 (2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 (3)在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB 在导轨上滑行的距离. (4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为: A.1:1 B.1:2 C.2:1 D.1:1 5:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h 高处由静止下滑,设导轨足够长。试求: (1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热。

高中物理专题复习--动量及动量守恒定律

高中物理专题复习 动量及动量守恒定律 一、动量守恒定律的应用 1.碰撞 两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力 远大于外力,所以可以认为系统的动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。 仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A以速度v 1向质量为m 2的静止物体B 运动,B的左端连有轻弹簧。在Ⅰ位置A 、B刚好接触,弹簧开始被压缩,A开始减速,B 开始加速;到Ⅱ位置A、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A、B 开始远离,弹簧 开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21 v v ''和。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。 ⑴弹簧是完全弹性的。Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹性碰撞。由动量守恒和能量守恒可以证明A、B 的最终速度分别为:12 1121212112,v m m m v v m m m m v +='+-='。 ⑵弹簧不是完全弹性的。Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部 分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。这种碰撞叫非弹性碰撞。 ⑶弹簧完全没有弹性。Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。这种碰撞叫完全非弹性碰撞。可以证明,A 、B 最终的共同速度为12 1121v m m m v v +='='。在完全非弹性碰撞过程中,系统的动能损失最大,为:()() 21212122121122121m m v m m v m m v m E k +='+-=?。 例1. 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。质量为m 的小球以速度v 1向物块运 / /

第二节《动量动量守恒定律》导学案(公开课)

第二节《动量 动量守恒定律》导学案 【学习目标】 (一)知识与技能 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 (二)过程与方法 在理解动量守恒定律的确切含义的基础上正确区分内力和外力 (三)情感、态度与价值观 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题 【学习重点】 动量的概念和动量守恒定律 【学习难点】 动量的变化和动量守恒的条件. 【新课探究】 一.引入新课 1.一片树叶和一个小石头分别从头顶下落你会作出如何反应呢?为什么? 2.上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后m υ的矢量和保持不变,因此m υ很可能具有特别的物理意义。 二.进行新课 【自主学习】 (一)动量及其改变 1.动量 (1)定义:运动物体的_____和它的_____的乘积. (2)定义式:p =______. (3)单位:在国际单位制中,动量的单位是千克米每秒,符号为_____________. (4)方向:动量是矢量,其方向与物体的__________方向相同. 思考讨论一: 1.同一物体动能不变,则动量是否变化?反之动量不变,动能是否变化? 2.质量不同的物体动能相等,动量的大小是否相等?动能与动量有什么关系? 我的结论一:_______________________________________________________ 练习1BC A.动能相等时,动量必然相等 B.动量相等时,动能必然相等 C.动能发生变化时,动量必有变化 D.动量发生变化时,动能必有变化 练习2.甲、乙两物体的质量之比为m 甲:m 乙=1:4,若它们在运动过程中的动能相等, 则它们动量大小之比p 甲:p 乙是( B ) A.1:1 B.1:2 C.1:4 D.2:1

第三章 动量守恒定律和能量守恒定律 问题与习题解答

第3章 动量守恒定律和能量守恒定律 问题与习题解答 问题:3-1、3-3、3-7、3-10、3-14、3-19 3-1 如图所示,设地球在太阳引力的作用下,绕太阳作匀速圆周运动。试问:在下述情况下,(1)地球从点A 运动到点B ,(2)地球从点A 运动到点C ,(3)地球从点A 出发绕行一周又返回点A ,地球的动量增量和所受的冲量各为多少? 答: 选太阳处为坐标原点O ,且O →C 方向为X 轴正方向,O →B 方向 为Y 轴正方向,设地球和太阳的质量分别为,m M ,两者间的距离为r ,地球沿反时针方向作匀速圆周运动的速率为v ,故根据万有引力定律,有: 2 2 v m M m G r r =,即 v = (1)地球从点A 运动到点B 的动量增量为: ()())A B B A P m v v m vi vj i j ?=-=-=- 根据质点的动量定理,地球所受的冲量为: )A B A B I P m i j =?=- (2)地球从点A 运动到点C 的动量增量和所受的冲量为: ()()2A C A C C A P I m v v m vj vj m j ?==-=--=- (3)同理,地球从点A 出发绕行一周回到A 点的动量增量和所受的冲量为: ()0A A A A A A P I m v v ?==-= 3-3 在上升气球下方悬挂一梯子,梯子站一人。问人站在梯子上不动或以加速度向上攀升,气球的加速度有无变化? 答: (1)人不动,则气球的加速度不变。 (2)以气球及梯子(总质量为M )与人(质量为m )为系统,地面为参照系,且设人相对 梯子上爬的速度为v 、气球相对地面的速度为V ,人相对地面的速度为v ' ,则有 v v V '=+ 如果设气球及梯子与人初始为匀速率0v 竖直上升,则可应用动量守恒定律,得 0()m v M V m M v '+=+ 所以, 0()V v m v m M =-+

电磁感应中动量定理和动量守恒定律的运用

. . 高考物理电磁感应中动量定理和动量守恒定律的运用 (1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。求:(1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 (2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 (3)在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB 在导轨上滑行的距离. (4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为: A.1:1 B.1:2 C.2:1 D.1:1 5:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h 高处由静止下滑,设导轨足够长。试求: (1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热。

动量、动量守恒定律知识点总结

龙文教育动量知识点总结 一、对冲量的理解 1、I=Ft:适用于计算恒力或平均力F的冲量,变力的冲量常用动量定理求。 2、I合的求法: A、若物体受到的各个力作用的时间相同,且都为恒力,则I合=F合.t B、若不同阶段受力不同,则I合为各个阶段冲量的矢量和。 二、对动量定理的理解:I = p = p2- p1= m v = mv2- mv1 1、意义:冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。 2、矢量性:ΔP的方向由v决定,与p1、p2无必然的联系,计算时先规定正方向。 三、对动量守恒定律的理解:P1+ P2= P1+ P2或m1v1+m2v2= m1v1 + m2v2 1、研究对象:相互作用的物体所组成的系统 2、条件:A、理想条件:系统不受外力或所受外力有合力为零。 B 、近似条件:系统内力远大于外力,则系统动量近似守恒。 C 、单方向守恒:系统单方向满足上述条件,则该方向系统动量守恒。 一般的碰撞完全弹性碰撞完全非弹性碰撞 系统动量守恒系统动量守恒 系统动能守恒 系统动量守恒;碰撞后两者粘在一起,具有共同速度v,能 量损失最大 结论:等质量弹性正碰时,两者速度交换。依据:动量守恒、动能守恒 五、判断碰撞结果是否可能的方法: 碰撞前后系统动量守恒;系统的动能不增加;速度符合物理情景。 p2 动能和动量的关系:E K = p = 2mE K K 2 m K 六、反冲运动: 1、定义:静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象叫反冲运动。 2、规律:系统动量守恒 3、人船模型:条件:当组成系统的2个物体相互作用前静止,相互作用过程中满足动量守恒。

第三章 动量守恒定律

第三章 动量守恒定律 3-1 用榔头击钉子,如果榔头的质量为500 g ,击钉子时的速率为1 8.0m s -?,作用时间为3 2.010s -?,求钉子所受的冲量和榔头对钉子的平均打击力。 已知:m=500g=0.50kg 0v =8.0m/s t v =0 32.010t s -=? 求: t F dt ? F , 解:由动量定理: 00 t F dt mv mv =-? 00 0.508.0 4.0t F dt mv N s ∴==?=? 钉子冲量的方向竖直向下。 33 4.0 2.0102.010 t F dt F N t -= = =??? 钉子受到的打击力的方向也是竖直向下的。(以上计算忽略榔头的重力作用) 3-2 质量为10 g 的子弹以1 500m s -? 的速度沿与板面垂直的方向射向木板,穿过木板,速度降为 1400m s -?。如果子弹穿过木板所需时间为51.010s -?,试分别利用动能定理和动量定理求木板对子弹的 平均阻力。 已知:2 10 1.010m g kg -==? 10500v ms -= 1400t v ms -= 5 1.0010t s -=? 求:f 解:(1)由动能定理:22 01122 f s mv mv -= - 而:0 2 v v S t += (看成是匀减速运动)

() ()() 2220055 0 1.010500400 1.010() 1.0010 m v v m v v f N v v t t ----+??-∴====?-+? (2)由动能定理:01 2 f t mv mv -=- ()25 5 1.010500400 1.0101.0010 f --??-∴==?? 3-3在无风的水面上行驶帆船,如果有人使用船上的鼓风机,对着帆鼓风,船将如何运动?为什么? 答:如图示为鼓风机对蓬帆鼓风的示意图。由动量守恒定理知,船运动的方向将与鼓风的方向一致。 3-4 质量为m 的小球与桌面相碰撞,碰撞前、后小球的速率都是v ,入射方向和出射方向与桌面法线的夹角都是α,如图所示。若小球与桌面作用的时间为t ?,求小球对桌面的平均冲力。 解:y 轴方向的动量定理: ()0cos cos y y y I mv mv mv m v αα=-=-- 02cos t y mv F dt α==? 合 2cos t y y y F dt mv F F mg t t α ∴= = =+? 合 (小球受到的冲力方向向上) 由牛顿第三定律,小球对桌面的平均冲力为:' 2cos y mv F mg j t α??=-+ ??? 3-5 如图所示,一个质量为m 的刚性小球在光滑的水平桌面上以速度1v 运动,1v 与x 轴的负方向成α角。当小球运动到O 点时,受到一个沿y 方向的冲力作用,使小球运动速度的大小和方向都发生了变化。已知变化后速度的方向与x 轴成β角。如果冲力与小球作用的时间为t ?,求小球所受的平均冲力和运动速率。 解:在x 轴方向,小球没有受外力作用,动量守恒:

第七章动量定理和动量守恒定律

第7章 动量定理和动量守恒定律 §7-1动量定理和动量守恒定律 物体之间或物体内部各部分之间因运动发生相对位置变化的过程称为机械运动。它是物质的各种各样运动形式中最简单、也是最普遍的一种,例如:行星绕太阳的转动、宇宙飞船的航行、机器的运转、弹簧的伸长或压缩、水和空气等流体的流动…等等,都是机械运动。而各种复杂的运动形式如生命现象、化学反应等,虽然也有位置的变化,但并不归结为机械运动。 机械运动有两种量度:如果存在的机械运动仍以保持机械运动的形式进行传递,那么应以动量v m 来量度;如果机械运动转变为其它形式的运动,应以动能221 mv 来量度。即动量是以机 械运动来量度机械运动,动能是以机械运动转化为一定量的其它形式的运动的能力来量度机械运动的,动量和动能是研究机械运动不可缺少的物理量。 动量、动量定理 1、动量p 物体的质量m 与其速度的乘积,称为该物体的动量p ,即v m p =。在直角坐标系中动量p 可表示为 k p j p i p k mv j mv i mv v m p z y x z y x =+=++== (7-1-1) 由(7-1-1)式知,动量是一个矢量,具有瞬时性。 2、动量定理 若在时刻t ,物体的动量为)(t p ,经过t ?时间段,其动量为)(t t p ?+ ,在t t t ?+-时间微元段上,其动量的增量p d 为 )()(t t t d -?+= 若在该时间元段t ?内,物体受力f 作用,由牛顿第二定律知有 dt f p d = (7-1-2) 关系成立。若在21t t -的时间段上,物体受力f 作用,将每一个时间元段上动量的增量p d 加起来,即在21t t -的时间段上对其求和,则该时间段上的动量增量p ?为 dt f p t t ?→ →=-=?2112 (7-1-3) (7-1-2)式与(7-1-3)式就是动量定理的表述。人们又常把(7-1-3)式的右项?2 1t t dt f 称为力 f 的冲量。

动量定理及动量守恒定律的应用

动量定理及动量守恒定律的应用 一、选择题 1.向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b两块,若质量较大的a块的速度方向仍沿原来的方向,则[ ] A.b的速度方向一定与原速度方向相反 B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大 C.a、b一定同时到达水平地面 D.在炸裂过程中,a、b受到的爆炸力的冲量大小一定相等 2.质量为1.0kg的小球从高20m处自由下落到软垫上,反弹后上升的最大高度为5.0m,小球与软垫接触的时间为1.0s,在接触时间内小球受到合力的冲量大小为(空气阻力不计,g取10m/s2) [ ] A.10N·s B.20N·s C.30N·s D.40N·s 3、如图所示,A、B两物体的质量比m A∶m B=3∶2,它们原来静止在平板车C上,A、B间有 一根被压缩了的弹簧,A、B与平板车上表面间动摩擦因数相同,地面光滑.当弹簧突然释放后,则有() A.A、B系统动量守恒 B.A、B、C系统动量守恒 C.小车向左运动 D.小车向右运动 4. 船静止在水中,若水的阻力不计,当先后以相对地面相等的速率,分别从船头与船尾 水平抛出两个质量相等的物体,抛出时两物体的速度方向相反,则两物体抛出以后,船的状态是[ ] A.仍保持静止状态B.船向前运动C.船向后运动D.无法判断 5、如图所示,与轻弹簧相连的物体A停放在光滑的水平面上。物体B沿水平方向向右运动, 跟与A相连的轻弹簧相碰。在B跟弹簧相碰后,对于A、B和轻弹簧组成的系统,下列说法中正确的是() A.弹簧压缩量最大时,A、B的速度相同 B.弹簧压缩量最大时,A、B的动能之和最小 C.弹簧被压缩的过程中系统的总动量不断减小 D.物体A的速度最大时,弹簧的弹性势能为零 6.如图所示,水平地面上O点的正上方竖直自由下落一个物体m,中途炸成a,b两块, 它们同时落到地面,分别落在A点和B点,且OA>OB,若爆炸时间极短,空气阻力不计,则() A.落地时a的速率大于b的速率 B.落地时在数值上a的动量大于b的动量 C.爆炸时a的动量增加量数值大于b的增加量数值 D.爆炸过程中a增加的动能大于b增加的动能 7、两球A、B在光滑水平面上沿同一直线,同一方向运动,m A=1 kg,m B=2 kg,v A=6 m/s,v B=2 m/s。当A追上B并发生碰撞后,两球A、B速度的可能值是() A.v A′=5 m/s,v B′=2.5 m/s B.v A′=2 m/s,v B′=4 m/s C.v A′=-4 m/s,v B′=7 m/s D.v A′=7 m/s,v B′=1.5 m/s 8、如图所示,小球A和小球B质量相同,球B置于光滑水平面上,当球A从高为h处由静

第3章_动量守恒定律和能量守恒定律集美大学物理答案

班级____________ 姓名______________ 学号_________________ 第3-1 动量定理 一.填空题: 1.物体所受到一维的冲力F ,其与时间的关系如图所示,则该曲线与横坐标t 所围成的面积表示物体在?t = t 2 - t 1时间所受的 冲量的大小。 2.质量为m 的物体以初速度v 0,倾角α 斜向抛出,不计空气阻力,抛出点与落地点在同一水平面,则整个过程中,物体所受重力的冲量大小为αsin 20?mv ,方向为竖直向下。 3.设有三个质量完全相同的物体,在某时刻t 它们的速度分别为123 , , v v v ,并且 123ννν==,1v 与2v 方向相反,3v 与1v 相垂直,设它们的质量全为m ,则该时刻三物体 组成的系统的总动量为3v m 。 4.质量为m 的质点在Oxy 平面内运动,运动方程为j t b i t a r )sin()cos(ωω+=,请问 从 0t =到t π ω =这段时间内质点所受到的冲量是2mb j ω- 。 5.高空作业时系安全带是非常必要的,假如一质量为51.0kg 的人,在操作过程中不慎从空竖直跌落下来。由于安全带的保护,最终使他被悬挂起来。已知此时人离原处的距离为 2.0m 。安全带弹性缓冲作用时间为0.5s ,求安全带对人的平均冲力N 31014.1?。 二.计算题: 6.一个质量m=0.14 kg 的垒球沿水平方向以v 1=50 m/s 的速率投来,经棒打出后,沿仰角α=45?的方向向回飞出,速率变为v 2=80 m/s 。求棒给球的冲量大小和方向;如果球与棒接触时间t ?=0.02 s ,求棒对球的平均冲力的大小。它是垒球本身重力的几倍? 解 设垒球飞来之正方向为x 轴正方向,则棒对球冲量大小为: 1 1 )(616)/()(845' 2152cos sin 180: ) /(9.16cos 2212212 22112倍此力为垒球本身重的棒对球平均冲力角给出方向由==?= =+-==++=-=m g F N t I F m v m v m v avctg S N v v v v m v m v m I αα θθα

004-质点与质点系的动量定理和动量守恒定律

004-质点与质点系的动量定理和动量守恒定律 1、选择题: 1. 两辆小车A 、B ,可在光滑平直轨道上运动。A 以3 m/s 的速率向右与静止的B 碰撞,A 和B 的质量分别为1kg 和2kg ,碰撞后A 、B 车的速度分别为-1 m/s 和2 m/s ,则碰撞的性质为:[ ] (A) 完全弹性碰撞 (B) 完全非弹性碰撞 (C) 非完全弹性碰撞 (D) 无法判断 答案:(A ) 2. 完全非弹性碰撞的性质是:[ ] (A) 动量守恒,机械能不守恒 (B) 动量不守恒,机械能守恒 (C) 动量守恒,机械能守恒 (D) 动量和机械能都不守恒 答案:(A ) 3. 两辆小车A 、B ,可在光滑平直轨道上运动.第一次实验,B 静止,A 以0.5 m/s 的速率向右与B 碰撞,其结果A 以 0.1 m/s 的速率弹回,B 以0.3 m/s 的速率向右运动;第二次实验,B 仍静止,A 装上1 kg 的物体后仍以 0.5 m/s 的速率与B 碰撞,结果A 静止,B 以0.5 m/s 的速率 向右运动,如图.则A 和B 的质量分别为[ ] (A) m A =2 kg , m B =1 kg (B) m A =1 kg , m B =2 kg (C) m A =3 kg, m B =4 kg (D) m A =4 kg, m B =3 kg 答案:(B ) 4. 质量分别为m A 和m B (m A >m B )、速度分别为A v v 和B v v (v A > v B )的两质点A 和B ,受到 相同的冲量作用,则[ ] (A) A 的动量增量的绝对值比B 的小 (B) A 的动量增量的绝对值比B 的大 (C) A 、B 的动量增量相等 (D) A 、B 的速度增量相等 答案:(C )

动量守恒定律及其应用公开课教案

动量守恒定律及其应用 三明二中罗华权 教学目标 1.知识和技能 (1)理解动量守恒定律的确切含义。 (2)知道动量守恒定律的适用条件和适用范围。 (3)会应用动量定恒定律分析、解决碰撞、反冲等物体相互作用的问题。 2.过程与方法: (1)通过讨论、交流、评价、归纳,总结应用动量守恒定律的基本解题思路和原则。 (2)通过变式练习,体会在不同情景下应用动量守恒定律,提高学生思维能力和迁移能力。3.情感、态度、价值观 (1)通过对问题的分析解决比较和总结建立物理模型,并能学会利用模型解决实际问题。(2)通过自主参与,体会相互讨论、交流的重要性,培养合作学习的能力。 重点难点 1.教学重点:动量守恒定律、物理情景分析和物理模型的建立 2.教学难点:应用动量守恒动量分析物理过程、灵活应用动量守恒定律 教学过程 引入课题:2017年高考考试大纲将选修3-5的内容列为必考内容,意味着动量这一章节将成为今后高考必考考点,而动量守恒定律及其应用是动量这一章节的核心内容。今天,我们就对动量守恒定律及其应用进行复习。 一、动量守恒定律 1. 内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律。 2.几种常见表述及表达式 (1) p=p′,系统相互作用前总动量p等于相互作用后的总动量p′。 这种形式最常用,具体到实际应用时又有以下三种常见形式: a. m1v1+m2v2=m1v1′+m2v2′(适用于作用前后都运动的两个物体组成的系统) b. 0=m1v1+m2v2(适用于原来静止的两个物体组成的系统,比如爆炸、反冲、人船模型等,两者速率与各自质量成反比) c.m1v1+m2v2=(m1+m2)v(适用于两物体作用后结合为一体或具有相同速度的情况,如完全非弹性碰撞) (2)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向。 (3)Δp=0,系统总动量的增量为零。 3.适用条件 (1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。 (2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。 (3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒。

动量定理及动量守恒定律

第三章 动量定理及动量守恒定律 3.5.1质量为2kg 的质点的运动学方程为 j ?)1t 3t 3(i ?)1t 6(r 22+++-=ρ (t 为时间,单位为s ;长度单位为m). 求证质点受恒力而运动,并求力的方向大小。 解,j ?)3t 6(i ?t 12v ++=ρ j ?6i ?12a +=ρ j ?12i ?24a m F +==ρ ρ(恒量) 12 2 57 .262412tg ) N (83.261224F ==θ=+=- 3.5.2质量为m 的质点在oxy 平面内运动,质点的运动学方程为 ωω+ω=b,a, ,j ?t sin b i ?t cos a r ρ 为正常数,证明作用于 质点的合力总指向原点。 解, ,j ?t cos b i ?t sin a v ωω+ωω-=ρ r ,j ?t sin b i ?t cos a a 22ρρω-=ωω-ωω-= r m a m F ρρρω-==

3.5.3在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了 从较底的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动。 解答, 以谷筛为参照系,发生相对运动的条件是 ,g a ,mg f a m 000μ≥'μ=≥' a ' 最小值为)s /m (92.38.94.0g a 2 0=?=μ=' 以地面为参照系: 解答,静摩擦力使谷粒产生最大加速度为

,mg ma 0max μ= ,g a 0max μ= 发生相对运动的条件是筛的加速度g a a 0max μ=≥', a ' 最小值为)s /m (92.38.94.0g a 2 0=?=μ=' 3.5.4桌面上叠放着两块木板,质量各为,m ,m 21如图所示。2m 和桌面间的摩擦系数为2μ,1m 和2m 间的静摩擦系数为1μ。问沿水平方向用多大的力才能把下面的木板抽出来。 解,对于1m : )1,......(a m g m 1 1 1 1 =μ 对于2m : )2,......(a m g )m m (g m F 2 2 2 1 2 1 1 =+μ-μ- 1 m 和2 m 发生相对运动的条件是:1 2 a a ≥ , m g m m g )m m (g m F 1 1 1 2 2 1 2 1 1 μ≥+μ-μ- g )m m )((F 2 121+μ+μ≥ 3.5.5质量为2 m 的斜面可在光滑的水平面上滑动,斜面倾角为α, 质量为1m 的运动员与斜面之间亦无摩擦,求运动员相对斜面的加速度及其对斜面的压力。

相关文档
最新文档