C# 读取笔记本电池充放电电流

C# 读取笔记本电池充放电电流
C# 读取笔记本电池充放电电流

using System;

using System.Collections.Generic;

using https://www.360docs.net/doc/f77245583.html,ponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

using System.Management;

using System.IO;

using System.Runtime.InteropServices;

namespace charge_battery

{

public partial class Form1 : Form

{

public Form1()

{

InitializeComponent();

}

public int charge_ac;

private void Form1_Load(object sender, EventArgs e)

{

Battery_check();

ListBoxAutoCroll(listBox1);

}

public void Battery_check()

{

string battery_status = "";

string charge_status = "";

string battery_v = "";

string battery_cap = "";

StreamWriter result = new StreamWriter("test.log");

string bat_Availability = "";

try

{

// 1- discharge, 2--battery is not necessarily charging

charge_status = read("Win32_Battery", "BatteryStatus").ToString();

battery_status = read("Win32_Battery", "Status");

battery_v = read("Win32_Battery", "DesignVoltage");

battery_cap = read("Win32_Battery", "EstimatedChargeRemaining");

bat_Availability = read("Win32_Battery", "Availability");

listBox1.Items.Add(bat_Availability);

listBox1.Items.Add(read("Win32_Battery", "EstimatedRunTime"));

int temp_s = Convert.ToInt32(charge_status);

int temp_v = Convert.ToInt32(battery_v);

int temp_cap = Convert.ToInt32(battery_cap);

if ((battery_status.Contains("OK")) && (temp_s == 2) && (temp_v > 6000) && (temp_cap > 5))

{

listBox1.Items.Add("Battery charging status:" + read("Win32_Battery", "BatteryStatus"));

// battery Voltage

listBox1.Items.Add("Battery Design Voltage:" + read("Win32_Battery", "DesignVoltage"));

//battery

listBox1.Items.Add("Battery Remaining Capcity:" + read("Win32_Battery", "EstimatedChargeRemaining"));

//battery status

listBox1.Items.Add("Battery status:" + read("Win32_Battery", "Status"));

//charge AC

listBox1.Items.Add("charge AC:" + charge_ac.ToString());

label1.Text = "Battery check PASS";

label1.BackColor = Color.Green;

result.Write("Battery TEST PASS!");

result.Close();

this.Close();

}

else

{

if ((battery_status.Contains("OK")) && (temp_s == 1) && (temp_v > 6000) && (temp_cap > 10))

{

listBox1.Items.Add("*"+"Battery charging status:" + read("Win32_Battery", "BatteryStatus"));

// battery Voltage

listBox1.Items.Add("Battery Design Voltage:" + read("Win32_Battery", "DesignVoltage"));

//battery

listBox1.Items.Add("Battery Remaining Capcity:" + read("Win32_Battery", "EstimatedChargeRemaining"));

//battery status

listBox1.Items.Add("Battery status:" + read("Win32_Battery", "Status"));

label1.Text = "Please Input AC power";

label1.BackColor = Color.Yellow;

result.Write("Battery TEST FAIL!");

result.Close();

}

else

{

listBox1.Items.Add("Battery charging status:" + read("Win32_Battery", "BatteryStatus"));

// battery Voltage

listBox1.Items.Add("Battery Design Voltage:" + read("Win32_Battery", "DesignVoltage"));

//battery

listBox1.Items.Add("Battery Remaining Capcity:" + read("Win32_Battery", "EstimatedChargeRemaining"));

//battery status

listBox1.Items.Add("Battery status:" + read("Win32_Battery", "Status"));

label1.Text = "Battery check FAIL";

label1.BackColor = Color.Red;

result.Write("Battery TEST FAIL!");

result.Close();

}

}

}

catch (Exception ex)

{

listBox1.Items.Add("* " + ex.Message);

listBox1.Items.Add("* " + "No battery");

label1.Text = "Battery check FAIL";

label1.BackColor = Color.Red;

result.Write("Battery TEST FAIL!");

result.Close();

}

}

private void listbox1_DrawItem(object sender, DrawItemEventArgs e)

{

e.DrawBackground();

if (listBox1.Items[e.Index].ToString().Substring(0, 1) == "*")//如果首字带*号,则红字显示

{

e.Graphics.DrawString(((ListBox)sender).Items[e.Index].ToString(), e.Font, new SolidBrush(Color.Red), e.Bounds);

}

else

{

if (listBox1.Items[e.Index].ToString().Substring(0, 1) == ".")//如果首字带*号,则红字显示

{

e.Graphics.DrawString(((ListBox)sender).Items[e.Index].ToString(), e.Font, new SolidBrush(Color.Black), e.Bounds);

}

else

e.Graphics.DrawString(((ListBox)sender).Items[e.Index].ToString(), e.Font, new SolidBrush(Color.Green), e.Bounds);

}

e.DrawFocusRectangle();

}

public string read(string info, string info_s)

{

string Getstr = "";

ManagementClass mobj = new ManagementClass(info);

ManagementObjectCollection moc = mobj.GetInstances();

foreach (ManagementObject mo in moc)

{

Getstr = Getstr + mo.Properties[info_s].Value.ToString() + "\r\n";

}

return Getstr;

}

public void ListBoxAutoCroll(ListBox lbox)

{

//

//lbox.Items.Add(" ");

lbox.TopIndex = lbox.Items.Count - (int)(lbox.Height / lbox.ItemHeight);

//lbox.TopIndex = lbox.Items.Count - 1;

}

private void button1_Click(object sender, EventArgs e)

{

Battery_check();

ListBoxAutoCroll(listBox1);

}

}

}

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

笔记本电池充放电原理

笔记本电池充放电原理 (1) NB 电池: 目前电池皆以锂电池(Li-Ion) 为主, 锂离子电池除了轻巧,电容量又大,而且也没有记忆特性。当一颗电池被反覆的充到一特定的电量时,它会产生出一种化学记忆特性,日後任你再怎样充电,都没法超过那个特地的电量额度了,这就是电池的记忆性。锂离子电池没有这种问题,但它唯一的缺点是怕冷。而锂电池是以持续等电压方式来充电的, 我们以下图来加以说明锂电池的充电原理: 在上图中, 横轴是充电时间, 纵轴为电压, 在充电过程中,电池的电压数缓缓的升高,到达一个顶点(在我们图上是 4.2 伏特) 然後保持恒定,一直以4.2v 来充电, 所以为定电压充电(固定在4.2v, 但并非所有锂电池都是固定在 4.2 v, 要看各厂商的规格), 同时,充电电流则是缓缓下降。一旦电流低到一个设定的阈值(我们图上的例子是80 mA (毫安培)),充电器则自动停止充电, 这里的所设定的阀值, 也必须是各厂商而定. 而锂电池有六个对外的接脚连接至Notebook, Pins: 1. 接地(GND) 2. TS (侦测电池插入) 3. HDQ BUS (主要在存取电池的各项叁数) 4. BAT_BC 5. No connection 6. 电池输入/ 输出电压 (2) Gauge IC: Gauge IC 一般称为"电池管理晶片", 而华硕Notebook 常用的电池当中皆含有

此Gauge IC, 以M2A 为例, 其电池中所包含的Gauge IC 就是采用美国Bechmar q 公司的锂电池管理晶片"BQ2050H". 而Gauge IC 中包含了电池容量暂存器,温度暂存器, 电池识别(ID) 暂存器, 电池状态暂存器, 锂电池充电状态暂存器, 放电计数暂存器, 这些暂存器中的值, 会因为使用的时间或使用不当而产生变化, 导致电池充不满, 或使用时间变短等情形, 而这些暂存器中的值是可以利用特殊的方式来更改的, 大家常听到的电池学习, 其实就是更改电池容量暂存器以及电池状态暂存器中的值, 将原本暂存器中错误或误差的值加以修正, 使电池的充电时间及充电容量能恢复正常. (3) Charge IC: Charge IC 顾名思义就是用来控制电池充电的IC, 华硕常用的Charge IC 为M B3877 系列, 但Charge IC 并无法单独工作, 必须搭配一颗可程式化的IC (如: PIC 16C54) 才能正常工作, 而此PIC 16C54 是一颗可程式化的IC, 里面记载着电池充电时所需要的数据, 例如: 要用多大的电压电流来充电, 必须符合 哪些条件, 电池才会被充电, 电池充饱时要切断哪些电源以及电池的充电指示灯该如何变化(闪烁或改变颜色) 等等, 而这些"值" 或"条件" 都是RD 预先设定好的, 下图以A1B 的充电简易方块图为各位说明NOTEBOOK 的充电流程: 在上图中, 只有AC_IN (外加电源) 有讯号进来时, 才会进行电池的充电动作,而Battery 中的Gauge IC 会告知MB3877(Charge IC) 目前的电池状态(例如: 是否需要充电, 电量多少等等), 而PIC16C54 亦会侦测目前是否符合充电的条件(例如: AC_IN 是否有讯号, Battery 是否有插好等等), 如果目前Battery 是符合需要充电的条件, 其充电过程如下: Step 1: AC_IN 有讯号, 而且也已侦测到Battery in. Step 2: PIC 16C54 会发出CHG_EN 的讯号, 告知MB 3877 可以对Battery 进行充电.

锂电池的充放电系统

本科毕业论文(设计、创作) 题目:锂电池的充放电系统 学生姓名:学号:1002149 所在院系:专业:电气工程及其自动化入学时间:2010 年9 月导师姓名:职称/学位:副教授/硕士导师所在单位: 完成时间:2014 年 5 月安徽三联学院教务处制

锂电池的充放电系统 摘要:随着时代的发展,便携化设备应用的越来越广泛,而锂电池则成为便携化设备的主要的电源支持。锂电池与其他二次电池不同的是更需更安全高效的充电控制要求,因为这些特点让锂电池在实际的使用中有很多不便。因此,基于特征的锂离子电池的充电和放电特性,锂离子电池充电的充电过程和控制单元的的发展趋势,本文设计出了一款智能充放电系统。本文设计的控制单元大部分是由基于MAX1898的充电电路和AT89C51的控制单元构造而成。以LM7805 为MAX1898与AT89C51提供电源支持。本文还提供了用于锂离子电池的充电和放电控制系统的程序框图和功能。 锂离子充电电池和锂离子电池,微控制器,发电,转换和电压隔离光耦部分,放电特性充电芯片,锂离子电池充电电路设计,锂离子电池的程序设计充电作为主要内容本文。 关键词:单片机、MAX1898、AT89C51

Li-ion battery charge and discharge system Abstract:With the progress of the times, portable device applications more widely, and lithium battery becomes more portable equipment's main power supply support. Lithium secondary batteries with other difference is safer and more efficient charging needs control requirements , because these features make lithium batteries have a lot of inconvenience in actual use . Therefore, The body on the characteristics of lithium ion rechargeable electric discharge pool,the development trend of lithium-ion battery charging process and control unit , the paper designed an intelligent charging and discharging system . This design of the control unit is constructed from long MAX1898 -based charging circuit and a control unit from AT89C51 . Provide power supply support for LM7805 MAX1898 with AT89C51. This article also provides a block diagram and function for lithium-ion battery charge and discharge control system. Lithium- ion battery characteristics , charge and discharge characteristics of lithium -ion batteries , the introduction of lithium-ion battery charging circuit design, rechargeable lithium-ion battery is designed to generate part of the program the microcontroller parts, power supply , voltage conversion and opto-isolated part of the charging chip , etc. as the main content of the paper . Key words: SCM,STC89c51, MAX1898

锂电池组保护板均衡充电基本工作原理

成组锂电池串联充电时,应保证每节电池均衡充电,否则使用过程中会影响整组电池的性能和寿命。常用的均衡充电技术有恒定分流电阻均衡充电、通断分流电阻均衡充电、平均电池电压均衡充电、开关电容均衡充电、降压型变换器均衡充电、电感均衡充电等。而现有的单节锂电池保护芯片均不含均衡充电控制功能;多节锂电池保护芯片均衡充电控制功能需要外接CPU,通过和保护芯片的串行通讯(如I2C总线)来实现,加大了保护电路的复杂程度和设计难度、降低了系统的效率和可靠性、增加了功耗。 本文针对动力锂电池成组使用,各节锂电池均要求充电过电压、放电欠电压、过流、短路的保护,充电过程中要实现整组电池均衡充电的问题,设计了采用单节锂电池保护芯片对任意串联数的成组锂电池进行保护的含均衡充电功能的电池组保护板。仿真结果和工业生产应用证明,该保护板保护功能完善,工作稳定,性价比高,均衡充电误差小于50mV。 锂电池组保护板均衡充电基本工作原理 采用单节锂电池保护芯片设计的具备均衡充电能力的锂电池组保护板示意图如图1所示。其中:1为单节锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制用开关器件;4为过流检测保护电阻;5为省略的锂电池保护芯片及电路连接部分;6为单节锂电池保护芯片(一般包括充电控制引脚CO,放电控制引脚DO,放电过电流及短路检测引脚VM,电池正端VDD,电池负端VSS等);7为充电过电压保护信号经光耦隔离后形成并联关系驱动主电路中充电控制用MOS管栅极;8为放电欠电压、过流、短路保护信号经光耦隔离后形成串联关系驱动主电路中放电控制用MOS管栅极;9为充电控制开关器件;10为放电控制开关器件;11为控制电路;12为主电路;13为分流放电支路。单节锂电池保护芯片数目依据锂电池组电池数目确定,串联使用,分别对所对应单节锂电池的充放电、过流、短路状态进行保护。该系统在充电保护的同时,通过保护芯片控制分流放电支路开关器件的通断实现均衡充电,该方案有别于传统的在充电器端实现均衡充电的做法,降低了锂电池组充电器设计应用的成本。

锂电池保护电路

锂电池保护电路 锂电池过充电,过放电,过流及短路保护电路 下图为一个典型的锂离子电池保护电路原理图。该保护回路由两个 MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能. 锂电池保护工作原理: 1、正常状态 在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。 此状态下保护电路的消耗电流为μA级,通常小于7μA。 2、过充电保护 锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。

电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题。 在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电压,使V2由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。而此时由于V2自带的体二极管VD2的存在,电池可以通过该二极管对外部负载进行放电。 在控制IC检测到电池电压超过4.28V至发出关断V2信号之间,还有一段延时时间,该延时时间的长短由C3决定,通常设为1秒左右,以避免因干扰而造成误判断。 3、过放电保护 电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降至2.5V时,其容量已被完全放光,此时如果让电池继续对负载放电,将造成电池的永久性损坏。 在电池放电过程中,当控制IC检测到电池电压低于2.3V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为关断,从而切断了放电回路,使电池无法再对负载进行放电,起到过放电保护作用。而此时由于V1自带的体二极管VD1的存在,充电器可以通过该二极管对电池进行充电。 由于在过放电保护状态下电池电压不能再降低,因此要求保护电路的消耗电流极小,此时控制IC会进入低功耗状态,整个保护电路耗电会小于0.1μA。

手机充电器电路原理图分析

专门找了几个例子,让大家看看。自己也一边学习。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,

笔记本电池起死回生的妙招

当本本使用了一段时间后,你会发现续航能力大不如以前,这时你会以为电池坏掉了,其实不然,我来传授妙招。适用于XP/VISTA/WIN7操作系统。 方法一 笔记本电池特别是锂电池闲置太久或者刚维修过,它的充电曲线和放电曲线都产生的一定的偏移,需要用进行真正的充满放完的几个循环步骤纠正修复其充放电曲线,我们也叫电池的自学习过程. 1.设置(这是最关系到能把电池修复到最佳状态的最重要的一步.请大家勿必要注意啦) 打开我的电脑-控制面板-电源选项-电源使用方案如图。 把使用电池这项的时间参数全选为从不 将警报项的两个选项勾去掉,目的是当电池降到百分之几的时候让程序不响应。相应的操作,让笔记本电池的电量真正的放完,从而让电池本身修正其最低电量与曲线0%同步。 2.充放电:如上设置完之后,就按充满放完原则给电池充放电,来回两三次,就可以将电池偏移的曲线修复过来.

注意事项:充电的时候一定要让电池充满,最好的办法是关机充几个小时或一个晚上,然后拔掉电源放电,直至电脑自动掉关机。这样来回至少两个循环 方法二 电池在使用和充电中的不稳定因素会造成电池的容量下降,但这种下降并不是由于老化而造成,所以适当的进行校准是可以使这部分丢失的容量恢复的。因此定期进行电池校准工作是非常有必要的一件事情,比如1-2月一次。 像Compaq和IBM这样笔记本电脑自身就在BIOS或电源管理程序中提供了电池校准功能,所以使用这两个品牌的朋友可以照提示操作即可。对于那些没有提供这个功能品牌的用户可以遵照我下面的步骤: 1.将屏幕保护设置为“无” 2.在Windows电源管理中将电源使用方案设置为“一直开着”,并且将下面的关闭设备相关菜单全部设置为“从不” 3.在警报选项卡中将“电量不足警报”设置为10%,操作设置为“不进行任何操作”;将“电量严重短缺警报”设置为3%,操作为“待机” 4.屏幕亮度调到最高 5.确认关闭了所有的窗口,并且保存了所有之前工作的数据 6.确认电池充电在80%以上后,拔掉电源和一切外接设备,此时如果屏幕亮度自动降低,那么请将它打到最亮 OK,你可以去睡觉了,放电结束后笔记本会自动关机,之后将电源插上让笔记本充电,注意一定要等 完全充满后再开机,然后将电源方案恢复到校准之前的设置。 这样做的目的是让电池持续小电流放电,而这种放电状态在我们的日常使用中是不可能达到的,因为正常状态我们难免进行各种会使电流上上下下变动的操作。 方法三 使用BatteryMon软件来进行恢复 1.下载BatteryMon软件后并解压缩 2.点击继续

锂电池充放电系统的设计毕业设计

题目:锂电池充放电系统的设计 所在院系:信息与通信技术系专业:电气工程及其自动化

摘要 随着电子技术的快速发展使得各种各样的电子产品都朝着便携化和小型轻量化的方向发展,也使得更多的电气化产品采用基于电池的供电系统。目前为止,较多使用的电池有镍镉、镍氢、铅蓄电池和锂电池。由于不同类型电池的充电特性不同,通常对不同类型,甚至不同电压、容量等级的电池使用不同的充电器,但这在实际使用中有很多不便。 本设计是一种基于单片机的锂离子电池充电器,在设计上,选择了简洁、高效的硬件,设计稳定可靠的软件,说明了系统的硬件组成,包括单片机电路、充电控制电路、电压转换及光耦隔离电路,并对充电器的核心器件MAX1898充电芯片、AT89C2051单片机进行了较详细的介绍。阐述了系统的软硬件设计。以C 语言为开发工具,进行了设计和编码。保证了系统的可靠性、稳定性、安全性和经济性。 该充电器具有检测锂离子电池的状态;自动切换充电模式以满足充电电池的充电需求;充电器短路保护功能;充电状态显示的功能。在生活中更好的维护了充电电池,使电池更好被运用到生活中。 关键词:单片机、MAX1898、AT89C51

Abstract Electronic technology's fast development causes various electronic products develops toward portable and the small lightweight direction, It also causes the more electrification products to use based on battery's power supply system. At present, the many use's batteries have the nickel cadmium, the nickel hydrogen, the lead accumulator and the lithium battery. Their respective characteristic had decided they will coexist in a long time develop. Because the different type battery's charge characteristic is different, usually to different type, even different voltage, capacity rank battery use different battery charger, but this has many inconveniences in the actual use. This topic design is one kind lithium ion battery charger which is based on Single Chip, in the design, it has chosen succinctly, the highly effective hardware, the design stable reliable software, explained in detail system's hardware composition, including the monolithic integrated circuit electric circuit, the charge control electric circuit, the voltage transformation and the light pair isolating circuit, and to this battery charger's core component - MAX1898 charge chip, at89C2051 monolithic integrated circuit has carried on the detailed introduction. Elaborated system's software and hardware design. Take the C language as the development kit, has carried on the detailed design and the code. Has realized system's reliability, the stability, the security and the efficiency. The intelligence battery charger has the examination lithium ion battery's condition; The automatic cut over charge pattern meets when rechargeable battery's charge needs; Battery charger has short circuit protection function; The charge condition demonstration's function. The battery charger has made the better maintenance rechargeable battery in the life,and lengthened the rechargeable battery’s service life. Key words: SCM,STC89c51, MAX1898

锂电池保护电路原理分析

锂离子电池保护电路原理分析 随着科技进步与社会发展,象手机、笔记本电脑、MP3播放器、PDA、掌上游戏机、数码摄像机等便携式设备已越来越普及,这类产品中有许多是采用锂离子电池供电,而由于锂离子电池的特性与其它可充电电池不同,内部通常都带有一块电路板,不少人对该电路的作用不了解,本文将对锂离子电池的特点及其保护电路工作原理进行阐述。 锂电池分为一次电池和二次电池两类,目前在部分耗电量较低的便携式电子产品中主要使用不可充电的一次锂电池,而在笔记本电脑、手机、PDA、数码相机等耗电量较大的电子产品中则使用可充电的二次电池,即锂离子电池。 与镍镉和镍氢电池相比,锂离子电池具备以下几个优点: 1.电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V 电压。 2.容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5 倍。 3.荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。 4.寿命长,正常使用其循环寿命可达到500 次以上。 5.没有记忆效应,在充电前不必将剩余电量放空,使用方便。 由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂离子电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害。 下页中的电路图为一个典型的锂离子电池保护电路原理图。 如图中所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些

三招原地复活 教你如何恢复笔记本电池

笔记本使用一段时间后,会发现续航力不如以前,这时你可不要以为电池真的坏了,其实只需要几个简单的小操作就能让电池恢复原来的战斗力,下面笔者就教大家3个方法。 笔记本电池特别是锂离子电池闲置太久或者刚维修过,它的充电曲线和放电曲线都产生的一定的偏移,需要用进行真正的充满放完的几个循环步骤纠正修复其充放电曲线。

设置1:如图中红框所示,把使用电池这项下的时间参数全部选择为“从不”。 设置2:如图中红框所示,将”低水平电量通知的两个选项勾去掉“,目的是当电量降到百分之几的时候让程序不执行相应的操作,让电池的电量真正的放完,从而让电池本身修正其最低电量与曲线0%同步。

设置1:如图中红框所示那样,把使用电池这项下面的时间参数全部选择为“从不”。 设置2:如图中红框所示,将”电池不足警报和严重短缺警报的两个选项勾全部去掉“,目的是当电量降到百分之几的时候让程序不执行相应的操作,让电池的电量真正的放完,从而让电池本身修正其最低电量与曲线0%同步。

充电的时候一定要让电池充满,最好的办法是关机充几个小时或一个晚上,然后拔掉电源放电,直至电脑自动关机,这样来回至少两个循环。 设置1:如图中红框所示:将屏幕保护设置为”无“。

设置2:如图中红框所示:将电源选项设置为高性能或平衡,硬盘和睡眠下面的选项都设为”从不“。 设置3:如图中红框所示:将“电量水平低”设置为10%,操作为“不采取任何操作”,如蓝框所示:将“关键电量水平”设置成为6%,操作为“睡眠”。

设置4:如图中红框所示:将屏幕亮度设置到最高等级。 设置5:确认关闭了所有的窗口,并保存所有之前工作的数据。确认电池充电在80%以上之后,拔掉电源和一切外接设备,此时如果屏幕亮度自动降低,那么请将它开到最亮。注意事项:放电结束后笔记本自动关机,之后将电源插上让笔记本充电,注意一定要等待。完全充满后再开机,然后将电源方案恢复到校准之前的设置

锂电池过充电_过放_短路保护电路详解

该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状 4. 电池可弯曲变形:高分子电池最大可弯曲900左右 5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。

7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD 常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电 电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电 压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为 (20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响? 在所有的环境因素中,温度对电池的充放电性能影响最大,在电极/电解液界面上的电化学反应与环境温度有关,电极/电解液界面被视为电池的心脏。如果温度下降,电极的反应率也下降,假设电池电压保持恒定,放电电流降低,电池的功率输出也会下降。如果温度上升则相反,即电池输出功率会上升,温度也影响电

笔记本放电技巧与深度放电恢复笔记本电脑电池容量

笔记本放电方法 对于不具备放电功能的笔记本,我们该如何进行定期的放电呢? 经过大量的实验,最终我们建议大家:启动电脑(按F2、F12或Delete(型号不同进入的按键略有不同))进入BIOS,然后在键盘上将显示屏的亮度调到最低。就这样让它耗尽电池的电量直至自动关机。这样属于低电流匀速放电,可以修复很多由于没有定期放电,产生记忆而非物理损坏的电池。 有人可能会担心这样的操作会不会损伤了CMOS呢?答案是:不会的。因为CMOS 也是一个小型的操作系统,就类似XP操作系统,当遇到家里偶然停电,重启之后最多也是进行一次自检,之后就恢复正常了。而且我们只需每半年做一次这样的操作就足够了,所以是不用担心的。 深度放电恢复笔记本电脑电池容量 笔记本电池是笔记本的原动力,如果笔记本的电池消耗太大,就大大削减了笔记本电池的续航能力。有很多用户抱怨自己笔记本的电池续航能力过短,如果使用时间长了,笔记本电池的续航能力也会相对减弱,这种情况下我们可以使用深度放电来恢复笔记本的电池容量。 1、笔记本“电池损耗”究竟是怎么回事 笔记本的锂离子电池都有一个设计容量,这个数据可以在电池的标签上看到,有的是以“毫安时(mAh)”表示的,比如“4400mAh”,有的则是以“瓦时”表示,比如“23Wh”。这个容量值是电池最大容量的理论值。随着电池的使用,实际容量的最大值会逐渐缩小,而缩小的这部分容量就是电池的损耗。比如我的笔记本电池理论容量是4400mAh,使用一段时间后,现在的实际最大容量变成了4200mAh,那么电池损耗就是(4400-4200)/4400×100%=4.5%。电池在使用之后,出现电池损耗是很正常的情况。电池损耗的多少跟你的电池使用频率的高低成直接的关系。在连接外接电源的情况下,本本电池首先会被充电,待充满后会自动处于不工作状态。因此,有条件使用外接电源时,尽量使用外接电源,这样可以减少电池的损耗。 2、自行处理电池损耗较大的锂电池 对于一些用了较长时间的笔记本电池,电池损耗是不可避免的,而且损耗的比例会很高,高达30-40%以上。这样直接影响到了电池的续航力能,以前可以续航3小时的,现在可能就只能支撑1.5-2小时,降低了笔记本户外工作的能力。难道这样的电池就没救了?其实不然,通过深度放电的方法可以让损耗的电池容量恢复。方法如下:首先,启动笔记本进入系统,把外接电源拔掉,用电池供电,直到电池耗尽自动关机。然后,插上电源充电并开机,直到充满后,再次拔掉外

最新整理笔记本电池激活方法教程

笔记本电池激活方法教程 当我们笔记本电脑新买回来,或者电脑长时间不使用了,那么电池就需要激活使其正常工作,具体方法是什么呢?下面一起看看! 笔记本电池激活方法介绍: 激活电池内的化学物质,最大化电池的性能,需要通过对电池重复充放电(完全充电,然后再完全放电)三次。所谓完全充放电是指:正常开机令电池耗电至3% 电池电量(最好一次耗尽,也可分几次来耗电,但不宜 间隔太长时间),然后必须马上对电池进行关机充电十 二个小时。 这里强调必须马上对电池进行充电,是因为电池即使不使用也会进行自我放电,当电池耗电至3%电量,此时若不及时对电池进行充电,自放电现象极易造成电池的过放电而损害电池,过放电正是锂电池的一大禁忌。 对电池进行激活处理充电时,机子必须处关机状态。如果此时机子处等待,挂起等状态,当充电至3~4小时后绿色电源状态指示灯不再跳动时,机器会自动停止对电池的充电,令无法对电池进行完全充电。当放电至3%电量时,机器会马上自动进入休眠状态,此时应再启动

机器,在机器启动的过程中单击屏幕左下方关机按钮,令机器关机。 相关阅读:笔记本电脑常用维护技巧 一、液晶显示屏 长时间不使用电脑时,可透过键盘上的功能键暂时仅将液晶显示屏幕电源关闭,除了节省电力外亦可延长屏幕寿命。请勿用力盖上液晶显示屏幕屏幕上盖或是放置任何异物在键盘及显示屏幕之间,避免上盖玻璃因重压而导致内部组件损坏。请勿用手指甲及尖锐的物品(硬物)碰触屏幕表面以免刮伤。液晶显示屏幕表面会因静电而吸附灰尘,建议购买液晶显示屏幕专用擦拭布来清洁您的屏幕,请勿用手指拍除以免留下指纹,并请轻轻擦拭。 二、电池 当无外接电源的情况下,倘若当时的工作状况暂时用不到P C M C I A插槽中的卡片,建议先将卡片移除以延长电池使用时间。室温(20-30度)为电池最适宜之工作温度,温度过高或过低的操作环境将降低电池的使用时间。建议平均三个月进行一次电池电力校正的动作。 三、键盘

中国锂电池后处理系统行业研究-后处理系统行业概况

中国锂电池后处理系统行业研究-后处理系统行业概况 (二)后处理系统行业概况 后处理工序,是目前常用各类充电电池(镍氢电池和锂离子电池等)生产的必备工序,经过后处理,可充电电池才能达到可使用状态。由于公司目前研发、生产和销售主要以锂离子电池生产线后处理系统为主,故主要介绍锂离子电池后处理系统行业。 锂离子电池生产线生产的锂离子电池按照应用领域划分主要分为消费类电子产品锂离子电池、动力锂离子电池、储能锂离子电池,其中产量最大的是消费类电子产品锂离子电池和动力锂离子电池,储能锂离子电池目前应用较少,正处于起步阶段。而消费类电子产品锂离子电池的主要终端应用是智能手机,动力锂离子电池的主要终端应用是新能源汽车。 1、锂离子电池后处理系统简介 (1)锂离子电池电芯的生产过程 锂离子电池电芯的生产程序,一般分为极片制作、电芯组装、后处理(激活电芯)等三大步骤,其中极片制作包括搅拌、涂布、压片、烘烤、分条、制片、极耳成型等工序;电芯组装主要包括卷绕或叠片、电芯预封装(入壳)、注电解液、封口等工序;后处理主要包括电芯化成、分容、静置、检测、分选等工序。

(3)锂离子电池生产线后处理 后处理是电芯制造完成后的工序,主要是完成电芯的激活、检测和品质判定,具体包括电芯的化成、分容、检测、分选等工作。经过后处理,电芯得以达到可使用状态。

①充放电 根据生产工艺的不同,电芯的充放电循环次数不尽相同,但最少需要进行两次:第一次是化成;第二次是分容。 A、化成(formation)。一般指对初次充电的电池实施一系列工艺措施使之性能趋于稳定,包括小电流充放电、静置、60°C 以下的恒温静置等,也有专门指首次充电使电池完成电极活化的充放电程序。从原理上说,简而言之,化成就是激活电芯(使电池中活性物质借第一次充电转成正常电化学作用,并使电极主要是负极表面生成有效钝化膜或SEI 膜),使电芯具有存储电的能力,类似于硬

正确笔记本电池拆解方法

尚趣小编教你正确笔记本电池拆解方法 数码迷们对于电脑的热情永不减免。每个数码迷们都想随时随地都可以使用它们的笔记本电脑。但是市面上的笔记本电脑电池容量不足以长时间的使用。所以数码迷们就希望通过笔记本电池拆解来了解整个电池的运行机制。尚趣小编就在此为你整理出正确笔记本电池拆解方法。 在了解笔记本电池拆解的正确方法之前。我们应当知道笔记本电池的一些简单的知识。作为消费者来说,最直观的就是电池的电芯数量。市场中的笔记本电脑大都标配了8芯、6芯或者4芯的锂离子电池。其中标配4芯锂离子电池的往往都是超轻薄的产品,而这样的产品却又大都能够选择拥有更多芯数的电池以获得更长的电池续航能力。而对于不同电芯数量的两款笔记本产品来说,一般都是电芯数量多的续航时间长。 另外还有一些比较了解笔记本电脑的朋友在挑选产品的时候会更加着重于电池mAh单位的大小,mAh是电池容量的单位,其中文名称是毫安时。在一般的购买中,很多朋友也许会认为mAh单位大的电池会拥有更长的续航时间。但实际情况却并非如此,在笔记本电池上经常可以看到6芯 4400mAh、4芯 2200mAh等数值标称电池,久而久之大家都认为4400mAh或者2200mAh容量直接决定笔记本的工作时间。 但实际上并非如此,真正掌握电池容量的一个单位应该算是Wh,其中文名称为瓦时。当然,Wh与mAh是有如下公式的密切关系:Wh÷V×1000=mAh 需要指出的是计量电器本身的耗电量的单位应该是功率,也就是瓦特。 在详细了解了电池的一些简单知识后我们开始进行笔记本电池拆解。首先被肢解的将是IBM原装电池,强调一下,本次拆解为破坏性试验,请勿模仿。 进行笔记本电池拆解时候值得注意的一点是电池内测是缝隙最大的地方,而且没有走线,我们将从这里开始拆开它。 用壁纸刀在这里轻轻翘起就可以,注意不要划得太深,以免伤到电芯。 在内测松动之后用一字螺丝刀撬开外侧边框。 在笔记本电池拆解进行到这里,有个撬开电池外壳的秘诀就是由里向外撬,电池外壳好容易就打开了。 现在是揭开上盖状态,我们可以看到这块电池的6个电芯排列及控制电路的样子。按照电池介质分类,它们属于锂离子电池。具有重量轻、容量大、无记忆效应等优点。 因为锂离子电池几乎没有“记忆效应”以及不含有毒物质等优点,现在的大多数多数码设备都采用锂离子电池作电源,其价格相对来说比较适中,能量密度很高,它的容量是同重量的镍氢电池的1.5-2倍,而且具有很低的自放电率。 这块电池也是一个比较常见的结构:笔记本电池看起来是一方块的东西,其实里面是由数个“电芯”通过串并联组成的,一般来说笔记本电池都采用18650或17670电芯,主要是因为这两种电芯容量较大、体积较小,容易做成需要的电池形状。我们现在拆开的IBM电池是18650型,其中18代表直径18mm,65代表高度65mm,三洋产。 在这里这块不起眼的小小电路板也在整个笔记本的供电体系中起着至关重要的做用。因为锂离子电芯基本都是3.6V左右,两个电芯串联得到双倍电压;并联电压不变,但容量也变双倍。比如IBM T系列,容量4400mAh,电压为10.8V,这两个数值就是由6个电芯串并组合而成的。 笔记本电池充电一般都是先恒流,后恒压的,内部带有充电保护,充满后即变换指示灯提示,这就是充电器和电池控制电路在起作用了(不同品牌机制不同)。 比如标称10V,不足则开始充电,充满后达到10V不再充电;类比起来,这个过程就像一个人在吃饭,吃饱了之后胃部神经会反馈给大脑信号,就停止进食了,但如果测得不准,没有饱的感觉就会一直吃,结果可想而知……

相关文档
最新文档