车辆工程毕业设计57汽车主减速器参数优化软件设计

车辆工程毕业设计57汽车主减速器参数优化软件设计
车辆工程毕业设计57汽车主减速器参数优化软件设计

摘要

汽车主减速器作为汽车驱动桥中重要的传力部件,是汽车最关键的部件之一。与国外相比,我国的车用减速器开发设计不论在技术上、制造工艺上,还是在成本控制上都存在不小的差距。主减速器设计的好坏关系到汽车的动力性、经济性以及噪声、寿命等诸多方面。如何协调好各方关系、合理匹配设计参数,以达到满足使用要求的最优目标,是主减速器设计中最重要的问题。

本文力求改变以往的设计方式,提出针对汽车主减速器整体的最优化设计方法,针对汽车设计中的主减速器参数设计开发计算软件,通过人机交互方式完成主减速器的参数设计,并考虑通过软件进行参数优化(汽车主减速器传动比, 主减速器螺旋锥齿轮结构参数),实现解决复杂计算这一单一功能的目的,实现汽车主减速器参数的最佳匹配,达到充分发挥汽车整体性能、节约能耗、降低成本、提高设计质量和效率。本文在vb语言程序基础上采用参数优化设计方法对汽车主减速器的齿轮机构进行优化,使寻优过程得到简化,确保可靠地获得全局最优解。能够缩短主减速器参数设计计算时间、减轻工程技术人员的劳动强度。

关键词:主减速比;锥齿轮;参数优化;计算软件;软件设计

ABSTRACT

Main reducer drive car in a car, the power transmission components, an important is one of the most key parts of the car. In China compared with foreign countries, the development of design whether vehicle reducer in technology and the manufacturing process, or in the cost control there are considerable disparity. The stand or fall of main reducer design relation to car power, economy and noise, life, and other aspects. How to coordinate all relations, the rational matching design parameters to meet the requirements of the use of optimum target, it is the Lord speed reducer design in the most important question.

This paper tries to change in the past, and puts forward the design way of the whole car advocate reducer for optimum design method, the main reducer for automobile design parameter design development calculation software through the man-machine interactive way fulfilling the reducer, and consider the parameter design parameter optimization (by software, Lord car advocate reducer transmission structure parameter of spiral bevel gear reducer to solve the complex calculation and the realization of the purpose of the single function, and to make the Lord, the best matching parameters of speed reducer to give full play to car performance, saving energy consumption, reduce cost, improve the design quality and efficiency. In this paper, based on vb language program using parameters optimization design method for the car advocate reducer, gear mechanism to optimize the optimization process is simplified, ensure reliable to obtain the global optimal solution. Can shorten the main reducer parameter design calculation time, reduce labor intensity of engineering and technical personnel.

Keywords: Lord deceleration ratio; Bevel gear; Parameter optimization; Calculation software; Software design

目录

摘要 (Ⅰ)

Abstract (Ⅱ)

第1章绪论 (1)

1.1课题研究的目的和意义 (1)

1.2课题的国内外发展状况 (1)

1.2.1国内外机械软件技术的发展状况 (1)

1.2.2 国内外基于Visual Basic 6.0的软件在机械方面的发展状况 (3)

1.3 课题研究的主要内容及技术路线 (3)

第2章汽车主减速器的设计方法 (5)

2.1主减速器的结构形式 (5)

2.2 基本参数选择与计算载荷的确定 (10)

2.3 锥齿轮强度计算 (14)

2.4锥齿轮轴承的载荷计算 (16)

2.5 锥齿轮的材料及热处理 (17)

2.6本章小结 (18)

第3章汽车主减速器参数优化软件设计 (20)

3.1汽车主减速器参数优化软件编程语言的选择及语言的使用概述 (20)

3.1.1汽车主减速器参数优化软件编程语言的选择 (20)

3.1.2汽车主减速器参数优化软件编程语言的使用概述 (21)

3.2汽车主减速器参数优化软件设计体系 (25)

3.2.1汽车主减速器参数优化软件系统运行平台 (25)

3.2.2汽车主减速器参数优化软件系统实现功能 (25)

3.3汽车主减速器参数优化软件设计 (25)

3.4本章小结 (43)

第4章汽车主减速器参数优化软件的测试 (44)

4.1 汽车主减速器参数优化软件测试概述 (44)

4.2汽车主减速器参数优化软件的测试 (44)

4.3 本章小结 (57)

结论 (58)

参考文献 (59)

致谢 (60)

附录 (61)

附录 A 外文文献原文 (61)

附录 B 外文文献中文翻译 (63)

第1章绪论

1.1课题研究的目的和意义

汽车问世百余年来,特别是从汽车产品的大批量生产及汽车工业的发展以来,汽车己为世界经济的发展、为人类进入现代生活,产生了无法估量的巨大影响,为人类社会的进步做出了不可磨灭的巨大贡献。近年来随着汽车技术的迅猛发展,对汽车传动系承载能力以及工作可靠性的要求越来越高,汽车主减速器作为汽车传动系统的关键总成,其主要功能是将输入的转矩增大并相应降低转速,以及当发动机纵置时还具有改变转矩旋转方向的作用。主减速器的结构对汽车的动力性、经济性与轻便性、传动的平稳性与效率等都有直接的影响。

许多乘用车和总质量较小的商用车采用了发动机横置的前置前驱布置,都是单级式主减速器,其具有结构紧凑、质量小、制造成本低和传递效率高、高速性能好的优点,通过软件设计方法来设计汽车主减速器是非常重要的。软件设计是以数学规划为理论基础,以计算机为工具,寻求机械设计问题最佳方案的现代设计方法之一,现在已经有很多成熟的软件程序可供选择,但传统的方法存在着求解过程复杂和寻优过程容易陷入局部最优解的问题。通常主减速器设计多是仅从某一角度考虑,单一的改善其某一方面参数,而没有将其参数优化有效结合起来。因此,本课题力求改变以往的设计方式,提出针对汽车主减速器整体的最优化设计方法,针对汽车设计中的主减速器参数设计开发计算软件,通过人机交互方式完成主减速器的参数设计,并考虑通过软件进行参数优化(汽车主减速器传动比, 主减速器双曲面齿轮结构参数),实现解决复杂计算这一单一功能的目的,实现汽车主减速器参数的最佳匹配,达到充分发挥汽车整体性能、节约能耗、降低成本、提高设计质量和效率。本课题在VB语言程序基础上采用参数优化设计方法对汽车主减速器的齿轮机构进行优化,使寻优过程得到简化,确保可靠地获得全局最优解。能够缩短主减速器参数设计计算时间、减轻工程技术人员的劳动强度。

1.2课题的国内外发展状况

1.2.1国内外机械软件技术的发展状况

主减速器的参数计算主要是传动齿轮的基本参数和尺寸参数计算。自从汽车零部件设计引入计算机辅助设计方法后,这一功能的实现已经变得比较容易。现今国外大型的汽车企业都有自己的减速器齿轮设计计算系统,比如瑞典的克林贝

格齿轮设计系统、德国的Calculation Base主锥设计系统等等。

早在上世纪60年代,国外的一些CAD公司就已经开发出一些实用的三维绘图软件,三维绘图技术的进步为汽车零部件的设计引入了全新的概念。伴随着三维绘图软件的日益成熟,国外大型的汽车生产厂家开始引入参数化设计方法来取代以前繁琐的手工设计,目前参数化设计手段已经相当完善。作为汽车的重要部件,主减速器的设计也引入了参数化设计方法。生产厂家利用所设计的主减速器开发平台根据新设计的主减速器尺寸在以前产品的基础上更改相关的尺寸参数建立三维模型图。

不论是在设计还是制造方面,与外国企业相比我国的汽车企业差距都非常明显。但是经过多年的努力,我国的主减速器设计系统软件方面已经取得了一定的成就。其中比较出名的有可以应用于主减速器齿轮设计的齿轮专家系统,哈工大开发的主减速嚣齿轮设计平台等等。

其实软件不仅在汽车方面有广泛的应用,在其他的机械区域里同样有着比较广泛的应用。

1、2009,06,01,厦门大学的沈一凛发表了硕士学位论文:数控弯丝机线材成形软件设计。根据数控弯丝机的实际工作要求,完成其机械结构部分的设计,并且自行开发出界面友好的操作软件,能实现包括模型显示和仿真运动等在内的一系列功能。

2、2005,11,农业机械学报第36卷第11期发表了:农业机械动态仿真软件开发与模拟。现有的一些计算机仿真平台如ADAMS,UG等具有很大的通用性,功能齐全,但价格昂贵,专业性差,且需要大量的计算机资源配合系统的运行,在仿真速度,系统的可扩展性方面难以满足农机设计人员的要求。各种农业机械有其自身的特殊性,对不断更新的农业机械型号,应用类型,需要有相应的仿真功能。而现有软件的模式,内容都比较固定,不利于变动性大的研究。因此开发一种操作简单,成本低的仿真系统对农业机械具有一定的意义。

3、2004,11,农机化研究第6期,基于 UNIX 的机械软件设计思想研究。主要探讨了基于UNIX 利用socket建立客户机/服务器模式实现编程的方法,解决了C/S 模式中异种操作系统上的数据传输问题。利用这种方式可以方便地进行客户端和服务器端的程序编制,定制所需的模块,通过实例程序的运行,达到了预期的要求。为开发一种网络功能强大,可以实现异种机和异种操作系统互连的软件打下了基础。

4、2008,12,16,东南大学硕士学位论文:光纤光栅传感系统研究及软件设计。波长解调技术是FBG传感器在工程技术领域应用的关键技术,也是FBG传感技

术实用化的重点和难点之一。此文提出了一种基于可调谐Fabry-Perot滤波器的光纤布拉格光栅传感系统的波长解调方案,在此基础上完成了主机应用软件的设计。

5、2007,08,01,西安理工大学硕士学位论文:基于PMAC的数控试验台机械系统设计及软件开发。开放式数控系统是现代数控系统发展的方向,本文结合陕西省数控加工技术重点实验室科研项目,采用“IPC+PMAC”结构的开放式数控结构,将PMAC控制卡及其扩展卡装入电器控制箱,通过标准串口RS232与上位机实现通讯,这样构成主从式双微处理器结构,由PMAC运动控制器对机械本体的X、Y、Z、A和B五个轴进行实时控制,建立了五坐标数控技术试验台。

1.2.2国内外基于Visual Basic 6.0的软件在机械方面的发展状况

VB作为程序语言在机械方面上的用途也是比较广泛的。

1、2006,11,北京工业大学学报第32卷第11期:基于VB的点焊质量超声检测软件设计。在超声检测点焊连接质量的基本原理基础上,通过VB 6.0调用Tektronix公司提供的TekVISA Activex控件,利用网口通讯实现了数字示波器中超声信号数据的传输、存储和显示;通过分析找出了信号的特征参量,并实现了对焊点连接质量的评价。该软件实现了对焊点检测质量的数量统计。经实际检测验证,整个系统操作性好。

2、2008,08,机械自动化第4期:基于VB的机械优化设计软件的研究。针对各种优化算法。用VB开发了用于进行机械优化设计的软件,该软件基于Windows系统。以Visual Basic的窗体界面为工作平台,并用其中3种具有代表性的优化设计方法进行了一顶计算分析。实例对比分析表明了该软件分析的可靠性和准确性。

3、2005,01,微计算机应用第26卷第1期:基于VB的汽车点火线圈测试平台软件设计。该文实现了点火线圈测试系统中对上位机系统软件的要求,包括串行通信,对硬件端口的读写以及对数据库的管理和维护。

1.3课题研究的主要内容及技术路线

1、课题研究的主要内容

本课题研究的主要任务是对汽车主减速器齿轮机构的研究与设计计算软件,具体内容包括:

①汽车工程设计类计算软件国内外技术现状;

②汽车主减速器设计算法和设计流程;

③对汽车主减速器参数计算软件的设计,包括:单级主减速器的设计、双级主减速器的设计和参数优化设计;

④用查询得到的数据对所设计的计算软件进行测试;

⑤对所开发的汽车主减速器参数优化计算软件的操作规程等使用方法进行了介绍。

2、课题研究的技术路线

技术路线如图1.1所示。

图1.1技术路线流程图

第2章 汽车主减速器的设计方法

双速主减速器,单级贯通式主减速器,双级贯通式主减速器,轮边减速器等,在对上面的减速形式相对应的设计方法进行分析与对比的基础之上,得知各种各样的设计方法。汽车主减速器的减速形式很多,其中常见的有单级主减速器,双级主减速器,在计算的过程中都是十分复杂的,但是单级主减速器设计方法是各种设计方法的基础,只有掌握了这种设计方法才能够了解并掌握其他的设计方法。

本课题分别涉及了单级主减速器和双级主减速器的软件设计,在此仅对本设计所涉及的方法进行介绍,对上述的各种设计方法就不再一一介绍。

2.1主减速器的结构形式

2.1.1主减速器的齿轮类型

主减速器的齿轮主要有螺旋锥齿轮、双曲面齿轮、圆柱齿轮和蜗轮蜗杆等形式。

1、 螺旋锥齿轮传动

螺旋锥齿轮传动的主、从动齿轮轴线垂直相交于一点,如图2.1所示。齿轮并不同时在全长上啮合,而是逐渐从一端连续平稳地转向另一端。另外,由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合,所以它工作平稳、能承受较大的负荷、制造也简单。但是在工作中噪声大,对啮合精度很敏感,齿轮副锥顶稍有不吻合便会使工作条件急剧变坏,并伴随磨损增大和噪声增大。为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增大壳体刚度。

2、 双曲面齿轮传动

双曲面齿轮传动的主、从动齿轮的轴线相互垂直而不相交,主动齿轮轴线相对从动齿轮轴线在空间偏移一距离E ,此距离称为偏移距。如图2.1所示。由于偏移距正的存在,使主动齿轮螺旋角1β大于从动齿轮螺旋角2β 。根据啮合面上法向力相等,可求出主、从动齿轮圆周力之比

ββ2

121cos cos =F F

式中,F 1、F 2分别为主、从动齿轮的圆周力;β1、β2

分别为主、从动齿轮的螺旋角。

螺旋角是指在锥齿轮节锥表面展开图上的齿线任意一点A 的切线TT 与该点和节锥顶点连线之间的夹角。在齿面宽中点处的螺旋角称为中点螺旋角。通常不特殊说明,则螺旋角系指中点螺旋角。双曲面齿轮传动比为

βr βr r F r F i s

1122

11220cos cos ==

式中,i s 0为双曲面齿轮传动比;r 1、r 2分别为主、从动齿轮平均分度

圆半径。

螺旋锥齿轮传动比为

1

201r r i =

图2.1 主减速器齿轮传动形式

令12cos /cos ββK =,则L s Ki i 00=。由于21ββ>,所以系数K>1,

一般为1.25~1.50。这说明:

1)当双曲面齿轮与螺旋锥齿轮尺寸相同时,双曲面齿轮传动有更大的传动比。

2)当传动比一定,从动齿轮尺寸相同时,双曲面主动齿轮比相应的螺旋锥齿轮有较大的直径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。

3)当传动比一定,主动齿轮尺寸相同时,双曲面从动齿轮直径比相应的螺旋锥齿轮为小,因而有较大的离地间隙。

另外,双曲面齿轮传动比螺旋锥齿轮传动还具有如下优点:

1)在工作过程中,双曲面齿轮副不仅存在沿齿高方向的侧向滑动,而且还有沿齿长方向的纵向滑动。纵向滑动可改善齿轮的磨合过程,使其具有更高的运转平稳性。

β大于从动齿轮的

2)由于存在偏移距,双曲面齿轮副使其主动齿轮的

1

β,这样同时啮合的齿数较多,重合度较大,不仅提高了传动平稳性,而2

且使齿轮的弯曲强度提高约30%。

3)双曲面齿轮传动的主动齿轮直径及螺旋角都较大,所以相啮合轮齿的当量曲率半径较相应的螺旋锥齿轮为大,其结果使齿面的接触强度提高。

4)双曲绵主动齿轮的变大,则不产生根切的最小齿数可减少,故可选用较少的齿数,有利于增加传动比。

5)双曲面齿轮传动的主动齿轮较大,加工时所需刀盘刀顶距较大,因而切削刃寿命较长。

6)双曲面主动齿轮轴布置在从动齿轮中心上方,便于实现多轴驱动桥的贯通,增大传动轴的离地高度。布置在从动齿轮中心下方可降低万向传动轴的高度,有利于降低轿车车身高度,并可减小车身地板中部凸起通道的高度。

但是,双曲面齿轮传动也存在如下缺点:

1)沿齿长的纵向滑动会使摩擦损失增加,降低传动效率。双曲面齿轮副传动效率约为96%,螺旋锥齿轮副的传动效率约为99%。

2)齿面间大的压力和摩擦功,可能导致油膜破坏和齿面烧结咬死,即抗胶合能力较低。

3)双曲面主动齿轮具有较大的轴向力,使其轴承负荷增大。

4)双曲面齿轮传动必须采用可改善油膜强度和防刮伤添加剂的特种润滑油,螺旋锥齿轮传动用普通润滑油即可。

由于双曲面齿轮具有一系列的优点,因而它比螺旋锥齿轮应用更广泛。

一般情况下,当要求传动比大于4.5而轮廓尺寸又有限时,采用双曲面齿轮传动更合理。这是因为如果保持主动齿轮轴径不变,则双曲面从动齿轮直径比螺旋锥齿轮小。当传动比小于2时,双曲面主动齿轮相对螺旋锥齿轮主动齿轮显得过大,占据了过多空间,这时可选用螺旋锥齿轮传动,因为后者具有较大的差速器可利用空间。对于中等传动比,两种齿轮传动均可采用。

3、圆柱齿轮传动

圆柱齿轮传动一般采用斜齿轮,如图2.1所示,广泛应用于发动机横置且前置前驱动的轿车驱动桥和双级主减速器贯通式驱动桥,如图2.2。

图2.2发动机横置的前置前驱动乘用车驱动桥

4、蜗杆传动

蜗杆传动与锥齿轮传动相比有如下优点:

1)在轮廓尺寸和结构质量较小的情况下,可得到较大的传动比(可大于7)。

2)在任何转速下使用均能工作得非常平稳且无噪声。

3)便于汽车的总布置及贯通式多桥驱动的布置。

4)能传递大的载荷,使用寿命长。

5)结构简单,拆装方便,调整容易。

但是由于蜗轮齿圈要求用高质量的锡青铜制作,故成本较高;另外,传动效率较低。

蜗杆传动主要用于生产批量不大的个别重型多桥驱动汽车和具有高转速发动机的大客车上。

2.1.2主减速器主、从动锥齿轮的支承方案

主减速器中必须保证主、从动齿轮具有良好的啮合状况,才能使它们

很好的工作。齿轮的正确啮合,除与齿轮的加工质量、装配调整及轴承、

主减速器壳体的刚度有关以外,还与齿轮的支承刚度密切相关。

1.主动锥齿轮的支承

主动锥齿轮的支承形式可分为悬臂式支承和跨置式支承两种。

图2.3主减速器锥齿轮的支撑形式

如图 2.3,悬臂式支承结构的特点是在锥齿轮大端一侧采用较长的轴颈,其上安装两个圆锥滚子轴承。为了减小悬臂长度a和增加两支承间的距离凸b,以改善支承刚度,应使两轴承圆锥滚子的大端朝外,使作用在齿轮上离开锥顶的轴向力由靠近齿轮的轴承承受,而反向轴向力则由另一轴承承受。为了尽可能地增加支承刚度,支承距离b应大于2.5倍的悬臂长度a,且应比齿轮节圆直径的70%还大,另外靠近齿轮的轴径应不小于尺寸a。为了方便拆装,应使靠近齿轮的轴承的轴径比另一轴承的支承轴径大些。靠近齿轮的支承轴承有时也采用圆柱滚子轴承,这时另一轴承必须采用能承受双向轴向力的双列圆锥滚子轴承。支承刚度除了与轴承形式、轴径大小、支承间距离和悬臂长度有关以外,还与轴承与轴及轴承与座孔之间的配合紧度有关。

如图 2.3,跨置式支承结构的特点是在锥齿轮的两端均有轴承支承,这样可大大增加支承刚度,又使轴承负荷减小,齿轮啮合条件改善,因此齿轮的承载能力高于悬臂式。此外,由于齿轮大端一侧轴颈上的两个相对安装的圆锥滚子轴承之间的距离很小,可以缩短主动齿轮轴的长度,使布置更紧凑,并可减小传动轴夹角,有利于整车布置。但是跨置式支承必须在主减速器壳体上有支承导向轴承所需要的轴承座,从而使主减速器壳体结构复杂,加工成本提高。另外,因主、从动齿轮之间的空间很小,致使主动齿轮的导向轴承尺寸受到限制,有时甚至布置不下或使齿轮拆装困难。跨置式支承中的导向轴承都为圆柱滚子轴承,并且内外圈可以分离或根本不带内圈。它仅承受径向力,尺寸根据布置位置而定,是易损坏的一

个轴承。

在需要传递较大转矩情况下,最好采用跨置式支承。

2.从动锥齿轮的支承

从动锥齿轮的支承,如图2.3,其支承刚度与轴承的形式、支承间的距离及轴承之间的分布比例有关。从动锥齿轮多用圆锥滚子轴承支承。为了增加支承刚度,两轴承的圆锥滚子大端应向内,以减小尺寸c+d 。为了使从动锥齿轮背面的差速器壳体处有足够的位置设置加强肋以增强支承稳定性,c 十d 应不小于从动锥齿轮大端分度圆直径的70%。为了使载荷能尽量均匀分配在两轴承上,应尽量使尺寸c 等于或大于尺寸d 。

在具有大的主传动比和径向尺寸较大的从动锥齿轮的主减速器中,为了限制从动锥齿轮因受轴向力作用而产生偏移,在从动锥齿轮的外缘背面加设辅助支承。如图2.4所示。辅助支承与从动锥齿轮背面之间的间隙,应保证偏移量达到允许极限时能制止从动锥齿轮继续变形。主、从动齿轮受载变形或移动的许用偏移量如图2.4所示。

图2.4 辅助支撑与许用偏移量

2.2 基本参数选择与计算载荷的确定

2.2.1计算载荷的确定

汽车主减速器锥齿轮的切齿法有格里森和奥里康两种方法,这里仅介绍格里森齿制锥齿轮计算载荷的三种确定方法。

1按发动机最大转矩和最低档传动比确定从动锥齿轮的计算转矩ce T

n

i i ki T k T f e d ce η01max = (2.21)

式中,ce T 为计算转矩(N.m );d k 为猛接离合器所产生的动载系数,

货车:1=d k ;max e T 为发动机最大转矩;n 为计算驱动桥数;1i 为变速器一

档传动比;η为发动机到万向传动轴之间的传动效率。

2按驱动轮打滑转矩确定从动锥齿轮的计算转矩cs T

m

m r ce i r m G T η?'22= (2.22) 式中,cs T 为计算转矩(N.m );2G 为满载状况下一个驱动桥上的静载

荷(N );

'2m 为汽车最大加速度时的后轴负荷转移系数,轿车:4.1~2.1'2=m ,货车:2.1~1.1'2=m ;φ为轮胎与路面间的附着系数;

r r 为车轮滚动半径(m );m i 为主减速器从动齿轮到车轮之间的传动比;m η为主减速器主动齿轮到车轮之间的传动效率。

3按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩cf T

n

ηi r F T m m r t cf = (2.23) 式中,cf T 为计算转矩(N.m );t F 为汽车日常行驶平均牵引力(N )。

用式(2.21)和式(2.22)求得的计算转矩是从动锥齿轮的最大转矩,不同于用式(2.23)求得的日常行驶平均转矩。当计算锥齿轮最大应力时,计算转矩Tc 取前面两种的较小值,即Tc=min[Tce,Tcs];当计算锥齿轮的疲劳寿命时,Tc 取cf T 。

主动锥齿轮的计算转矩为

G c z i T T η0= (2.24)

式中,z T 为主动锥齿轮的计算转矩(N.m );0i 为主传动比;G η为主、

从动锥齿轮间的传动效率。计算时,对于弧齿锥齿轮福,G η取95%;对于

双曲面齿轮副,当0i >6时,G η取85%,当0i <=6时,G η取90%。

2.2.2基本参数选择

主减速器锥齿轮的主要参数有主、从动锥齿轮齿数1z 和2z 、从动锥齿轮大

端分度圆直径2D 和端面模数s m 、主、从动锥齿轮齿面宽1b 和2b 、双曲面齿轮

副的偏移距E 、中点螺旋角β、法向压力角α等。

1主、从动锥齿轮齿数1z 和2z

选择主、从动锥齿轮齿数时应考虑如下因素:

1)为了磨合均匀,1z 、2z 之间应避免有公约数。

2)为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不小于40。

3)为了啮合平稳、噪声小和具有高的疲劳强度,对于货车,

1z 一般不少于6。

4)当主传动比0i 较大时,尽量使1z 取得小些,以便得到满意的离地间

隙。

5)对于不同的主传动比, 1z 和2z 应有适宜的搭配。

2从动锥齿轮大端分度圆直径2D 和端面模数s m

对于单级主减速器,2D 对驱动桥壳尺寸有影响,2D 大将影响桥壳的

离地间隙;2D 小则影响跨置式主动齿轮的前支承座的安装空间和差速器

的安装。

2D 可根据经验公式初选

322

c D T K D = (2.25) 式中,2D 为从动锥齿轮大端分度圆直径(mm );2D K 为直径系数,一

般为13.0~15.3;Tc 为从动锥齿轮的计算转矩(N ?m )。Tc=min[Tce, Tcs]

m s 由下式计算

22/z D m = (2.26)

式中,m s 为齿轮端面模数。

同时,m s 还应满足

3c m s T K m = (2.27)

式中,m K 为模数系数,取0.3~0.4。

3主、从动锥齿轮齿面宽1b 和2b

锥齿轮齿面过宽并不能增大齿轮的强度和寿命,反而会导致因锥齿轮轮齿小端齿沟变窄引起的切削刀头顶面宽过窄及刀尖圆角过小。这样,不但减小了齿根圆半径,加大了应力集中,还降低了刀具的使用寿命。此外,在安装时有位置偏差或由于制造、热处理变形等原因,使齿轮工作时载荷集中于轮齿小端,会引起轮齿小端过早损坏和疲劳损伤。另外,齿面过宽也会引起装配空间的减小。但是齿面过窄,轮齿表面的耐磨性会降低。

从动锥齿轮齿面宽2b 推荐不大于其节锥距2A 的0.3倍,

即2b <=0.32A ,而且2b 应满足2b <=10 m s ,一般也推荐2b =0.1552D 。对于螺旋锥齿轮,1b 一般比2b 大10%。

4中点螺旋角β

螺旋角沿齿宽是变化的,轮齿大端的螺旋角最大,轮齿小端的螺旋角最小。

弧齿锥齿轮副的中点螺旋角是相等的,双曲面齿轮副的中点螺旋角是不相等的,而且21ββ>,1β与2β之差称为偏移角ε。

选择β时,应考虑它对齿面重合度F ε、轮齿强度和轴向力大小的影响。

β越大,则F ε也越大,同时啮合的齿数越多,传动就越平稳,噪声越低,

而且轮齿的强度越高。一般F ε应不小于1.25,在1.5~2.0时效果最好。但

是β过大,齿轮上所受的轴向力也会过大。

汽车主减速器弧齿锥齿轮螺旋角或双曲面齿轮副的平均螺旋角一般为35°~40°。轿车选用较大的β值以保证较大的F ε,使运转平稳,噪声低;

货车选用较小声值以防止轴向力过大,通常取35°。

5螺旋方向

从锥齿轮锥顶看,齿形从中心线上半部向左倾斜为左旋,向右倾斜为右旋。主、从动锥齿轮的螺旋方向是相反的。螺旋方向与锥齿轮的旋转方

向影响其所受轴向力的方向。当变速器挂前进挡时,应使主动齿轮的轴向力离开锥顶方向,这样可使主、从动齿轮有分离趋势,防止轮齿卡死而损坏。

6法向压力角

法向压力角大一些可以增加轮齿强度,减少齿轮不发生根切的最少齿数。但对于小尺寸的齿轮,压力角大易使齿顶变尖及刀尖宽度过小,并使齿轮端面重合度下降。因此,对于轻负荷工作的齿轮一般采川小压力角, 町使齿轮运转平稳,噪小低。对于弧齿锥齿轮,轿车:α一般选用14°30′或16°;货车:α为20°;重型货车:α为22°30′。对于双曲面齿轮,大齿轮轮齿两侧压力角是相同的,但小齿轮轮齿两侧的压力角是不等的,选取平均压力角时,轿车为19°或20°,货车为20°或22°30′。

2.3锥齿轮强度计算

在选好主减速器锥齿轮主要参数后,可根据所选择的齿形计算锥齿轮的几何尺寸,而后根据所确定的计算载荷进行强度验算,以保证锥齿轮有足够的强度和寿命。

1单位齿长圆周力

主减速器锥齿轮的表面耐磨性长用轮齿上的单位齿长圆周力来估算

2

b F p = (2.31) 式中,F 为作用在轮齿上的圆周力;2b 为从动齿轮的齿面宽。

按发动机最大转矩计算时

321max 102?=b nD i ki T k p f g e d η

(2.32)

式中,g i 为变速器传动比;1D 为主动锥齿轮中点分度圆直径(mm )。

按驱动轮打滑转矩计算时

322'22102?=m

m r i b D r m G p η? (2.33) 式中符号同前。

许用的单位齿长圆周力[ρ]见表2.1。在现代汽车设计中,由于材质及加工工艺等制造质量的提高,[ρ]有时高出表中数值的20%~25%。

表2.1 单位齿长圆周力许用值[p ]

2轮齿弯曲强度

锥齿轮轮齿的齿根弯曲应力为

30102?=w

s v m s c w bDJ m k k k k T σ (2.34) 式中,w σ为锥齿轮轮齿的齿根弯曲应力(MPa );c T 为所计算齿轮的计

算转矩(N·m ),对于从动齿轮,c T =min[Tce,Tcs]和Tcf ,对于主动齿轮,T

还要按式(2.24)换算;0k 为过载系数,一般取1;s k 为尺寸系数,它反

映了材料性质的不均匀性,与齿轮尺寸及热处理等因素有关,当m s >=1.6mm 时,25.0)4.25/(s s m k =,当m s <1.6mm 时,s k =0.5;m k 为齿面载荷分配系数,跨置式结构:m k =1.0~1.1,悬臂式结构:m k =1.10~

1.25;v k 为质量系数,当轮齿接触良好,齿距及径向跳动精度高时,r k =1.0;b 为所计算的齿轮齿面宽(mm );D 为所讨论齿轮大端分度圆直径(mm );Jw 为所计算齿轮的轮齿弯曲应力综合系数,取法见参考文献[10]。

上述按min [Tce,Tcs ]计算的最大弯曲应力不超过700MPa ;按Tcf 计算的疲劳弯曲应力不应超过210MPa ,破坏的循环次数为6x106。

3轮齿接触强度

锥齿轮轮齿的齿面接触应力为

301102?=j v f m s z p j bJ k k k k k T D c σ (2.35)

式中,j σ为锥齿轮轮齿的齿面接触应力(MPa );1D 为主动锥齿轮大

端分度圆直径(mm );b 取1b 和2b 的较小值(mm );s k 为尺寸系数,它考虑

了齿轮尺寸对淬透性的影响,通常取1.0;s k 为齿面品质系数,它取决于

齿面的表面粗糙度及表面覆盖层的性质(如镀铜、磷化处理等),对于制造精确的齿轮,s k 取 1.0;p c 为综合弹性系数,钢对钢齿轮,p c 取232.6N 1/2mm ;j J 为齿面接触强度的综合系数,取法见参考文献[10];0k 、m k 、v k 见式(2.34)的说明。

上述按min[Tce,Tcs ]计算的最大接触应力不应超过2800MPa ,按Tcf 计算的疲劳接触应力不应超过1750MPa 。主、从动齿轮的齿面接触应力是相同的。

2.4 锥齿轮轴承的载荷计算

1 锥齿轮齿面上的作用力

锥齿轮在工作过程中,相互啮合的齿面上作用有一法向力。该法向力可分解为沿齿轮切线方向的圆周力、沿齿轮轴线方向的轴向力及垂直于齿轮轴线的径向力。

(1) 齿宽中点处的圆周力 齿宽中点处的圆周力F 为

2/T 2F m D = (2.41)

式中,T 为作用在从动齿轮上的转矩;D m2为从动齿轮齿宽中点处的分度圆直径, 由式(2.42)确定,即

222sin γD D m -= (2.42)

式中,D 2为从动齿轮大端分度圆直径;b 2为从动齿轮齿面宽;2γ为从动齿

轮节锥角。

由F 1/F 2 = cosβ1/cosβ2可知,对于弧齿锥齿轮副,作用在主、从动齿轮上的圆周力是相等的;对于双曲面齿轮副,它们的圆周力是不等的。

(2) 锥齿轮的轴向力和径向力 图2.5为主动锥齿轮齿面受力图。其螺旋方向为左旋,从锥顶看旋转方向为逆时针。F T 为作用在节锥面上的齿面宽中点A

汽车系毕业论文参考题目(1)

级汽车工程系毕业论文参考题目 附件2: 10 说明:以下题目仅供参考,由同学们根据情况自定,题目报给指导老师后,指导老师汇总(避免重复的题目),确定题目就可以开始撰写。题目中车型可以自定,要求内容精细,不能空洞,不能大篇幅地介绍教材上的原理和结构,主要侧重检测流程与维修方法,例举实例加以分析。 (1)汽车使用类:如汽车动力的合理利用;汽车在某特殊条件下的合理使用;主要运行材料的正确选用与节约;汽车的安全技术;汽车的公害与防治等。 (2)技术管理类:如维修厂技术管理;汽车维修制度与质量控制;车辆更新与报废管理等。 (3)汽车检测与维修工艺类:如汽车检测工艺设计;汽车维护工艺设计;汽车总成(或典型零件)修理工艺设计等。 (4)汽车结构与维修:如汽车电控技术结构、原理与使用特点分析;汽车典型故障诊断分析;检测设备的选择与使用等。 (5)其他方面:如现代汽车维修企业制度的建立;汽车运输业的技术开发;1发动机排放技术的应用分析 2微型车怠速不良原因与控制措施 3柴油机电子控制系统的发展 4我国汽车尾气排放控制现状与对策 5发动机自动熄火的诊断分析 6汽车发动机的维护与保养 7柴油机微粒排放的净化技术发展趋势 8汽车污染途径及控制措施 9现代发动机自诊断系统探讨10关于****型不能着车的故障分析 11***动力不足的检测与维修 12上海通用别克发动机电控系统故障的诊断与检修 13现代伊兰特发动机电控系统故障的诊断与检修 14广本雅阁发动机电控系统故障的诊断与检修 15电子燃油喷射系统的诊断与维修 16帕萨特1.8T排放控制系统的结构控制原理与检修 17广本雅阁排放控制系统的结构控制原理与检修 18汽车发动机怠速成抖动现象的原因及排查方法探讨 19汽车排放控制系统的检修 20上海帕萨特B5电子燃油喷射系统的诊断与维修 21论汽车检测技术的发展 22奥迪A6排放控制系统的结构控制原理与检修 23丰田凌志400发动机电控系统故障的诊断与检修 24奥迪A6B5电子燃油喷射系统的诊断与维修 25标致307电子燃油喷射系统的诊断与维修 26捷达轿车发动机常见故障分析与检修 27汽车转向盘摆振故障分析 28防抱死系统在常用轿车上的使用特点分析 29汽车底盘的故障诊断分析 30汽车的常用转向系统的性能分析 31汽车变速箱故障故障诊断

汽车单级主减速器及差速器的结构设计与强度分析毕业论文

汽车单级主减速器及差速器的结构设计 与强度分析毕业论文 第一章绪论 1.1 选题的背景与意义 通过学校的实习我对汽车的构造及各总成的原理有了一定的了解,同时结合以前课堂学习的理论知识,对于进行汽车一些总成的设计有了一定的理论基础,现选择课题内容为对BJ2022汽车的使用性能的驱动桥(主减速器及差速器)进行设计。通过本课题可以进一步加深对汽车构造、汽车设计及汽车各总成的工作原理,特别是本课题驱动桥中的主减速器及差速器与半轴的认识和了解;同时经过设计过程,了解学习一些现代汽车工业的新设计方法及新技术,对于即将从事汽车行业工作的我也是一种锻炼,为即将的工作做铺垫。 1.2 研究的基本内容 1.2.1 主减速器的作用 汽车传动系的总任务是传递发动机的动力,使之适应于汽车行驶的需要。在一般汽车的机械式传动中,有了变速器还不能解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。而主减速器是在汽车传动系中起降低转速,增大转矩作用的主要部件。当发动机纵置时还具有改变转矩旋转方向的作用。它是依靠齿数少的齿轮带齿数多的齿轮来实现减速的,采用圆锥齿轮传动则可以改变转矩旋转方向。汽车正常行驶时,发动机的转速通常比较高,如果将很高的转速只靠变速箱来降低下来,那么变速箱内齿轮副的传动比则需要很大,齿轮的半径也相应加大,也就是说变速箱的尺寸会加大。另外,转速下降,扭矩必然增加,也加大了变速箱与变速箱后一级传动机构的传动负荷。所以,在动力向左右驱动轮分流的差速器之前设置一个主减速器,可以使主减速器前面的传动部件,如变速箱、

分动器、万向传动装置等传递的扭矩减小,同时也减小了变速箱的尺寸和质量,而且操控灵敏省力。 1.2.2 主减速器的工作原理 从变速器或分动器经万向传动装置输入驱动桥的转矩首先传到主减速器,主减速器的一对齿轮增大转矩并相应降低转速,以及当发动机纵置时还具有改变转矩的旋转方向。 1.2.3 国内主减速器的状况 现在国家大力发展高速公路网,环保、舒适、快捷成为汽车市场的主旋律。对整车主要总成之一的驱动桥而言,小速比、大扭矩、传动效率高、成本低逐渐成为汽车主减速器技术的发展趋势。 在产品上,国内汽车市场用户主要以承载能力强、齿轮疲劳寿命高、结构先进、易维护等特点的产品为首选。目前己开发的产品,如陕西汉德引进德国撇N 公司技术的485单级减速驱动桥,一汽集团和东风公司的13吨级系列车桥为代表的主减速器技术,都是在有效吸收国外同类产品新技术的基础上,针对国内市场需求开发出来的高性能、高可靠性、高品质的车桥产品。这些产品基本代表了国内车用减速器发展的方向。通过整合和平台化开发,目前国内市场形成了457、460、480、500等众多成型稳定产品,并被用户广泛认可和使用。设计开发上,CAD、CAE等计算机应用技术,以及AUT优AD、UG16、CATIA、proE等设计软件先后应用于主减速器的结构设计和齿轮加工中,有限元分析、数模建立、虚拟试验分析等也被采用;齿轮设计也初步实现了计算机编程的电算化。新一代减速器设计开发的突出特点是:不仅在产品性能参数上进一步进设计上完全遵从模块化设计原则,产品配套实现车型的平台化,造型和结构更加合理,更宜于组织批量生产,更适应现代工业不断发展,更能应对频繁的车型换代和产品系列化的特点,这些都对基础件产品提出愈来愈高的配套要求,需要在产品设计上不断地进行二次开发和持续改进,以满足快速多变的市场需求。

毕业设计论文二级减速器

安徽理工大学继续教育学院 毕业设计 题目二级直齿圆柱齿轮减速器 系别 专业机械电子工程 班级 09 姓名汪凡凯 学号 指导教师 日期 2011年5月

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用。齿轮减速器的特点是效率高、寿命长、维护简便,因而应用极为广泛。 本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的评述,选择齿轮减速器作为传动装置,然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)。运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维平面零件图和装配图的绘制。 关键词:齿轮啮合轴传动传动比传动效率

目录 1、引言 (1) 2、电动机的选择 (2) 2.1. 电动机类型的选择 (2) 2.2.电动机功率的选择 (2) 2.3.确定电动机的转速 (2) 3、计算总传动比及分配各级的传动比 (4) 3.1. 总传动比 (4) 3.2.分配各级传动比 (4) 4、计算传动装置的传动和动力参数 (5) 4.1.电动机轴的计算 (5) 4.2.Ⅰ轴的计算(减速器高速轴) (5) 4.3.Ⅱ轴的计算(减速器中间轴) (5) 4.4.Ⅲ轴的计算(减速器低速轴) (6) 4.5.Ⅳ轴的计算(卷筒轴) (6) 5、传动零件V带的设计计算 (7) 5.1.确定计算功率 (7) 5.2.选择V带的型号 (7) 5.3.确定带轮的基准直径d d1 d d2 (7) 5.4.验算V带的速度 (7) 5.5.确定V带的基准长度L d 和实际中心距a (7) 5.6.校验小带轮包角ɑ 1 (8)

减速器箱体的加工工艺设计(本科机械高分毕业论文)

减速器箱体的加工工艺设计 完成日期:______________________ 指导教师签字: 评阅教师签字: 答辩小组组长签字: 答辩小组成员签字:

摘要 减速器是通过齿轮的速度转换器,将电机(马达)的回转数改变为所需要的回转数,并获到较大转矩的一种用来传递动力的机构。在减速器中起着支持和固定轴组件的减速器箱体,对于保证轴组件运转精度、润滑及密封的可靠都起着重要作用。因此减速器箱体的加工工艺的不断完善对于减速器的使用有着很重要的作用。 本文进行了对减速器箱体的加工工艺的设计。要对减速器箱体的加工工艺进行细致全面的设计,必须通过制造毛坯采用的形式、选择定位基准、拟定减速器零件加工的工艺路线、通过确定机械生产加工的余量、工序尺寸及制造毛坯的尺寸,以及确定减速器的切削用量及加工的基本工时等方面来设计。通过对减速器箱体加工工艺分析设计,提高减速器箱体制造的加工的工艺的水平,促进减速器箱体制造产业的进步。 关键词:减速器;加工工艺;箱体

Abstract The reducer is the speed converter through the gear, the motor (motor) of the number of rotation to the number of the required rotation, and was a kind of large torque used to transfer power mechanism. Reducer box in the reducer plays a support and fixed axis components, ensure the shaft assembly operation accuracy, good lubrication and reliable sealing and other important role. So the process of the reducer box of the continuous improvement of the use of the reducer has a very important role. The design of the processing technology for the reducer box is carried out in this paper.. Determine manufacturing the blank form, select the locating datum, drawn up by deceleration parts machining process, mechanical production and processing of the margin, process dimension and blank manufacturing size determine, determine the deceleration device of cutting parameters and machining man hour and so on, to conduct a more comprehensive design to reduce the speed reducer box body processing technology. Through the analysis and design of the gearbox processing technology, improve the process level of the reducer box manufacturing, and promote the progress of the manufacturing industry of the reducer box.. Keywords: reducer;processing technology;box

汽车制动系统-毕业设计(论文)

1 引言汽车制动系的概述 制动系的功用是使汽车以适当的减速度降速行驶直至停车,在下坡行驶时使汽车保持适当的稳定车速,使汽车可靠地停在原地或坡道上。 制动系至少有行车制动装置和驻车制动装置。前者用来保证第一项功能和在不长的坡道上行驶时保证第二项功能,而后者则用来保证第三项功能。 除此之外,有些汽车还设有应急制动和辅助制动装置。 应急制动装置利用机械力源(如强力压缩弹簧)进行制动。在某些采用动力制动或伺服制动的汽车上,一旦发生蓄压装置压力过低等故障时,可用应急制动装置实现汽车制动。同时,在人力控制下它还能兼作驻车制动用。 辅助制动装置可实现汽车下长坡时持续地减速或保持稳定的车速,并减轻或者解除行车制动装置的负荷。 行车制动装置和驻车制动装置,都由制动器和制动驱动机构两部分组成。防止制动时车轮被抱死,有利于提高汽车在制动过程中的方向稳定性和转向操纵能力,缩短制动距离,所以近年来制动防抱死系统(ABS)在汽车上得到很快的发展和应用。此外,含有石棉的摩擦材料,因存在石棉有致癌公害问题已被逐渐淘汰,取而代之的是各种无石棉型材料并相继研制成功[1]。 1.1汽车制动系统的分类 (1) 按制动系统的作用 制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。用以使行驶中的汽车降低速度甚至停车的制动系统称为行车制动系统;用以使已停驶的汽车驻留原地不动的制动系统则称为驻车制动系统;在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的制动系统称为应急制动系统;在行车过程中,辅助行车制动系统降低车速或保持车速稳定,但不能将车辆紧急制停的制动系统称为辅助制动系统。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。 (2)按制动操纵能源 制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化

TYQ4190型汽车轮边减速器的设计

任务书 毕业设计(论文)题目: 汽车轮边减速器设计 毕业设计(论文)要求及原始数据(资料): 要求: 1.根据原始数据和有关资料,进行文献检索、调查研究工作; 2.综合应用所学基础理论和专业知识,制定最佳设计方案; 3.所设计的轮边减速器总成应满足1250型载重车的各项性能要求; 4.设计图纸要求布局合理,正确清晰,符合国家制图标准及有关规定; 5.毕业设计说明书要求内容完整、层次清晰、文理通顺,具体按照太原理工大学毕业论文规范 撰写; 6.通过毕业设计,掌握轮边减速器的结构型式、设计方法; 7.独立按时完成毕业设计所承担的各项任务。 原始数据(资料): 1、质量参数:(kg) 载质量整备质量总质量挂车质量半挂鞍座质量 12000 7000 19000 35000 11000 尺寸参数: (mm) 外形尺寸5980×2500×3030 轴距3400 接近角/离去角(度) 18/32 车箱内部尺寸轮距2027/1820 最小离地间隙240 2、其它参数: 1)、最高车速:98km/h 2)、最大爬坡度(%):30 3)、车轮及轮胎:12.00R20 4)、轴数:2 毕业设计(论文)主要内容: 1.结合4190型牵引车的相关参数及结构特点,进行轮边减速器总成的设计; 2.确定轮边减速器的结构类型; 3.确定轮边减速器总成的主要性能参数; 4.轮边减速器总成的设计、计算、分析、制图; 5.其他相关零部件的设计; 6.结合本课题查阅并翻译1万印刷符合的英文资料; 7.模拟申请专利一份 8.编写设计说明书。

学生应交出的设计文件(论文): 1. 轮边减速器总成图纸一套; 2.毕业设计说明书。(按太原理工大学学生毕业论文撰写规范写) 主要参考文献(资料): 1吉林大学汽车工程系编著.汽车构造(下册) 第五版. 北京:人民交通出版社2王望予.汽车设计(第4版).北京:机械工业出版社 3 机械设计手册(上.中册).北京:化学工业出版社 4(日)武田信之著.方泳龙译.载货汽车设计.北京:人民交通出版社 5高维山.驱动桥.北京:人民交通出版社 6 QC/T 265-2004《汽车零部件编号规则》 专业班级学生 要求设计(论文)工作起止日期2011-3-21---2011-6-17 指导教师签字日期2011-3-21 教研室主任审查签字日期 系主任批准签字日期

二级减速器毕业设计论文

兰州工业学院学院 毕业设计 题目二级直齿圆柱齿轮减速器系别机电工程学院 专业机械设计与制造 班级机设 姓名***** 学号****** 指导教师**** 日期2013年12月

设计任务书 题目: 带式运输机传动系统中的二级直齿圆柱齿轮减速器设计要求: 1:运输带的有效拉力为F=2500N。 2:运输带的工作速度为V=1.7m/s。 3:卷筒直径为D=300mm。 5:两班制连续单向运转(每班8小时计算),载荷变化不大,室内有粉尘。6:工作年限十年(每年300天计算),小批量生产。 设计进度要求: 第一周拟定分析传动装置的设计方案: 第二周选择电动机,计算传动装置的运动和动力参数: 第三周进行传动件的设计计算,校核轴,轴承,联轴器,键等: 第四周绘制减速器的装配图: 第五周准备答辩 指导教师(签名):

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用。齿轮减速器的特点是效率高、寿命长、维护简便,因而应用极为广泛。 本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的评述,选择齿轮减速器作为传动装置,然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)。运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维平面零件图和装配图的绘制。 关键词:齿轮啮合轴传动传动比传动效率

目录 1、引言 (1) 2、电动机的选择 (2) 2.1. 电动机类型的选择 (2) 2.2.电动机功率的选择 (2) 2.3.确定电动机的转速 (2) 3、计算总传动比及分配各级的传动比 (4) 3.1. 总传动比 (4) 3.2.分配各级传动比 (4) 4、计算传动装置的传动和动力参数 (5) 4.1.电动机轴的计算 (5) 4.2.Ⅰ轴的计算(减速器高速轴) (5) 4.3.Ⅱ轴的计算(减速器中间轴) (5) 4.4.Ⅲ轴的计算(减速器低速轴) (6) 4.5.Ⅳ轴的计算(卷筒轴) (6) 5、传动零件V带的设计计算 (7) 5.1.确定计算功率 (7) 5.2.选择V带的型号 (7) 5.3.确定带轮的基准直径d d1 d d2 (7) 5.4.验算V带的速度 (7) 5.5.确定V带的基准长度L d 和实际中心距a (7) 5.6.校验小带轮包角ɑ 1 (8)

蜗轮蜗杆减速器壳体工艺规程及夹具设计【蜗轮减速器箱体】【镗左右通孔+钻6-M8孔】

毕业设计(论文) 蜗轮蜗杆减速器壳体工艺及夹具设计 I

摘要 本设计专用夹具的设计蜗轮蜗杆减速器壳体零件加工过程的基础上。主要加工部位是平面和孔加工。在一般情况下,确保比保证精密加工孔很容易。因此,设计遵循的原则是先加工面后加工孔表面。孔加工平面分明显的阶段性保证粗加工和加工精度加工孔。通过底面作一个良好的基础过程的基础。主要的流程安排是支持在定位孔过程第一个,然后进行平面和孔定位技术支持上加工孔。在随后的步骤中,除了被定位在平面和孔的加工工艺及其他孔单独过程。整个过程是一个组合的选择工具。专用夹具夹具的选择,有自锁机构,因此,对于大批量,更高的生产力,满足设计要求。 关键词:蜗轮蜗杆减速器壳体类零件;工艺;夹具; II

ABSTRACT Foundation design of body parts processing process the design of special fixture. The main processing parts processing plane and holes. In general, ensure easy to guarantee precision machining holes than. Therefore, the design principle is first machined surface after machining hole surface. Periodic hole machining plane is obvious that rough machining and machining precision machining hole. A good foundation on the bottom surface of the process. The main process is supported in the positioning hole process first, and then the processing hole plane and the hole positioning technology support. In a subsequent step, in addition to processing technology are positioned in the plane and the other hole hole and separate process. The whole process is a combination of the selection tool. Special fixture fixture selection, a self-locking mechanism, therefore, for large quantities, higher productivity, meet the design requirements. Keywords: box type parts; technology; fixture; III

汽车差速器与主减速器设计毕业设计

摘要 本文介绍了轿车差速器与主减速器的设计建模过程,论述了轿车差速器与主减速器的结构和工作原理,通过对轿车主要参数的分析与计算对差速器和主减速器进行设计,并使用Pro/E对差速器与主减速器进行3D建模,生成2D工程图。完成装配后,对主减速器、差速器进行运动仿真,以论证差速器的差速器原理。 关键词:建模,差速器,主减速器,分析

Abstract This paper discusses the automobile differential design and modeling process of the final drive, and the structure and the principle of automobile differential and the final drive.the car After the analysis and calculation of final drive and differential,to use Pro/E to complete make 3D model of the final drive and differential, then to produce 2D drawings.There is going to analysis the final drive to prove the principle after finishing the composing. Keywords: Modeling, Differential,Final drive,Analysis

目录 摘要........................................................ I Abstract ................................................... II 目录...................................................... III 1绪论 (1) 1.1课题来源 (1) 1.2课题研究现状 (1) 1.2.1国内外汽车行业CAD研究与应用情况 (1) 1.3主减速器的研究现状 (1) 1.4 差速器的研究现状 (2) 1.5 课题研究的主要内容 (3) 2QY7180概念轿车主减速器与差速器总体设计 (4) 2.1QY7180概念轿车主要参数与主减速器、差速器结构选型 (4) 2.1.1QY7180概念轿车的主要参数 (4) 2.1.2QY7180概念轿车主减速器与差速器结构选型 (4) 2.2主减速器与差速器的结构与工作原理 (5) 2.3QY7180概念轿车主减速器主减速比i0的确定 (6) 3主减速器和差速器主要参数选择与计算 (7) 3.1主减速器齿轮计算载荷的确定 (7) 3.1.1按发动机最大转矩和最低档传动比确定从动齿轮的计算转 矩Tce (7) 3.1.2按驱动车轮打滑转矩确定从动齿轮的计算转矩Tcs (7) 3.1.3按日常平均使用转矩来确定从动齿轮的计算转矩 (8) 3.2主减速器齿轮传动设计 (8) 3.2.1按齿面接触强度设计 (8)

机械毕业设计625二级圆柱直齿齿轮减速器

1引言 齿轮传动是现代机械中应用最广的一种传动形式。它的主要优点是:①瞬时传动比恒定、工作平稳、传动准确可靠,可传递空间任意两轴之间的运动和动力;②适用的功率和速度范围广;③传动效率高,η=0.92-0.98;④工作可靠、使用寿命长;⑤外轮廓尺寸小、结构紧凑。由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用,在现代机械中应用极为广泛。 国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。另外,材料品质和工艺水平上还有许多弱点,特别是大型的减速器问题更突出,使用寿命不长。国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。 当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品。近十几年来,由于近代计算机技术与数控技术的发展,使得机械加工精度,加工效率大大提高,从而推动了机械传动产品的多样化,整机配套的模块化,标准化,以及造型设计艺术化,使产品更加精致,美观化。 在21世纪成套机械装备中,齿轮仍然是机械传动的基本部件。CNC机床和工艺技术的发展,推动了机械传动结构的飞速发展。在传动系统设计中的电子控制、液压传动、齿轮、带链的混合传动,将成为变速箱设计中优化传动组合的方向。在传动设计中的学科交叉,将成为新型传动产品发展的重要趋势。

2 传动装置总体设计 2.0设计任务书 1设计任务 设计带式输送机的传动系统,采用两级圆柱直齿齿轮减速器传动。 2 设计要求 (1)外形美观,结构合理,性能可靠,工艺性好; (2)多有图纸符合国家标准要求; (3)按毕业设计(论文)要求完成相关资料整理装订工作。 3 原始数据 (1)运输带工作拉力 F=4KN (2)运输带工作速度V=2.0m/s (3)输送带滚筒直径 D=450mm η (4)传动效率96 = .0 4工作条件 两班制工作,空载起动,载荷平稳,常温下连续(单向)运转,工作环境多尘,中小批量生产,使用期限10年,年工作300天。 2.1 确定传动方案

santana2000轿车制动系统的毕业设计

摘要 国内汽车市场迅速发展,而轿车是汽车发展的方向。然而随着汽车保有量的增加,带来的安全问题也越来越引起人们的注意,而制动系统则是汽车主动安全的重要系统之一。因此,如何开发出高性能的制动系统,为安全行驶提供保障是我们要解决的主要问题。另外,随着汽车市场竞争的加剧,如何缩短产品开发周期、提高设计效率,降低成本等,提高产品的市场竞争力,已经成为企业成功的关键。 本说明书主要介绍了santana2000轿车制动系统的设计。首先介绍了汽车制动系统的发展、结构、分类,并通过对鼓式制动器和盘式制动器的结构及优缺点进行分析。最终确定方案采用液压双回路前盘后鼓式制动器。除此之外,它还介绍了前后制动器、制动主缸的设计计算,主要部件的参数选择及制动管路布置形式等的设计过程。 关键字:制动;鼓式制动器;盘式制动器;液压 附录:

Abstract The rapid development of the domestic vehicle market, saloon car is an important tendency of vehicle. However, with increasing of vehicle, security issues are arising from increasingly attracting attention, the braking system is one of important system of active safety. Therefore, how to design a high-performance braking system, to provide protection for safe driving is the main problem we must solve. In addition, with increasing competition of vehicle market, how to shorten the product development cycle, to improve design efficiency and to lower costs, to improve the market competitiveness of products, and has become a key to success of enterprises. This paper mainly introduces the design of braking system of the santana2000 type of car. Fist of all, braking system’s development, structure and category are shown, and according to the structures, virtues and weakness of drum brake and disc brake, analysis is done. At last, the plan adopting hydroid two-backway brake with front disc and rear drum. Besides, this paper also introduces the designing process of front brake and rear brake, braking cylinder, parameter’s choice of main components braking and channel settings. Key words: braking; brake drum; brake disc; hydroid pressure

二级减速器(机械课程设计)(含总结)

机械设计课程设计 : 班级: 学号: 指导教师: 成绩:

日期:2011 年6 月 目录 1. 设计目的 (2) 2. 设计方案 (3) 3. 电机选择 (5) 4. 装置运动动力参数计算 (7) 5.带传动设计 (9) 6.齿轮设计 (18) 7.轴类零件设计 (28) 8.轴承的寿命计算 (31) 9.键连接的校核 (32) 10.润滑及密封类型选择 (33) 11.减速器附件设计 (33) 12.心得体会 (34) 13.参考文献 (35)

1. 设计目的 机械设计课程是培养学生具有机械设计能力的技术基础课。课程设计则是机械设计课程的实践性教学环节,同时也是高等工科院校大多数专业学生第一次全面的设计能力训练,其目的是: (1)通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用机械设计课程和其他先修课程的理论与实际知识去分析和解决机械设计问题的能力。 (2)学习机械设计的一般方法,掌握机械设计的一般规律。 (3)通过制定设计方案,合理选择传动机构和零件类型,正确计算零件工作能力,确定尺寸和掌握机械零件,以较全面的考虑制造工艺,使用和维护要求,之后进行结构设计,达到了解和掌握机械零件,机械传动装置或简单机械的设计过程和方法。 (4)学习进行机械设计基础技能的训练,例如:计算,绘图,查阅设计资料和手册,运用标准和规等。 2. 设计方案及要求 据所给题目:设计一带式输送机的传动装置(两级展开式圆柱直齿轮减速器)方案图如下:

1—输送带 2—电动机 3—V带传动 4—减速器 技术与条件说明: 1)传动装置的使用寿命预定为8年每年按350天计算,每天16小时计算; 2)工作情况:单向运输,载荷平稳,室工作,有粉尘,环境温度不超过35度; 3)电动机的电源为三相交流电,电压为380/220伏; 4)运动要求:输送带运动速度误差不超过%5;滚筒传动效率 0.96; 5)检修周期:半年小修,两年中修,四年大修。 设计要求 1)减速器装配图1; 2)零件图2(低速级齿轮,低速级轴);

减速器箱体的加工工艺分析和夹具设计毕业论文设计

减速器箱体的加工工艺分析和夹具设计 前言 减速器是一种动力传达机构,在原动机和工作机(执行机构)之间起改变转速和传递转矩的作用,利用齿轮啮合传动改变转速,将电机(马达)的回转数减速到所要的回转数,并得到较大的转矩。减速器按用途可分为通用减速器和专用减速器两大类,两者的设计、制造和使用特点各不相同。当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。因此,除了不断改进材料品质、提高工艺水平外,还在传动原理和传动结构上深入探讨和创新,减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品。因此对减速器箱体的形状、体积、加工质量和加工精度都提出了新的要求。本文章通过对减速器传动原理和传动结构的分析,根据设计、使用要求确定减速器箱体的尺寸,并且确定减速器箱体加工的方法,制定减速器箱体的加工工艺过程。通过制定加工工艺过程来确定整个加工过程中的基准和自由度的限定,以此来设计新的夹具。从而达到优化箱体加工工艺过程,提高加工效率和保证加工质量的目的。 减速器的种类有斜齿轮减速器(包括平行轴斜齿轮减速器、蜗轮减速器、锥齿轮减速器等等)、行星齿轮减速器、摆线针轮减速器、蜗轮蜗杆减速器、行星摩擦式机械无级变速机等。 本论文为用于平行轴间动力传动的圆柱齿轮减速器箱体。

1.减速器箱体加工工艺设计 1.1分析装配图 减速器壳体示意图如图1所示,它是减速器的一部分,其作用是为减速器齿轮轴提供支撑和齿轮提供封闭的啮合环境。壳体经Φ160和Φ200的支承轴孔以支承孔的外端面为装配基准,装配在减速器的轴上,减速器壳体的支承孔外端面上安装轴承盖,减速器壳体、减速器轴和轴承盖组成一个封闭的齿轮传动系统。[1] 图1 减速器装配图 1.2零件的工艺分析 减速器壳体零件如图2和图3所示,该零件的主要加工平面和技术要求分析如下。 (1)减速器两侧的支承同轴孔Φ160H6和Φ200H6的同轴度、圆柱度公差等级为6级,同轴度要求为0.020mm,圆柱度要求分别为0.008mm和0.010mm,表面粗糙度为Ra≤1.6um。由于两支承孔有较高的配合要求,在安排加工工艺时要注意加工方法。 (2)两平行的支承孔Φ160H6和Φ200H6之间的平行度要求公差等级为6级,数值为0.050mm。 (3)两平行支承孔Φ160H6和Φ200H6与减速器凸缘圆形壁面之间有垂直度要

汽车毕业设计题目

汽车毕业设计题目 汽车毕业设计题目怎么选?有哪些题目可以选择呢?下面是由为大家带来的关于汽车毕业设计题目,希望能够帮到您! 1.发动机排放技术的应用分析 2.微型车怠速不良原因与控制措施 3.柴油机电子控制系统的发展 4.我国汽车尾气排放控制现状与对策 5.发动机自动熄火的诊断分析 6.汽车发动机的维护与保养 7.柴油机微粒排放的净化技术发展趋势 8.汽车污染途径及控制措施 9.现代发动机自诊断系统探讨 10.关于奔驰300SEL型不能着车的故障分析 11.奔驰Sprinter动力不足的检测与维修 12.上海通用别克发动机电控系统故障的诊断与检修 13.现代伊兰特发动机电控系统故障的诊断与检修 14.广本雅阁发动机电控系统故障的诊断与检修 15.电子燃油喷射系统的诊断与维修 16.帕萨特1.8T排放控制系统的结构控制原理与检修 17.广本雅阁排放控制系统的结构控制原理与检修

18.汽车发动机怠速成抖动现象的原因及排查方法探讨 19.汽车排放控制系统的检修 20.上海帕萨特B5电子燃油喷射系统的诊断与维修 21.论汽车检测技术的发展 22.奥迪A6排放控制系统的结构控制原理与检修 23.丰田凌志400发动机电控系统故障的诊断与检修 24.奥迪A6B5电子燃油喷射系统的诊断与维修 25.标致307电子燃油喷射系统的诊断与维修 26.捷达轿车发动机常见故障分析与检修 27.汽车转向盘摆振故障分析 28.防抱死系统在常用轿车上的使用特点分析 29.汽车底盘的故障诊断分 30.汽车的常用转向系统的性能分析 31.汽车变速箱故障故障诊断 32.安全气囊的发展与应用 33.汽车制动系统故障诊断 34.分析国产几种汽车行走系统特点 35.分析国产几种汽车制动系统特点 36.分析国产几种汽车转向系统特点 37.机电液一体化技术在汽车中的应用 38.丰田系列ABS故障诊断方法的探讨 39.通用系列ABS故障诊断探讨

汽车制动系统毕业设计

摘要 Formula SAE比赛由美国车辆工程师学会(SAE)于1979年创立,每年在世界各地有600余支大学车队参加各个分站赛,2011年将在中国举办第一届中国大学生方程式赛车,本设计将针对中国赛程规定进行设计。 本说明书主要介绍了大学生方程式赛车制动的设计,首先介绍了汽车制动系统的设计意义、研究现状以及设计目标。然后对制动系统进行方案论证分析与选择,主要包括制动器形式方案分析、制动驱动机构的机构形式选择、液压分路系统的形式选择和液压制动主缸的设计方案,最后确定方案采用简单人力液压制动双回路前后盘式制动器。除此之外,还根据已知的汽车相关参数,通过计算得到了制动器主要参数、前后制动力矩分配系数、制动力矩和制动力以及液压制动驱动机构相关参数。最后对制动性能进行了详细分析。 关键字:制动、盘式制动器、液压

Abstract Formula SAE race was founded in 1979 by the American cars institute of Engineers every year more than 600 teams participate in various races around the world,China will hold the first Formula one for Chinese college students,the design will be for design of the provisions of the Chinese calendar. This paper mainly introduces the design of breaking system of the Formula Student.First of all,breaking system's development,structure and category are shown,and according to the structures,virtues and weakness of drum brake and disc brake analysis is done. At last, the plan adopting hydroid two-backway brake with front disc and rear disc.Besides, this paper also introduces the designing process of front brake and rear break,braking cylinder,parameter's choice of main components braking and channel settings and the analysis of brake performance. Key words:braking,braking disc,hydroid pressure

汽车后桥减速器壳工艺规程设计及其夹具设计

优秀设计 引言 毕业设计是学生的最后一个教学环节,我这次毕业设计的题目是某汽车后桥减速器壳工艺规程设计及其夹具设计。 汽车在正常行驶时,发动机的转速很高,只靠变速箱来降低,会使变速箱的尺寸增大。同时,转速下降,扭矩必然增加,也就加大了变速箱与变速箱后一级传动机构的传动负荷。因此,在动力向左右驱动轮分流的差速器之前需要设置一个主减速器。而主减速器壳是汽车后桥主减速器的一部分。主减速器壳体加工精度的高低直接影响着差速器壳及主、被动齿轮的配合精度,因而其加工工艺直接影响车桥和整车质量。 我此次毕业设计的任务是对汽车后桥减速器壳进行工艺分析并且设计其夹具。经过查阅相关资料,并且结合所学的机械知识,对该零件进行工艺分析,确定出合理的加工工艺方案,并选择切削用量及其工艺装备。了解零件的结构特点及技术要求,查阅相关书籍,例如夹具方面的教材及图册,经过反复的研究、设计、比较、试验,最终设计出一套合理的夹具,即车法兰止口的夹具。 最后在老师和同学的帮助下,经过不断地修改、检查,最终完成了汽车后桥减速器壳工艺规程及其夹具设计。 本次毕业设计使我在机械方面受益匪浅。特别是刘老师在工作中对我的耐心辅导,他对学生强烈的责任感和严谨的治学态度,无不给我以深刻的影响。 由于类似的大型课题很少接触,经验能力方面的欠缺,错误之处一定存在,恳请各位老师给予批评指正,以便今后的工作尽善尽美。

目录 目录 (2) 第1章零件的分析 (4) 1.1减速器壳在汽车上的位置及功用 (4) 1.2减速器壳的结构特点及技术要求 (4) 1.2.1结构特点 (4) 1.2.2技术要求分析 (5) 第2章工艺规程的设计 (7) 2.1生产类型的确定 (7) 2.1.1生产纲领的确定 (7) 2.1.2零件年产量的确定 (7) 2.1.3生产类型的确定 (7) 2.1.4生产类型对应的工艺特征 (7) 2.2毛坯的选择 (8) 2.2.1铸件的精度等级选择: (8) 2.2.2毛坯余量及偏差的选择 (8) 2.3各加工表面的加工方法的选择 (10) 2.3.1加工方法的确定 (10) 2.3.2加工阶段的划分 (12) 2.4制定加工工艺路线 (13) 2.5工艺方案的分析 (17) 2.6确定各工序的加工余量、工序尺寸、切削用量及工时定额 (18) 2.6.1确定各工序的加工余量 (18) 2.6.2确定各工序的工序尺寸 (19) 2.6.3确定各工序的切削用量 (20) 2.6.4确定各工序的工时定额 (26) 2.7确定各工序的工艺装备和机床的选择 (43) 2.7.1刀具的选择 (43) 2.7.2量具的选择: (44) 2.7.3夹具的选择 (45) 2.7.4机床设备的选择: (46) 2.8选择定位基准的原则 (46) 2.8.1粗基准的选择 (46) 2.8.2精基准的选择 (47) 2.9合理夹紧方法的确定 (48) 2.9.1夹紧力的方向 (48) 2.9.2夹紧力的作用点 (48)

相关文档
最新文档