化学反应工程课程设计

化学反应工程课程设计
化学反应工程课程设计

一.设计方案简介

1.1 硫酸的性质

硫酸是三氧化硫(SO3)和水(H2O)化合而成。化学上一般把一个分子的三氧化硫与一个分子的水相结合的物质称为无水硫酸。无水硫酸就是指100%的硫酸,又称纯硫酸。纯硫酸一般为无色透明的油状液体,分子量为98.08。硫酸分为发烟硫酸、浓硫酸和稀硫酸,硫酸中不含水而存在游离S03时成为发烟硫酸,当硫酸水溶液中硫酸质量百分数≥75%的硫酸叫做浓硫酸,而把硫酸质量百分数在75%以下的硫酸水溶液叫做稀硫酸【1】。

硫酸是强酸之一,具有酸的通性,但浓硫酸有其特殊的性质。具有相对密度大、沸点高、液面上水蒸气的平衡分压极低等物理特性和吸水性、脱水性和强氧化性等化学特性[2]。硫酸有很强的吸水性,能吸收气体中的水蒸气,也能吸收液体中的部分水分,从而使气体干燥,溶液发生相应的变化。浓硫酸的脱水性是指其能将部分物质中的氢、氧元素按原子个数比为2:1的比例夺取出来并生成水。质量分数为98.3%的浓硫酸其沸点为338℃,与其它常见的酸相比,沸点较高,是一种难挥发的强酸。硫酸无论是用水稀释还是与其它液体混合,都会放出大量的热。浓硫酸具有强氧化性,不仅能氧化活泼性位于氢以前的金属,而且能氧化部分非金属单质,活泼性位于氢后的金属及某些含有低价态元素的化合物或离子。

硫酸的用途

硫酸的用途非常广泛,是最重要的化工原料之一。

硫酸最主要用途是生产化学肥料,用于生产磷铵、重过磷酸钙、硫铵等。在中国,硫酸产量的60%以上用于生产磷肥和复肥。

在化学工业中,硫酸是生产各种硫酸盐的主要原料,是塑料、人造纤维、染料、油漆、药物等生产中不可缺少的原料。在农药、除草剂、杀鼠剂的生产中亦需要硫酸。

在石油工业中,石油精炼需使用大量硫酸作为洗涤剂,以除去石油产品中的不饱和烃等杂质。

在冶金工业中,钢材加工及成品的酸洗要用硫酸;电解法精炼铜、锌、镉、镍时,电解液需使用硫酸;某些贵金属的精炼亦需用硫酸溶去夹杂的其它金属。

在火、炸药及国防工业中,浓硫酸用于制取硝化甘油、硝化纤维、三硝基甲苯等炸药。原子能工业中用于浓缩铀。运载火箭所用燃料亦离不了硫酸。

1.2 硫酸生产工艺简介

按二氧化硫的氧化方法不同,可把硫酸生产方法分成两类。一类是硝化法,另一类是接触法。根据制酸原料不同,又可把接触法分成:硫铁矿制酸、硫磺制酸、冶炼烟气制酸、硫酸盐制酸及含硫废液制酸。

精品

精品

硝化法又包括铅室法和塔式法,它们均是以氮氧化物为媒介,使二氧化硫在氧气及水存在的情况下生成硫酸。用该方法制得的硫酸,H 2SO 4含量低(<78%H 2SO 4),杂质含量高(主要含有尘及氮氧化物),且需耗用大量硝酸或硝酸盐,远远满足不了染料、化纤、有机合成、石油化工等部门的要求。因此,此法的发展受到限制。

下面具体介绍一下接触法生产硫酸的工艺【2】: ? 二氧化硫的制备

首先以硫铁矿为初始原料,制成含二氧化硫的原料气。硫磺燃烧生成二氧化硫是放热过程。当以硫磺为原料时,可用蒸汽将硫磺熔化,很细的热液态硫磺雾滴(约145℃)被喷射进入焚烧炉与干燥的空气混合反应:

Q SO O S 22+→+

以硫铁矿为原料的生产工艺中,硫铁矿在焙烧炉中于800-1000℃温度下通入空气燃烧,生成二氧化硫和氧化铁:

Q SO 8O Fe 2O 10FeS 423222++→+

矿石焙烧炉一般分为多室焙烧炉、回转窑和沸腾炉。

? 含二氧化硫原料气的净化

由硫铁矿燃烧得到的含二氧化硫原料气体中,含有矿物粉尘、氧化砷、二氧化硒等杂志,在进入下一步工序前必须进行除尘和净化。

含二氧化硫气体的净化工艺分为水洗和酸洗两种。酸洗法采用稀硫酸来洗涤矿石燃烧炉气,先后去氧化砷、二氧化硒等杂志,再经过冷凝器和电除尘除雾去酸雾。最后,经过干燥塔得到净化后的干燥二氧化硫原料气体。

? 二氧化硫氧化为三氧化硫 二氧化硫氧化为三氧化硫的反应式为:

Q SO O 2

1

SO 322+→+

该反应仅在催化剂(V 2O 5)存在时才能获得满意的反应速率。由于是放热反应,所以在低温下会获得较好的三氧化硫平衡产率。但是,反应温度过低又导致反应速率下降,所以一般选取催化剂正常工作所需的温度410-440℃作为反应温度。

? 三氧化硫的吸收

Q

SO H O H SO 4223+→+

尽管硫酸最终按上式经过三氧化硫与水的结合生成硫酸,但生产中往往采用浓度为98.5%-99%的硫酸而不是水来吸收三氧化硫。这是因为水蒸气与三氧化硫会在气相中生成硫酸,冷凝形成大量酸雾,造成操作条件恶化,吸收效率降低。用高浓度硫酸吸收三氧化硫时,需要向循环酸中补充适量的水,以保持吸收用硫酸的浓度恒定并得到所要求规格的成品硫酸。

吸收操作是首先用气体冷却器将反应气体冷却至180-200℃,然后进入填料吸收塔,硫酸在塔中从上往下喷淋与反应气体逆向接触,是三氧化硫转化为硫酸。硫酸吸收剂在重新返回吸收塔之前喜用水或空气冷却器降温,移走吸收过程产生的热量。

1.3 硫酸转化器设计

常用的转化器有外部换热式转化器、内部换热式转化器、径向转化器、卧式转化器、非稳态转化器。

随着硫酸工业的发展,转化工艺流程经历了很大变化。转化流程主要有“一转一吸”和“两转两吸”两大类,“一转一吸”流程亦为一次转化一次吸收,由于受催化剂用量及平衡转化率的限制,该工艺可能达到最终转化率为97%~98%,显然硫的利用率不够高,尾气中二氧化硫的含量远远超过排放标准,因此该工艺已逐渐被淘汰。“两转两吸”流程为两次转化两次吸收工艺,可能达到的最终转化率大于99.5%,该工艺所采用的段数组合有“2+1”三段转化、“2+2”和“3+1”四段转化、“3+2”五段转化流程。为了适应催化剂的活性,南化集团设计院应燮堂提出将高浓度二氧化硫烟气分别稀释成20%用国产的普通催化剂采用三转三吸方法制酸,并对此作了技术论证,结论是高浓度二氧化硫用三转三吸流程制酸技术可靠,经济合理,值得推荐[4]。转化工艺在中国的情况如表2所示【3】:

表1 转化工艺的发展情况

精品

精品

本设计我采用的外部换热式转化器。

1.4 硫酸转化催化剂简介

硫酸生产的催化剂经历了从铁催化剂、铂催化剂到钒催化剂的发展过程,目前世界上硫酸生产都使用钒催化剂,中国生产的钒催化剂主要有S101、S106、S107、S108、S1,等型号,国外也形成了以美国孟山都化学环保公司、丹麦托普索公司等为主的LP 系列和VK 系列催化剂【4】。

最新研制开发的S-H 型宽温抗毒SO1氧化制硫酸催化剂,是一种无毒、无污染、高性能的制酸催化剂,具有起燃温度低,寿命长,使用阻力小,节能降耗等特点,特别适用于大型制酸企业,其性能达到了国际先进水平【4】。

含铯催化剂的研制和开发成功提高了转化过程的总转化率,降低尾气中二氧化硫浓度。含铯催化剂具有起燃温度低、活性高的特点,与传统的钒催化剂相比,起燃温度低20~40℃,适用于处理二氧化硫浓度较低的气体或用富氧空气产生的二氧化硫浓度较高的气体。丹麦TOPSE 公司于1996年开发VK69新型含铯催化剂,该催化剂改进了载体,使用新型粘合剂,提高了催化剂的孔隙率;外形采用菊形,同一直径下比表面积比环形大约1.5倍;催化剂中V 2O 5含量提高25%,铯的存在保证了钒活性【4】。

二. 工艺计算

2.1 硫平衡的计算

转化为33000t 硫酸所需的硫的量为: 总

吸收

净化

ω?

ω?

ω?

=1

11

t M m

n 42SO H s (2—1)

mol/h

K 743.47%5.991%95.991%5.981243009810330003=?

?????=

硫铁矿焙烧炉出口气体的量为:

精品

h /mol K 570.394%

1.0%12743

.470.1%12%n n s =+=+=

∴焙烧炉出口气体中

h /Kmol 348.47570.394%12n %12n ,SO 2=?==总炉

h /Kmol 395.0348.47743.47n n ,n 23SO S SO =-=-=,炉

2.2 焙烧耗氧量

根据下列化学反应方程式

23222SO 8O Fe 2O 11FeS 4+→+ ○1

322SO O 2

1

SO →+ ○

2 反应○2消耗的SO 2、O 2的量为:

h /Kmol 395.0n n 32SO SO ==,耗

h /Kmol 198.0395.02

1

n 21n 32SO 2,O =?==

反应○1生成的SO 2的量为:

h /mol K 743.47348.47395.0n n n ,SO ,SO ,SO 222=+=+=耗炉总

反应○1消耗的O 2的量为:

h /mol K 647.65743.478

11

n 1,O 2=?=

∴焙烧的耗氧量为:

h

/mol K 845.65198.0647.65n n n 2,O 1,O O 222=+=+=

2.3 N 2的量

根据6.79:4.20n :n 22N O =(西宁地区)可知,

h /Kmol 925.256845.654

.206

.79n 4.206.79n 22O 1,N =?=?=

2.4 进入转化器一段的气体总量

净化后的的SO 2量为:

精品

h /mol K 638.46%5.98348.47n n ,SO SO 22=?=ω=炉净化

∴进入转化器一段的气体总量为:

h /m ol K 638.613%

6.7638

.46%

6.7n n 2SO ==

=

(其中7.6%为一段转化器入口SO 2浓度的摩尔百分比)

2.5 进入一转的O 2、N 2的量

转化器中补充的空气的量为:

h /m ol K 095.310638.46925.256658.613n n n n 32SO N =--=--=总补

其中:

h

/Kmol 836.246100

6

.79095.310n h /Kmol 259.631004

.20095.310n 2

,N O 22=?==?= ∴进入一转的O 2的量为:h /Kmol 259.63n 2O =

进入一转的N 2的量为: h /Kmol 761.503925.256836.246n n n 2,N 1,N N 222=+=+=

2.6 转化器各段压强的计算

“2+2”式转化器的工艺流程图如下图所示:

“2+2”式转化器工艺流程图

精品

已知换热器的压降是100mmH 20,一吸的压降是200 mmH 20。

表2 转化器各段的压降

所以各段的进出口压降为:

一段进口:P=2000-100-100=1800 mmH 20(表) 一段出口:P=1800-200=1600 mmH 20(表) 二段进口:P=1600-100=1500 mmH 20(表) 二段出口:P=1500-150=1350 mmH 20(表) 三段进口:P=1350-100-200-200=850 mmH 20(表) 三段出口:P=850-150=700 mmH 20(表) 四段进口:P=700-100=600 mmH 20(表) 四段出口:P=600-100=500 mmH 20(表) ∴一转的压强为:

atm

915.0325

.101314.771015768.91000(O mmH 15762

1350

1800P 62=+???==+=

-表)前

二转的压强为:

atm

828.0325

.101314.77106758.91000(O mmH 6752

500

850P 62=+???==+=

-表)后(大气压:77.314kPa 西宁地区)

2.7 一转平衡曲线的绘制

二氧化硫转化为三氧化硫,其平很转化率有下式算出: )

ax 5.0b (P ax 5.0100k k x T T

P P

T --+

=

(2—2)

式中 x T ——平衡转化率,%;

精品

K P ——反应平衡常数; a ——二氧化硫初始浓度,%; b ——氧的初始浓度,%; P ——气体总压力,大气压。

反应平衡常数k P ,在400—700℃之间时,可用下式求出: 6455.4T

5

.4905k lg P -= (2—3)

式中 T ——绝对温度,o K 。

一转二氧化硫的初始浓度a=7.6%=0.076,氧气的初始浓度为:

103

.0638

.46761.503259.63259

.63n n n n b 2

222

N SO O O =++=

++=

氮气的初始浓度为:

846.0638

.46761.503259.63761

.503n n n n c 2

222

N SO O N =++=

++=

最佳温度为: 937.4ax 5.0100x 05.0b )x 1(x lg 4905

T +????

?

?

??

?

??

?---=

(2—4)(2—2)式,由于两边都有x T 项,所以要用试差法求解,将380℃至820℃间的温度数代入上面三式,算出一转的平衡转化率和最佳温度如下表所示:

表3 一转的平衡转化率和最佳温度

∴一转的平衡曲线及最佳温度曲线见附表(二 )

2.8 转化器一转一段的计算

首先,假设第一段出口的转化率为x 1-出=77%,其进口转化率为x 1-进=0.

精品

那么,第一段出口SO 2,SO 3,O 2,N 2的量分别为:

h /m ol K 146.11%771638.46x 1n n -1SO 1,SO 22=-?=-?=-)()(出出

h /mol K 492.35%77638.46x n n -1SO 1,SO 23=?=?=-出出

h /mol K 513.45%77492.352

1

259.63x n 21n n 1SO O 1,O 322=??-=-=--出出

h /mol K 761.503n n 22N 1,N ==-出

根据附表(一)查得400℃时各物质的平均热容如下表:

表4 400℃时各物质的平均热容

由内插算出25℃时各物质的平均热容如下表:

表5 25℃时各物质的平均热容

25℃时各物质的反应热如下表:

表6

25℃时各物质的反应热

进入系统的热量Q 根据公式

T C n Q P ?=-

(2—5)

∴进入系统的热量为:

h

/KJ 7604429040064.29761.50390.30259.6359.45638.46T C n Q P =-??+?+?=?=-

∑)()(

∴反应放出的热量H 计算的设计路径如下:

精品

3

H 2221

3

H 22SO O 2

1SO C

0H H SO O 21SO C

25r

r

??→?+??↑?↓??→?+????

其中:)O (f )SO (f )SO (f r 2

2

3

H H H H ?

????-?-?=?

T C n T C n H )O (P )SO (P 122?+?=?

T C n H )SO (P 23

?=? 21r r H H H H ?-?-?=??

h

/KJ 347585125

)32.292

1

385.4143.49(911.35911.35)]297000(395100[T

)C C 2

1

C (n n H H 25,SO P 25,O P 25,SO P 1,SO 1,SO f r 22333-=??--?+?--=--+??=?--出出现假设出一段的温度T 1-出=567.501℃,查附表(一)内插的该温度下个物质的平均热容如下表所示:

表7 567.501℃物质的平均热容

∴离开系统的热容和根据公式

∑=出出,P P C n C (2—6)

出h C /(KJ 19516761.50314.30513.4553.31492.3591.66146.1118.47C n C ,P P ??=?+?+?+?==∑ 所以在该假设条件下的实际温度为:

C 766.567195163475851

7604429C H Q T P

1?=+=-=

-实

∴温度偏差百分数为:

精品

%047.0%100766

.567766

.567501.567T T T 11出-1=?-=

-=

ω--实

根据公式

)0101x x (T T -λ+= (2—7)

可知一段的绝热温升为:

C 455.2200

761.0400

766.567x x T T 0

-1011?=--=

--=

λ-出实

查一转的平衡曲线及最佳温度曲线图知当T 1-实=567.766℃时,x T =0.80.

∴%1.95%10080

.0761.0x x R T =?==

∵R 在95%—97%之间,所以符合设计。

2.9 转化器一转二段的计算

首先,假设第二段出口的转化率为x 2-出=89%,其进口转化率为x 2-进=77%。 那么,第二段出口SO 2,SO 3,O 2,N 2的量分别为:

h /m ol K 130.5%891638.46x 1n n -2SO 2,SO 22=-?=-?=-)()(出出

h /mol K 508.41%89638.46x n n -2SO 2,SO 23=?=?=-出出

h /mol K 303.45%89492.352

1

259.63x n 21n n 2SO O 2,O 322=??-=-=--出出

h /mol K 761.503n n 22N 2,N ==-出

根据附表(一)由内插得468℃时各物质的平均热容如下表:

表8 468℃时各物质的平均热容

∴进入系统的热量为: h

/KJ 9014003046860.64911.3584.29761.50316.31303.4525.46727.10T

C n Q P =-??+?+?+?=?=-

∑)()(

精品

h

/KJ 54812325

)32.292

1

385.4143.49(130.5727.10130.5727.10)]297000(395100[T

)C C 2

1

C ()n n ()n n (H H 25,SO P 25,O P 25,SO P 2,SO 2,SO 2,SO 2,SO f r 2233333-=??--?-+-?--=--?-+-??=?----)()(出进出进假设出一段的温度T 2-出=494.120℃,查附表(一)内插的该温度下个物质的平均热容如下表所示:

表9 494.120℃物质的平均热容

出h C /(KJ 19352761.50392.29505.4226.31508.4131.65130.550.46C n C ,P P ??=?+?+?+?==∑ 所以在该假设条件下的实际温度为:

C 111.49419352548123

9014003C H Q T P

2?=+=-=

-实

∴温度偏差百分数为:

%0018.0%100111

.494111

.494120.494T T T 22出-2=?-=

-=

ω--实

二段的绝热温升为:

C 590.21777

.089.0468

111.494x x T T 2

-2222?=--=

--=

λ-出实

查一转的平衡曲线及最佳温度曲线图知当T 2-实=567.766℃时,x T =0.934。

∴%3.95%100934

.089.0x x R T =?==

∵R 在95%—97%之间,所以符合设计。

2.10 二转平衡曲线的绘制

因为本设计方案采用的流程为“2+2”式,故当物料从一转二段出来后进入二转的第一段。因为从一转进入二转的过程中经过了一吸过程吸收了出料中的三氧化硫,且吸收率为99.95%,故进入二转一段的三氧化硫的量为:

精品

h /mol K 0208.0%95.991508.411n n 2SO 3SO 33=-?=ω-=--)()(吸收出进

又知进入二转一段的氧气、氮气、二氧化硫的量如下:

h /mol K 761.503n ,h /mol K 303.45n ,h /mol K 130.5n 3N 3O 3SO 222===---进进进

∴二转二氧化硫的初始浓度为:

%

93.0%100761.503505.42130.50208.0130

.5n n n n a 3N 3SO 3O 3SO 3SO 22232=?+++=

+++=-----进

进进进进

氧气的初始浓度为:

%7.7%

100761.503505.42130.50208.0505

.42n n n n b 3N 3SO 3O 3SO 3O 22232=?+++=

+++=-----进

进进进进

氮气的初始浓度为:

%

36.91%100761.503505.42130.50208.0761

.503n n n n c 3N 3SO 3O 3SO 3N 22232=?+++=

+++=-----进

进进进进

用试差法求解,将380℃至820℃间的温度数代入上面三式,算出二转的平衡转化率和最佳温度如下表所示:

表10 二转的平衡转化率和最佳温度

∴一转的平衡曲线及最佳温度曲线见附表(二)。 2.11 转化器二转一段(第三段)的计算

首先,假设第三段出口的转化率为x 3-出=92.4%,其进口转化率为x 3-进=0。

精品

那么,第三段出口SO 2,SO 3,O 2,N 2的量分别为:

h /mol K 390.0%4.921130.5x 1n n -33,SO 3,SO 22=-?=-?=--)()(出进出

h /mol K 761.40208.0%89130.5n x n n 3,SO -33,SO 3,SO 323=+?=+?=---进出进出

h /mol K 135.40%4.92130.52

1505.42x n 21n n 33SO 3O 3,O 222=??-=-=----出

进,进,出 h /mol K 761.503n n 22N 3,N ==-出

根据附表(一)由内插得439℃时各物质的平均热容如下表:

表11 439℃时各物质的平均热容

∴进入系统的热量为: h

/KJ 7264249043978.630208.058.29761.50305.31505.4297.4513.5T

C n Q P =-??+?+?+?=?=-

∑)()(h

/KJ 46422225

)32.292

1

385.4143.49(390.0130.5390.0130.5)]297000(395100[T

)C C 2

1

C ()n n ()n n (H H 25,SO P 25,O P 25,SO P 3,SO 3,SO 3,SO 3,SO f r 2233333-=??--?-+-?--=--?-+-??=?----)()(出进出进现假设出一段的温度T 2-出=465.367℃,查附表(一)内插的该温度下个物质的平均热容如下表所示:

表12 465.367℃物质的平均热容

出h C /(KJ 16605761.50384.29151.4015.31761.450.64390.022.46C n C ,P P ??=?+?+?+?==∑ 所以在该假设条件下的实际温度为:

精品

C 416.46516605464222

7264249C H Q T P

3?=+=-=

-实

∴温度偏差百分数为:

%0011.0%100416

.465416

.465367.465T T T 33出-3=?-=

-=

ω--实

三段的绝热温升为:

C 59.250

924.0439

416.465x x T T 3

-3333?=--=

--=

λ-出实

查一转的平衡曲线及最佳温度曲线图知当T 3-实=465.416℃时,x T =0.96。

∴%96%100960

.0924.0x x R T =?==

∵R 在95%—97%之间,所以符合设计。

2.12 转化器二转二段(第四段)的计算

因为本设计的要求总转化率要达到99.5%,且一转的转化率已达到了89%,故二转的转化率(也就是二转二段的转化率)为:

%5.95%

891%

89%5.99x 1x x x 224=--=--=

---出出总出

那么,第四段出口SO 2,SO 3,O 2,N 2的量分别为:

h /mol K 231.0%5.951130.5x 1n n -44,SO 4,SO 22=-?=-?=--)()(出进出

h /mol K 899.4%89130.5n x n n 4,SO -44,SO 4,SO 323=?=+?=---进出进出

h /mol K 055.40%5.95130.52

1

505.42x n 21n n 44SO 4O 4,O 222=??-=-=----出

进,进,出h /mol K 761.503n n 22N 4,N ==-出

根据附表(一)由内插得429℃时各物质的平均热容如下表:

表13 429℃时各物质的平均热容

精品

∴进入系统的热量为: h

/KJ 7095726042951.63761.473.29761.50301.31.135.4087.45390.0T

C n Q P =-??+?+?+?=?=-

∑)()(h

/KJ 1558625

)32.292

1

385.4143.49(231.0390.0231.0390.0)]297000(395100[T

)C C 2

1

C ()n n ()n n (H H 25,SO P 25,O P 25,SO P 4,SO 4,SO 4,SO 4,SO f r 2233333-=??--?-+-?--=--?-+-??=?----)()(出进出进现假设出四段的温度T 2-出=429.920℃,查附表(一)内插的该温度下个物质的平均热 容如下表所示:

表14 429.920℃物质的平均热容

出h C /(KJ 16541761.50373.29055.4001.31899.453.63231.088.45C n C ,P P ??=?+?+?+?==∑ 所以在该假设条件下的实际温度为:

C 000.4301654115586

7095726C H Q T P

4?=+=-=

-实

∴温度偏差百分数为:

%0012.0%100000

.430000

.430920.429T T T 44出-4=?-=

-=

ω--实

四段的绝热温升为:

C 84.29924

.0955.0000

.429000.430x x T T 4

-4444?=--=

--=

λ-出实

查一转的平衡曲线及最佳温度曲线图知当T 4-实=430.000℃时,x T =0.982。

∴%97%100982

.0955.0x x R T =?==

∵R 在95%—97%之间,所以符合设计。

表15 物料衡算结果

化学反应工程习题答案

第7章化学反应工程习题答案 7-1 试述物理吸收与化学吸收的区别。 解:对于物理吸收过程*=A A A P H C 0 对于化学吸收过程* * +=A A B A P P C C αα10 ,式中A KH =α,其中K 为化学平衡常 数;0B C 为吸收剂中的活性组分浓度;0A C 是与A 组分分压*A P 平衡的气体浓度;A H -A 组分溶解度系数。从以上两式可以看出物理吸收和化学吸收区别如下: 1.物理吸收气体溶解度与气体压力呈正比关系,化学吸收呈渐近线关系,当分压较高时,气体溶解度趋近化学计量的极限,因此为了减低能耗,导致操作方式不同,压力较低宜采用化学吸收,压力较高宜采用物理吸收。 2.热效应不同,物理吸收热效应较小,每摩尔数千焦耳,而化学吸收可达数万焦耳。导致吸收剂的再生方式不同,物理吸收过程吸收剂减压再生为主,化学吸收过程的吸收剂再生除减压外还需加热。 3.物理吸收选择性主要体现各种气体在溶解度系数的差异,而化学吸收取决于A KH =α,由于化学反应特定性,吸收选择性不同。化学吸收选择性高于物理吸收。 7-2解释下列参数的物理意义:无因次准数M 、增大因子β及液相利用率η。分别写出一级不可逆和二级不可逆反应无因次准数M 的计算式。 解:无因次准数M 的物理意义 通过液膜传递速率 液膜内的化学反应速率 增大因子β的物理意义为速率 单纯物理吸收时的传质过气液界面的传质速率 液膜内有化学反应时通 液相利用率η的物理意义为的反应速率液相均处于界面浓度下吸收速率 对于一级不可逆反应211L AL L L k k D k k M ==δ 对于二级不可逆反应2 2L BL AL k C k D M = 7-3 纯二氧化碳与氢氧化钠水溶液进行反应,假定液相上方水蒸气分压可不 计,试按双膜模型绘出气相及液相二氧化碳浓度分布示意图。 解: 气模 液膜 P CO2,g P CO2,i C CO2,i C CO2,L

化学反应工程试题集及复习题

化学反应工程考试总结 一、填空题: 1.所谓“三传一反”是化学反应工程学的基础,其中“三传”是指质 量传递、热量传递和动量传递,“一反”是指反应动力学。 2.各种操作因素对于复杂反应的影响虽然各不相同,但通常温度升 高有利于活化能高的反应的选择性,反应物浓度升高有利于反应级数大的反应的选择性。 3.测定非理想流动的停留时间分布函数时,两种最常见的示踪物输 入方法为脉冲示踪法和阶跃示踪法。 4.在均相反应动力学中,利用实验数据求取化学反应速度方程式的 两种最主要的方法为积分法和微分法。 5.多级混合模型的唯一模型参数为串联的全混区的个数N ,轴 向扩散模型的唯一模型参数为Pe(或Ez / uL)。 6.工业催化剂性能优劣的三种最主要的性质是活性、选择性和稳 定性。 7.平推流反应器的E函数表达式为 , () 0, t t E t t t ?∞= ? =? ≠ ?? ,其无 因次方差2θσ= 0 ,而全混流反应器的无因次方差2θσ= 1 。 8.某反应速率常数的单位为m3 / (mol hr ),该反应为 2 级 反应。 9.对于反应22 A B R +→,各物质反应速率之间的关系为 (-r A):(-r B):r R= 1:2:2 。

10.平推流反应器和全混流反应器中平推流更适合于目的产 物是中间产物的串联反应。 →+,则其反应速率表达式不能确11.某反应的计量方程为A R S 定。 12.物质A按一级不可逆反应在一间歇反应器中分解,在67℃时转化 50%需要30 min, 而在80 ℃时达到同样的转化率仅需20秒,该反应的活化能为 3.46×105 (J / mol ) 。 13.反应级数不可能(可能/不可能)大于3。 14.对于单一反应,在相同的处理量和最终转化率条件下,选择反应 器时主要考虑反应器的大小;而对于复合反应,选择反应器时主要考虑的则是目的产物的收率; 15.完全混合反应器(全混流反应器)内物料的温度和浓度均一, 并且等于(大于/小于/等于)反应器出口物料的温度和浓度。 二.单项选择 10.(2) B 1、气相反应CO + 3H2CH4 + H2O进料时无惰性气体,CO与2H以1∶2 δ=__A_。 摩尔比进料,则膨胀因子CO A. -2 B. -1 C. 1 D. 2 2、一级连串反应A S P在间歇式反应器中,则目的产物P C___A____。 的最大浓度= max ,P

化工原理课程设计管壳式换热器汇总

化工原理课程设计管壳式换热器汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

设计一台换热器 目录 化工原理课程设计任务书 设计概述 试算并初选换热器规格 1. 流体流动途径的确定 2. 物性参数及其选型 3. 计算热负荷及冷却水流量 4. 计算两流体的平均温度差 5. 初选换热器的规格 工艺计算 1. 核算总传热系数 2. 核算压强降 经验公式 设备及工艺流程图 设计结果一览表 设计评述 参考文献 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件: 1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 99000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。 4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 1.设计概述 热量传递的概念与意义 1.热量传递的概念 热量传递是指由于温度差引起的能量转移,简称传热。由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 2. 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为

化学反应工程第二版课后答案

第一章习题 1 化学反应式与化学计量方程有何异同?化学反应式中计量系数与化学计量方程中的计量系数有何关系? 答:化学反应式中计量系数恒为正值,化学计量方程中反应物的计量系数与化学反应式中数值相同,符号相反,对于产物二者相同。 2 何谓基元反应?基元反应的动力学方程中活化能与反应级数的含义是什么? 何谓非基元反应?非基元反应的动力学方程中活化能与反应级数含义是什么? 答:如果反应物严格按照化学反应式一步直接转化生成产物,该反应是基元反应。基元反应符合质量作用定律。基元反应的活化能指1摩尔活化分子的平均能量比普通分子的平均能量的高出值。基元反应的反应级数是该反应的反应分子数。一切不符合质量作用定律的反应都是非基元反应。非基元反应的活化能没有明确的物理意义,仅决定了反应速率对温度的敏感程度。非基元反应的反应级数是经验数值,决定了反应速率对反应物浓度的敏感程度。 3 若将反应速率写成t c r d d A A - =-,有什么条件? 答:化学反应的进行不引起物系体积的变化,即恒容。 4 为什么均相液相反应过程的动力学方程实验测定采用间歇反应器? 答:在间歇反应器中可以直接得到反应时间和反应程度的关系,而这种关系仅是动力学方程的直接积分,与反应器大小和投料量无关。 5 现有如下基元反应过程,请写出各组分生成速率与浓度之间关系。 (1)A+2B →C (2)A+2B →C (3)2A+2B →C A+C →D B+C →D A+C →D C+D →E 解

(1) D 4C A 3D D 4C A 3C 22 B A 1C C 22B A 1B D 4C A 3C 22 B A 1A 22c k c c k r c k c c k c k c c k r c k c c k r c k c c k c k c c k r -=+--=+-=+-+-= (2) E 6D C 5D 4C B 3D E 6D C 5D 4C B 3C 22 B A 1C D 4C B 3C 22B A 1B C 22 B A 1A 22c k c c k c k c c k r c k c c k c k c c k c k c c k r c k c c k c k c c k r c k c c k r +--=+-+--=+-+-=+-= (3) D 4C A 3D D 4C A 3C 22 B 2A 1C C 22B 2A 1B D 4C A 3C 22 B 2A 1A 2222c k c c k r c k c c k c k c c k r c k c c k r c k c c k c k c c k r -=+--=+-=+-+-= 6 气相基元反应A+2B →2P 在30℃和常压下的反应速率常数k c =2.65× 104m 6kmol -2s -1。现以气相分压来表示速率方程,即(?r A )=k P p A p B 2 ,求k P =?(假定气体为理想气体) 解 ()3 -1-363111 2643c P 2 B A p A 2 B A c 2 B A c A 1264c kPa s m kmol 10655.1K 303K kmol kJ 314.8s kmol m 1065.2)(s kmol m 1065.2K 30330273--------??=???= ==-? ? ? ??==-= ?==+=RT k k p p k r RT p RT p k c c k r RT p c k T

《化学反应工程》期末考试试题及答案..

一、单项选择题: (每题2分,共20分) 1.反应器中等温进行着A →P(1)和A →R(2)两个反应,当降低A 的浓度后,发现反应生成P 的量显著降低,而R 的生成量略降低,表明(A ) A .反应(1)对A 的反应级数大于反应(2) B .反应(1) 对A 的反应级数小于反应 (2) C .反应(1)的活化能小于反应(2) D .反应(1)的反应速率常数大于反应(2) 2.四只相同体积的全混釜串联操作,其无因次停留时间分布的方差值2θσ为( B ) A . 1.0 B. 0.25 C .0.50 D .0 3.对一平行—连串反应R A Q P A ?→??→??→?) 3()2()1(,P 为目的产物,若活化能次序为:E 2 -r A2 B .-r A1 = -r A2 C .-r A1 < -r A2 D.不能确定何者为大 5. 已知一闭式反应器的1.0=r a uL D ,该反应器若用多釜串联模型来描述,则模型参数N 为 ( B )。 A . 4.5 B. 5.6 C .3.5 D .4.0 6.固体催化剂之所以能起催化作用,是由于催化剂的活性中心与反应组分的气体分子主要发生( C)。 A .物理吸附 B .化学反应 C .化学吸附 D .质量传递 7.包括粒内微孔体积在内的全颗粒密度称之为( B ) A .堆(积)密度 B .颗粒密度 C .真密度 D .平均密度 8.在气固催化反应动力学研究中,内循环式无梯度反应器是一种( C )。 A .平推流反应器 B. 轴向流反应器 C. 全混流反应器 D. 多釜串联反应器 9.某液相反应,其反应式可写成A+C R+C 这种反应称为(B ) A .均相催化反应 B .自催化反应 C .链锁反应 D.可逆反应 10.高径比不大的气液连续鼓泡搅拌釜,对于其中的气相和液相的流动常可近似看成( B ) A .气、液均为平推流 B .气、液均为全混流 C .气相平推流、液相全混流 D .气相全混流、液相平推流 σ R R σσR σB σA σB σ σB A σ σA S k +?+?→?+?+?+) 此步为速率控制步骤 ( 222 3.间歇釜反应器中进行如下反应: P A → (1) -r A1 =k 1C A a1 S A → (2) -r A2=k 2C A a2 在C A0和反应时间保持不变下,降低反应温度,釜液中C P /C S 增大,表明活化能E1与E2的相对大小为 E1a2 。 A .al>a2 B .alE2 4.从反应器停留时间分布测定中,求得无因次方差 98.02=θσ,反应器可视为 全混流反应

化学反应工程基础知识总结(笔记)(可编辑修改word版)

化学反应工程基础知识总结(笔记) 1、化学反应工程是一门研究涉及化学反应的工程问题的学科。如何将其在工业规模上实现是化学反应工程的主要任务。 2、理想置换反应器的特点:①由于流体沿同一方向,以相同速度向前推进,在反应器内没有物料的返混,所有物料通过反应器的时间都是相同的②在垂直于流动方向上的同一截面,不同径向位置的流体特性是一致的③在定常态下操作,反应器内状态只随轴向位置改变,不随时间改变。 3、全混流反应器的特性①物料在反应器内充分返混②反应器内各物料参数均一③反应器的出口组成与器内物料组成相同④反应过程中连续进料与出料,是一定常态过程。 4、返混的定义:物料在反应器内不仅有空间上的混合而是有时间上的混合,这种混合过程称返混。 5、非均相催化反应过程步骤①反应组分从流体主体向固体催化剂外表面传递②反应组分从外表面向催化剂内表面传递③反应组分在催化剂表面的活性中心上吸附④在催化剂表面上进行化学反应⑤反应产物在催化剂表面上解吸⑥ 反应产物从催化剂内表面向外表面传递⑦反应产物从催化剂的外表面向流体主体传递 6、兰格缪尓(Langmuir)吸附模型条件①催化剂表面上活性中心分布是均匀的②吸附活化能和脱附活化能与表面吸附的程度无关③每个活性中心仅能吸附一个气相分子④被吸附分子间互不影响,也不影响空位对气相分子的吸附。 7、焦姆金(Temkhh)吸附模型: 一般吸附活化能随覆盖率的增加而增大,脱附活化能则随覆盖率的增加而减小,因此吸附热必然随覆盖率的增加而减小。 8、催化剂颗粒内气体扩散:多孔催化剂颗粒内的扩散现象是很复杂的。除扩散路径极不规则外,孔的大小不同时,气体分子扩散机理亦有所不同。当孔径较大时,分子的扩散阻力要是由于分子间碰撞所致,这种扩散通常所称的分子扩散或容积扩散。当微孔的孔径小于分子的平均自由程时,分子与孔壁的碰撞机会超过了分子间的相互碰撞,从而使分子与孔壁的碰撞成为扩散阻力的主要因素,称为克努森(Knudson)扩散。 9、一微拟均相非理想流模型①流体在床层中流动属非理想流动,但遵循轴向扩散模型②流体沿床层径向温度、浓度是均一的,仅沿轴向变化③流体与催化剂在同一截面处的温度、浓度相同。三个基本方程:动量、物料、热量衡算方程。 10、流体床反应器的特点①流体床反应器采用的催化剂颗粒直径远小于固定床反应器选用的颗粒直径。则流化床反应器中颗粒外表面积远大于固定床反应器中颗粒的外表面积②由于流化床反应器颗粒直径较小,催化剂颗粒的内扩

2018届 管道阻火器 课程设计

中北大学 课程设计说明书 学生姓名:学号: 1404 学院: 环境与安全工程学院 专业: 安全工程 题目: 乙烯/空气混合气体管道波纹阻火器设计 指导教师:职称:讲师 2018年1 月14日

目录 1 概论 (1) 2 机械阻火器 (2) 2.1 阻火器的工作原理 (2) 2.2 阻火器的种类 (4) 2.3 阻火器主要应用场所 (4) 2.4 阻火器特点 (5) 3 波纹型阻火器(乙烯/空气)设计 (6) 3.1 GZW-1型波纹型阻火器 (6) 3.2波纹型阻火器结构 (8) 3.3阻火器结构设计 (9) 3.4阻火器性能测试 (15) 4课程设计总结 (16) 参考文献 (17)

1概论 爆炸阻隔是一种利用隔爆装置将设备内发生的燃烧或爆炸火焰实施阻隔,使之无法通过管道传播到其他设备中去的一种防爆技术措施。隔爆技术措施按作用机制不同,分为机械隔爆和化学隔爆两种类型,隔爆装置主要有工业阻火器、主动式隔爆装置和被动式隔爆装置等几种类型。工业阻火器又分为机械阻火器、液封阻火器和料封阻火器等类型,主要用于阻隔燃烧和爆炸初期火焰蔓延;主动式隔爆装置通过传感器探到的爆炸信号实施制动;被动式隔爆装置则依靠爆炸波本身引发制动。本次设计产品为波纹型阻火器(乙烯/空气),为机械阻火器的一种。阻火器的作用是防止外部火焰窜入存有易燃、易爆物料的设备、管道、容器内,或者阻止火焰在设备和管道闻蔓延。 乙烯极易发生氧化爆炸,当乙烯气体浓度达到爆炸极限,遇到点火源,便可发生氧化爆炸。乙烯在空气中爆炸浓度范围大约为2.74~36.95%(体积)。同时乙烯爆炸所需点火能很低,约0.096 mJ。此外乙烯具有分解爆炸特性,其分解过程不需要助燃剂氧气的参与。一旦局部气体过热使少量气体分解而波及剩余气体,短时间内气体急剧膨胀并且放出大量热量,最终导致爆炸发生[1]。故通过高效、经济的阻火器来阻止乙烯爆炸,或进行爆炸阻隔很有必要。 防火、灭火技术是防火防爆课程的主要研究内容之一,通过本设计,进一步学习防火、灭火的基本理论知识,掌握各类阻火器的工作原理、规格、用途、效能以及使用方法。

化学反应工程课后答案

1 绪 论 1.1在银催化剂上进行甲醇氧化为甲醛的反应: 进入反应器的原料气中,甲醇:空气:水蒸气=2:4:1.3(摩尔比),反应 后甲醇的转化率达72%,甲醛的收率为69.2%。试计算 (1) (1) 反应的选择性; (2) (2) 反应器出口气体的组成。 解:(1)由(1.7)式得反应的选择性为: (2)进入反应器的原料气中,甲醇:空气:水蒸气=2:4:1.3(摩尔比), A P 出口甲醇、甲醛和二氧化碳的摩尔数n A 、n P 和n c 分别为: n A =n A0(1-X A )=7.672 mol n P =n A0Y P =18.96 mol n C =n A0(X A -Y P )=0.7672 mol 结合上述反应的化学计量式,水(n W )、氧气(n O )和氮气(n N )的摩尔数分别为: n W =n W0+n P +2n C =38.30 mol n O =n O0-1/2n P -3/2n C =0.8788 mol n N =n N0=43.28 mol 1. 1. 2其主副反应如 下: 由于化学平衡的限制,反应过程中一氧化碳不可能全部转化成甲醇,为了提高原料的利用率,生产上采用循环操作,即将反应后的气体冷却,可凝组份变为液体即为粗甲醇,不凝组份如氢气及一氧化碳等部分放空,大部分经循环压缩 原料气 Bkg/h 粗甲醇 Akmol/h

100kmol 放空气 体 原料气和冷凝分离后的气体组成如下:(mol) 组分原料气冷凝分离后的气体 CO 26.82 15.49 H 2 68.25 69.78 CO 2 1.46 0.82 CH 4 0.55 3.62 N 2 2.92 10.29 粗甲醇的组成为CH 3OH 89.15%,(CH 3 ) 2 O 3.55%,C 3 H 9 OH 1.10%,H 2 O 6.20%,均为 重量百分率。在操作压力及温度下,其余组分均为不凝组分,但在冷凝冷却过程中可部分溶解于粗甲醇中,对1kg粗甲醇而言,其溶解量为CO 2 9.82g,CO 9.38g,H 2 1.76g,CH 4 2.14g,N 2 5.38g。若循环气与原料气之比为7.2(摩尔比), 试计算: (1)(1)一氧化碳的单程转换率和全程转化率; (2)(2)甲醇的单程收率和全程收率。 解:(1)设新鲜原料气进料流量为100kmol/h,则根据已知条件,计算进料原料 i i i i i m i i 。 M’ m =∑y i M i =9.554 又设放空气体流量为Akmol/h,粗甲醇的流量为Bkg/h。对整个系统的N 2 作衡算 得: 5.38B/28×1000+0.1029A=2.92 (A) 对整个系统就所有物料作衡算得: 100×10.42=B+9.554A (B) 联立(A)、(B)两个方程,解之得 A=26.91kmol/h B=785.2kg/h 反应后产物中CO摩尔流量为

化学反应工程期末考试试题及答案(整理)

4?从反应器停留时间分布测定中 ,求得无因次方差「二 _ 0.98 ,反应器可视为 XXX 大学 化学反应工程 试题B (开)卷 (答案)2011 — 2012学年第一学 期 一、单项选择题: (每题2分,共20分) 1.反应器中等温进行着 A T P (1)和A T R (2)两个反应,当降低 A 的浓度后,发现反 应生成P 的量显著降低,而 R 的生成量略降低,表明 () A .反应(1)对A 的反应级数大于反应 (2) B .反应(1)对A 的反应级数小于反应 C .反应(1)的活化能小于反应 (2) D .反应(1)的反应速率常数大于反应 2 一为() 2?四只相同体积的全混釜串联操作,其无因次停留时间分布的方差值 A . 1.0 B. 0.25 C . 0.50 A (1) > A ⑶ > D . 0 P —-(2), Q 3. 对一平行一连串反应 为了目的产物的收率最大, A .先高后低 B.先低后高 C .高温操作 4. 两个等体积的全混流反应器进行串联操作, 与第二釜的反应速率-広2之间的关系为( A . -r Ai > -r A2 B . -r Ai 则最佳操作温度序列为( ,P 为目的产物,若活化能次序为:E 2

水污染控制工程课程设计

中北大学
课 程 设 计 说 明 书
学生姓名: 学 专 题 院: 业:
郭凯旋
学 号: 化工与环境学院 环境工程
0804014209
目:流量为 8000 m3/h 的城市污水 A2/O 法 脱氮除磷工艺设计
指导教师: 指导教师:
晋日亚
职称: 职称:
副教授
2011 年 5 月 27 日

中北大学
课程设计任务书
2010~2011 学年第 二 学期
学 专
院: 业:
化工与环境学院 环境工程 郭凯旋
3
学 生 姓 名:
学 号: 0804014209
2
课程设计题目:流量为 8000 m /h 的城市污水 A /O 法 脱氮除磷工艺设计 起 迄 日 期: 课程设计地点: 指 导 教 师: 系 主 任: 5 月 16 日~5 月 27 日 环境工程系 晋日亚 王海芳
下达任务书日期: 2011 年 5 月 16 日

课 程 设 计 任 务 书
1.设计目的:
通过课程设计,进一步强化水污染控制工程课程的相关知识的学习,初步掌握污水 处理中常见构筑物的设计方法、 设计步骤。 学会用 CAD 软件绘制构筑物的基本设计图纸。
2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等) :
原始数据与基本参数: 原始数据与基本参数: 设计污水流量: 8000 m3/h; z: COD: mg/L, K 1.3, 300 BOD5: 200mg/L; 170mg/L; SS: TN:20mg/L;TP:6 mg/L,水温:10~25℃,处理后二级出水 BOD5:25mg/L;SS: 30mg/L;TN<5mg/L,TP≤1 mg/L。其它参数查阅相关文献自定。 设计内容和要求: 设计内容和要求 ①计算 A2/O 法脱氮除磷的工艺参数; ②A2/O 法脱氮除磷的工艺构筑物的图纸详细设计。
3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、 实物样品等〕 :
(1)课程设计说明书一份; (2)说明书内容包括: ①A2/O 法脱氮除磷的工艺在水处理中的作用说明; ②根据给出参数对 A2/O 法脱氮除磷的工艺各部分尺寸的详细计算过程; ③设计图纸(CAD 绘图)规范,图纸包括整体图和局部图的设计,计算尺寸要在图 中相应的位置标明; ④单位要正确,参考文献必须在说明书中相应的位置标注,语言流畅、规范。 (3)工作量:两周

《化学反应工程》试题和答案基础部分

《化学反应工程》试题库 一、填空题 1. 质量传递、热量传递、动量传递和和化学反应称为三传一 反? 2. 物料衡算和能量衡算的一般表达式为输入-输出二累 积_____________ 。 3. 着眼组分A 转化率X A的定义式为 X A=( n A—n A)/ _____________ 。 4. 总反应级数不可能大于£—。 5. 反应速率-r A=kC A C B的单位为kmol/(m3? h).速率常数k的因次为 nV(kmol ? h ) 。 6. 反应速率-r A=kC A的单位为kmol/kg ? h.速率常数k的因次为mVkg ? h 。 7. 反应速率.kc A/2的单位为mol/L ? s.速率常数k的因次为 (mol) 1/2? L-1/2? s 。 8. 反应速率常数k与温度T的关系为lnk 10000 102.其活化能为 T mol 。 9. 某反应在500K时的反应速率常数k是400K时的103倍.则600K

时的反应速率常数k时是400K时的10 5倍。 10. 某反应在450C时的反应速率是400C时的10倍.则该反应的活化 能为(设浓度不变)mol 。 11. 非等分子反应2SO+Q==2SQ的膨胀因子sq等于________ 。 12. 非等分子反应N2+3H2==2NH的膨胀因子H2等于-2/3 。 13. 反应N b+3H2==2NH中(& )= 1/3 (仏)二1/2 扁3 14. 在平推流反应器中进行等温一级不可逆反应.反应物初浓度为G°. 转化率为X A.当反应器体积增大到n倍时.反应物A的出口浓度为 C A0(1-X A)n . 转化率为1-(1- X A”。 15. 在全混流反应器中进行等温一级不可逆反应.反应物初浓度为C A0. 转化率为X A.当反应器体积增大到n倍时.反应物A的出口浓度为 匚些.转化率为nxA—。 1 (n 1)X A 1 (n 1)X A 16. 反应活化能E越大.反应速率对温度越敏感。 17. 对于特定的活化能.温度越低温度对反应速率的影响越大。 18. 某平行反应主副产物分别为P和S选择性S的定义为(n P-g)/ (n s- n s0)

化学反应工程期末考试试题及答案

《化学反应工程》试题 XXX大学化学反应工程试题B(开)卷 (答案)2011—2012学年第一学期 一、单项选择题:(每题2分,共20分) 1.反应器中等温进行着A→P(1)和A→R(2)两个反应,当降低A的浓度后,发现反应生成P的量显著降低,而R的生成量略降低,表明(A ) A.反应(1)对A的反应级数大于反应(2) B.反应(1) 对A的反应级数小于反应(2) C.反应(1)的活化能小于反应(2) D.反应(1)的反应速率常数大于反应(2) 2.四只相同体积的全混釜串联操作,其无因次停留时间分布的方差值为( B ) A. 1.0 B. 0.25 C.0.50 D.0 3.对一平行—连串反应,P为目的产物,若活化能次序为:E2 -r A2 B.-r A1 = -r A2 C.-r A1 < -r A2 D.不能确定何者为大 5. 已知一闭式反应器的,该反应器若用多釜串联模型来描述,则模型参数N为( B )。 A. 4.5 B. 5.6 C.3.5 D.4.0 6.固体催化剂之所以能起催化作用,是由于催化剂的活性中心与反应组分的气体分子主要发生( C)。 A.物理吸附 B.化学反应 C.化学吸附 D.质量传递 7.包括粒内微孔体积在内的全颗粒密度称之为( B ) A.堆(积)密度 B.颗粒密度 C.真密度 D.平均密度 8.在气固催化反应动力学研究中,内循环式无梯度反应器是一种( C )。 A.平推流反应器 B. 轴向流反应器 C. 全混流反应器 D. 多釜串联反应器 9.某液相反应,其反应式可写成A+C R+C这种反应称为(B ) A.均相催化反应 B.自催化反应 C.链锁反应 D.可逆反应 10.高径比不大的气液连续鼓泡搅拌釜,对于其中的气相和液相的流动常可近似看成( B ) A.气、液均为平推流 B.气、液均为全混流 C.气相平推流、液相全混流 D.气相全混流、液相平推流 二、填空题(每题5分,共30分) 1.一不可逆反应,当反应温度从25℃升高到35℃时,反应速率增加一倍,则该反应 的活化能为 52894 J/mol 。

化学工程与工艺专业培养方案

化学工程与工艺专业培养方案 (工学,化学工程与工艺,081301) 一、培养目标 以国家建设和社会需求为导向,本专业培养具有高度的社会责任感和良好的职业道德,良好的人文社会科学素养和健康的身心素质,具备化学、化学工程与技术及相关学科的基础知识,基本理论和基本技能,具有较强的工程实践能力和创新意识的高素质应用型工程技术人才。毕业后可在化工、能源、资源、冶金、材料、轻工、医药、食品、环保和军工等部门从事工程设计、技术开发、生产运行与技术管理等工作。 二、培养要求 本专业培养的基本要求是所培养的学生能够适应科技进步和社会发展需要,适应改革开放和社会主义经济建设需要,除了掌握扎实的化工基础及专门知识以外,还要熟悉与该化工领域有关的一个专业方向知识。本专业设高分子化工和能源化工两个方向。其中高分子化工方向应具有扎实的高分子合成、加工与管理的相关知识、能力和素质;能源化工方向应具有较强的能源与环境等方面的知识、能力和素质。 三、培养标准 本专业的培养规格分为知识、能力与素质三大方面,共计15条培养标准。 1. 知识要求 (1)具有较扎实的数学和自然科学基础,了解现代物理、信息科学、环境科学、心理学的基本知识,了解当代科学技术发展的其他主要方面和应用前景; (2)熟练掌握一门外国语;掌握现代计算机技术应用与编程,具有应用计算机技术进行工程表达的能力; (3)掌握化学工程、化学工艺学科的基本理论、基本知识和工程基础知识,受到化学与化工实验技能、工程实践、计算机应用、科学研究与工程设计方法的基本训练; (4)具有一定人文、社会科学基础、科学文献检索和文学表述能力;

识,对本专业范围的科学技术新发展及其动向有一般的了解。 2.能力要求 (1)具有较强的自学能力、具有综合应用各种手段(包括外语)查取资料、获取信息的基本能力;具有应用语言、文字、图件进行工程表达和交流的基本能力;至少掌握一门计算机高级语言,具有计算机应用、主要测试和试验仪器使用的基本能力; (2)具有本专业所必须的实验、测试、计算机应用等技能,掌握化工装置工艺与设备的设计方法、化工过程模拟优化方法,具有对新工艺、新技术、新设备、新产品进行研究、开发、设计和模拟放大的初步能力; (3)具有较强开拓创新精神,初步掌握一门外语,能比较熟练地阅读本专业外文书刊,了解本学科国际前沿性的科学技术最新发展动态,具有一定的创新性思维和科技研究能力; (4)具有综合应用知识的能力,能够进行化工设计、应用和管理;经过一定环节的训练后,具有初步的科学研究或技术研究、应用开发等创新能力; (5)具有综合应用各种手段(包括外语)查询资料、获取信息、拓展知识领域、继续学习的能力。 3.素质要求 (1)热爱社会主义祖国,拥护中国共产党的领导,掌握马列主义、毛泽东思想和邓小平理论的基本原理;愿为社会主义现代化建设服务、为人民服务;有为国家富强、民族昌盛而奋斗的志向和责任感;具有敬业爱岗、艰苦求实、热爱劳动、遵纪守法、团结合作的品质;具有良好的思想品德、社会公德和职业道德; (2)热爱本专业,比较系统地掌握本专业所必需的自然科学基础与技术科学基础的理论知识,具有一定的专业知识和相关的工程技术知识和技术经济、工业管理知识,对本专业学科范围内的科学技术新发展及其动向有一般了解; (3)具有较好的文化素质和心理素质以及一定的修养。积极参加社会实践,走正确的成长道路,受到必要的军事训练,能够同群众结合,理论联系实际,实事求是,热爱劳动;

《化学反应工程》试题及答案

《化学反应工程》试题 一、填空题 1. 质量传递 、 热量传递 、 动量传递 和化学反应 称为三传一 反. 2. 物料衡算和能量衡算的一般表达式为 输入-输出=累 积 。 3. 着眼组分A 转化率x A 的定义式为 x A =(n A0-n A )/n A0 。 4. 总反应级数不可能大于 3 。 5. 反应速率-r A =kC A C B 的单位为kmol/m 3·h ,速率常数k 的因次为 m 3/kmol ·h 。 6. 反应速率-r A =kC A 的单位为kmol/kg ·h ,速率常数k 的因次为 m 3/kg ·h 。 7. 反应速率2 /1A A kC r =-的单位为mol/L ·s ,速率常数k 的因次为 (mol)1/2·L -1/2·s 。 8. 反应速率常数k 与温度T 的关系为2.1010000lg +-=T k ,其活化能为 mol 。

9. 某反应在500K 时的反应速率常数k 是400K 时的103倍,则600K 时的反应速率常数k 时是400K 时的 105 倍。 10. 某反应在450℃时的反应速率是400℃时的10倍,则该反应的活 化能为(设浓度不变) mol 。 11. 非等分子反应2SO 2+O 2==2SO 3的膨胀因子2 SO δ等于 。 12. 非等分子反应N 2+3H 2==2NH 3的膨胀因子2 H δ等于 –2/3 。 13. 反应N 2+3H 2==2NH 3中(2 N r -)= 1/3 (2 H r -)= 1/2 3 NH r 14. 在平推流反应器中进行等温一级不可逆反应,反应物初浓度为 C A0,转化率为x A ,当反应器体积增大到n 倍时,反应物A 的出口浓度 为 C A0(1-x A )n ,转化率为 1-(1-x A )n 。 15. 在全混流反应器中进行等温一级不可逆反应,反应物初浓度为 C A0,转化率为x A ,当反应器体积增大到n 倍时,反应物A 的出口浓度 为 A A x n x )1(11-+-,转化率为A A x n nx )1(1-+。 16. 反应活化能E 越 大 ,反应速率对温度越敏感。 17. 对于特定的活化能,温度越低温度对反应速率的影响越 大 。 18. 某平行反应主副产物分别为P 和S ,选择性S P 的定义为 (n P -n P0)/ (n S -n S0) 。

化学反应工程期末考试真题

化学反应工程原理 一、选择题 1、气相反应 CO + 3H 2 CH 4 + H 2O 进料时无惰性气体,CO 与2H 以1∶2摩尔比进料, 则膨胀因子CO δ=__A_。 A. -2 B. -1 C. 1 D. 2 2、一级连串反应A S K 1 K 2 P 在间歇式反应器中,则目的产物P 的最大浓度=m ax ,P C ___A____。 A. 1 22 )(210K K K A K K C - B. 2 2/1120 ]1)/[(+K K C A C. 122 )(120K K K A K K C - D. 2 2/1210]1)/[(+K K C A 3、串联反应A → P (目的)→R + S ,目的产物P 与副产物S 的选择性 P S =__C_。 A. A A P P n n n n --00 B. 0 A P P n n n - C. 0 0S S P P n n n n -- D. 0 0R R P P n n n n -- 4、全混流反应器的容积效率η=1.0时,该反应的反应级数n___B__。 A. <0 B. =0 C. ≥0 D. >0 5 、对于单一反应组分的平行反应A P(主) S(副),其瞬间收率P ?随A C 增大而单调下降,则最适合的反应器为 ____B__。 A. 平推流反应器 B. 全混流反应器 C. 多釜串联全混流反应器 D. 全混流串接平推流反应器 6、对于反应级数n >0的不可逆等温反应,为降低反应器容积,应选用____A___。 A. 平推流反应器 B. 全混流反应器 C. 循环操作的平推流反应器 D. 全混流串接平推流反应器 7 、一级不可逆液相反应 A 2R ,3 0/30.2m kmol C A =, 出口转化率 7.0=A x ,每批操作时间 h t t 06.20=+,装置的生产能力为50000 kg 产物R/天,R M =60,则反应器的体积V 为_C_3 m 。 A. 19.6 B. 20.2 C. 22.2 D. 23.4 8、在间歇反应器中进行等温一级反应A → B , s l mol C r A A ?=-/01.0,当l mol C A /10=时,求反应至 l mol C A /01.0=所需时间t=____B___秒。 A. 400 B. 460 C. 500 D. 560 9、一级连串反应A → P → S 在全混流釜式反应器中进行,使目的产物P 浓度最大时的最优空时 = opt τ_____D__。 A. 1 212) /ln(K K K K - B. 1 221)/ln(K K K K - C. 2 112)/ln(K K K K D. 2 11K K 10、分批式操作的完全混合反应器非生产性时间0t 不包括下列哪一项____B___。

化学反应工程总结

、绪论 1. 研究对象是工业反应过程或工业反应器 研究目的是实现工业反应过程的优化 2. 决策变量:反应器结构、操作方式、工艺条件 3. 优化指标一一技术指标:反应速率、选择性、能耗 掌握转化率、收率与选择性的概念 4. 工程思维方法 1. 反应类型:简单反应、自催化、可逆、平行、串联反应 基本特征、分析判断 2. 化学反应速率的工程表示 3. 工业反应动力学规律可表示为: r i f c (G ) f T (T ) a )浓度效应——n 工程意义是:反应速率对浓度变化的敏感程 度。 b )温度效应——E 工程意义是:反应速率对温度变化的敏感程 度。 E ---- cal/mol , j/mol T ----- K R = 1.987cal/mol.K = 8.314 j/mol.K 化学反应动力学 反应速率= 反应量 (反应时间)(反应 已知两个温度下的反应速率常数 k , 可以按下式计算活化能 工程问题 动力学问题

三、PFR与CSTR基本方程 1.理想间歇:t V R V o c Af dC A CA0( J ) x Af dx A XA0( J ) 2.理想PFR V R V o C Af dc A C A0 ( J) C A0 x Af dx A x A 0(「A) 3. CSTR 4. 图解法 V R C A0 C A C A0X A T /C A0 0 X Af X A 四、简单反应的计算 n=1,0,2级反应特征C A C A0(1 X A)浓度、转化率、反应时间关系式 基本关系式PFR(间歇)CSTR V R C Af dC A V R C A0 C A p V。C A0 (:)m v (「A) PFF H CSTR CSTR>PFR C A0X A k p C A0 X A k p n=0 n=1 n=2 C A0 kC A . 11 k p 丁 C A C A0 k p 1吒C A0

化工反应工程反应器课程设计

化学反应工程课程设计题目年产80000t乙酸乙酯间歇釜式反应器设计系别化学与化工学院 专业应用化学 学生姓名 学号年级 指导教师职称副教授 2013 年 6 月20 日

一、设计任务书及要求 1.1设计题目 80000t/y 乙酸乙酯反应用间歇釜式反应器设计 1.2设计任务及条件 (1)反应方程式: )()()()(2523523S O H R H C O O C CH B OH H C A COOH CH +?+ (2)原料中反应组分的质量比:A :B :S=1:2:1.35。 (3)反应液的密度为1020kg/3m ,并假设在反应过程中不变。C 100?时被搅拌液体物料的物性参数为: 比热容为13.124-??=K mol J C p ,导热系数()C m W ??=/325.0λ,黏度 s Pa .101.54-?=μ。 (4)生产能力:80000t/y 乙酸乙酯,年生产8000小时,,每小时生产10t,乙酸的转化率为40℅。每批装料、卸料及清洗等辅助操作时间为1h 。 (5)反应在100℃下等温操作,其反应速率方程如下: ()K c c c c k r S R B A A /1-= 100℃时,min)./(1076.441mol L k -?=,平衡常数K =2.92。反应器填充系数可取0.70-0.85。乙酸乙酯相对分子质量88;乙酸相对分子质量60;乙醇相对分子质量46;水相对分子质量18。 (6)最大操作压力为10.4P MPa =。加热的方式为用夹套内的水蒸汽进行电加热。 1.3设计内容 1、物料衡算及热量衡算; 2、反应器体积计算及高径比、直径等参数确定; 3、反应搅拌器设计; 4、其他配件; 5、带管口方位图的设备条件图绘制(不用绘制零件图,不用达到设备装配图水平); 6、设计体会;

相关文档
最新文档