混凝土弹塑性本构关系

第四章 弹塑性体的本构理论

第二部分弹塑性问题的有限元法 第四章弹塑性体的本构理论 第五章弹塑性体的有限元法 第四章弹塑性体的本构理论 4-1塑性力学的基本内容和地位 塑性力学是有三大部分组成的:1) 塑性本构理论,研究弹塑性体的应力和应变之间的关系;2) 极限分析,研究刚塑性体的应力变形场,包括滑移线理论和上下限法;3) 安定分析,研究弹塑性体在低周交变载荷作用下结构的安定性问题。 塑性力学虽然是建立在实验和假设基础之上的,但其理论本身是优美的,甚至能够以公理化的方法来建立整个塑性力学体系。 塑性力学是最简单的材料非线性学科,有很多其它更复杂的学科,如损伤力学、粘塑性力学等,都是借用塑性本构理论体系而发展起来的。 4-2关于材料性质和变形特性的假定 材料性质的假定 1)材料是连续介质,即材料内部无细观缺陷; 2)非粘性的,即在本构关系中,没有时间效应; 3)材料具有无限韧性,即具有无限变形的可能,不会出现断裂。 常常根据材料在单向应力状态下的σ-ε曲线,将弹塑性材料作以下分类: 硬化弹塑性材料 理想弹塑性材料

弹塑性本构理论研究的是前三种类型的材料,但要注意对于应变软化材料,经典弹塑性理论尚存在不少问题。 变形行为假定 1) 应力空间中存在一初始屈服面,当应力点位于屈服面以内时,应力和应变增量的是线性的;只有当应力点达到屈服面时,材料才可能开始出现屈服,即开始产生塑性变形。因此初始屈服面界定了首次屈服的应力组合,可表示为 ()00=σf (1) 2) 随着塑性变形的产生和积累,屈服面可能在应力空间中发生变化而产生后继屈服面,也称作加载面。对于硬化材料加载面随着塑性变形的积累将不断扩张,对于理想弹塑性材料加载面就是初始屈服面,它始终保持不变,对于软化材料随着塑性变形的积累加载面将不断收缩。因此加载面实际上界定了曾经发生过屈服的物质点的弹性范围,当该点的应力位于加载面之内变化时,不会产生新的塑性变形,应力增量与应变增量的关系是线性的。只有当应力点再次达到该加载面时,才可能产生新的塑性变形。 软化弹塑性材料 刚塑性材料

弹塑性本构关系的认识及其在钢筋混凝土中的应用浅谈_塑

弹塑性本构关系的认识及其在钢筋 混凝土结构中的应用浅谈 摘要:本文首先对弹塑性本构关系和钢筋混凝土材料的本构模型作了简要概述,然后结合上课所学知识和自己阅读的几篇文章,从材料的屈服准则、流动准则、硬化准则和加载卸载准则等四个方面详细阐述了弹塑性本构关系。最后,结合上述准则简要论述了混凝土这一常用材料在地震作用下的弹塑性本构关系。 关键词:弹塑性本构关系,钢筋混凝土,地震 Understanding of Elastoplastic Constitutive Relation and a Brife Talk of Its Aapplication to Reinforced Concrete Structure Abstract:This paper firstly makes a brief overview about elastoplastic constitutive relation and reinforced concrete constitutive model. Then,elaborating the elastoplastic constitutive relation from the four aspects of material yield criterion,flow rule,hardening rule,loading and unloading criterion based on what I have learned in class and reading from a few articles. Lastly,a simply introduction on the elastoplastic constitutive of reinforced concrete under earthquake is demonstrated. Keywords:elastoplastic constitutive relation; reinforced concrete structure; earthquake 1 引言 钢筋混凝土结构材料的本构关系对钢筋混凝土结构有限元分析结果有重大的影响,如果选用的本构关系不能很好地反映材料的各项力学性能,那么其它计算再精确也无法反映结构的实际受力特征。所谓材料的本构关系,主要是指描述材料力学性质的数学表达式。用什么样的表达式来描述材料受力后的变化规律呢?不同的学者根据材料的性质、受力条件和大小、试验方法以及不同的理论模型等因素综合考虑,建立了许多种钢筋混凝土材料的本构关系表达式。 材料的本构关系所基于的理论模型主要有:弹性理论、非线性弹性理论、弹塑性理论、粘弹性理论、粘弹塑性理论、断裂力学理论、损伤力学理论、内时理论等。迄今为止,由于钢筋混凝土材料的复杂因素,还没有一种理论模型被公认为可以完全描述钢筋混凝土材料的

使用纤维模型做桥梁的动力弹塑性分析

使用纤维模型做桥梁的动力弹塑性分析 北京迈达斯技术有限公司 2004.12

目 录 1.概要 2.纤维单元的特性 3.桥梁资料 4.建立结构模型 5.定义纤维单元 6.结构的非线性特性 7.定义时程分析数据 8.运行结构分析 9.定义分析结果函数 10.查看分析结果

使用纤维单元做预应力桥梁的动力弹塑性分析 1. 概要 纤维单元是将梁单元截面分割为许多只有轴向变形的纤维的模型,使用纤维模型时 可利用纤维材料的应力-应变关系和截面应变的分布形状假定较为准确地截面的弯 矩-曲率关系,特别是可以考虑轴力引起的中和轴的变化。但是因为使用了几种理 想化的骨架曲线(skeleton curve)计算反复荷载作用下梁的响应,所以与实际构件 的真实响应还是有些误差。 MIDAS/Civil中的纤维模型使用了下面的几个假定。 ?截面的变形维持平截面并与构件轴线垂直。 ?不考虑钢筋与混凝土之间的滑移(bond-slip)。 ?梁单元截面形心的连线为直线 通过下面例题,介绍使用纤维单元做动力弹塑性分析的步骤。 因为本例题说明侧重于利用纤维单元做动力弹塑性分析的介绍,所以省略了前期建 模的过程,并认为用户已经熟练掌握了MIDAS/Civil的建模方法。 本例题模型为三维预应力梁桥的实际桥梁模型(2002年11月建,韩国),但为了说明 上的便利,进行了一些简化处理,最后的结果有可能与实际设计稍有差异。 MIDAS/Civil中使用纤维单元做动力弹塑性分析的步骤如下: 1.定义纤维模型的材料特性 2.定义纤维模型的截面特性 3.定义并分配构件的非弹性铰特性 4.输入动力弹塑性时程分析数据 5.运行分析 6.定义分析结果函数 7.检查并验算分析结果 1

相关文档
最新文档