步进电机控制器--

步进电机控制器--
步进电机控制器--

电机,伺服电机可编程控制器AKS-01Z使用说明

一、系统特点

●控制轴数:单轴;

●指令特点:任意可编程<可实现各种复杂运行:定位控制和非定位控制);

●最高输出频率:40KHz(特别适合控制细分驱动器>;

●输出频率分辨率:1Hz;

●编程条数:99条;

●输入点:6个<光电隔离);

●输出点:3个<光电隔离);

●一次连续位移范围:—7999999~7999999;

●工作状态:自动运行状态,手动运行状态,程序编辑状态,参数设定状态;

●升降速曲线:2条<最优化);

●显示功能位数:8位数码管显示、手动/自动状态显示、运行/停止状态显示、步数/计数值/程序显示、编辑程序,参数显示、输入/输出状态显示、CP脉冲和方向显示;

●自动运行功能:可编辑,通过面板按键和加在端子的电平可控制自动运行的启动和停止;

●手动运行功能:可调整位置<手动的点动速度和点动步数可设定);

●参数设定功能:可设定起跳频率、升降速曲线、反向间隙、手动长度、手动速度、中断跳转行号和回零速度;

●程序编辑功能:可任意插入、删除可修改程序。具有跳转行号、数据判零、语句条数超长和超短的判断功能;

●回零点功能:可双向自动回到零点;

●编程指令:共14条指令;

●外操作功能:通过参数设定和编程,在A操作和B操作端子上加开关可执行外部中断操作;

●电源:AC220V<电源误差不大于±15%)。

一、前面板图

前面板图包括:

1、八位数码管显示

2、六路输入状态指示灯

3、三路输出状态指示灯

4、 CP脉冲信号指示灯

5、 CW方向电平指示灯

6、按键:共10个按键,且大部分按键为复合按键,他们在不同状态表示的功能不同,下面的说明中,我们只去取功能之一表示按

键。

后面板图及信号说明:

后面板图为接线端子,包括:

1、 CP、CW、OPTP为步进电机驱动器控制线,此三端分别连至驱动器的相应端,其中:

CP————步进脉冲信号

CW————电机转向电平信号

OPTO————前两路信号的公共阳端

CP、CW的状态分别对应面板上的指示灯

2、启动:启动程序自动运行,相当于面板上的启动键。

3、停止:暂停正在运行的程序,相当于面板上的停止键,再次启动后,程序继续运行。

4、 A操作和B操作是本控制器的一大特点:对于步进电机,我们一般进行定量定位控制,如控制电机以一定的速度运行一定的位移这种方式很容易解决,只需把速度量和位移量编程即可。但还有相当多的控制是不能事先定位的,例如控制步进电机从起始点开始朝一方向运行,直到碰到一行程开关后停止,当然再反向运行回到起始点。再例如要求步进电机在两个行程开关之间往复运行n 次,等等。在这些操作中,我们事先并不知道步进电机的位移量的具体值,又应当如何编程呢?本控制器利用:“中断操作”,我们称之为“A操作”和“B操作”。以“A操作”为例,工作流程为:当程序在运行时,如果“A操作”又信号输入,电机作降速停止,程序在此中断,程序记住了中断处的座标,程序跳转到“A操作”入口地址所指定的程序处运行程序。

5、输入1和输入2通过开关量输入端。

6、输出1、输出2和输出3通过开关量输出端。

7、C OM+、COM—输入输出开关量外部电源,本电源为DC12V/0.3A,COM+为正端,COM—为负端,此电源由控制器内部隔离提供。

8、 ~220V控制器电源输入端。

输入信号和输出信号接口电路:

本控制器的“启动”、“停止”、“A操作”、“B操作”、“输入1”、“输入2”为输入信号,他们具有相同的输入接口电路。“输出1”、“输出2”、“输出3”称为输出信号。他们具有相同的输出接口电路。输入和输出电路都有光电隔离,以保证控制器的内部没有相互干扰,控制器内部工作电源(+5V>和外部工作电源<+12V)相互独立,并没有电联系,这两组电源由控制器内部变压器的两个独立绕组提供。

开关量输入信号输出信号的状态,分别对应面板上的指示灯。对于输入量,输入低电平<开关闭合时)灯亮,反之灯灭;对于输出量,输出0时为低电平,指示灯灭,反之灯亮。

开关量输入电路:

开关量输出电路:

三,控制器联接示意图:

四、操作流程图:

控制器总是工作在四种状态之一:自动状态、手动状态、程序编辑状态、参数设定状态。上电或按[复位]后,控制器处于自动待运行状态且使坐标于零点,这时可以启动程序自动运行或切换到手动状态,程序编辑状态和参数设定状态只能在手动状态下切换。程序编辑完成或参数设定完成后,按[退出]键退回到手动状态<程序将自动被保护)。在手动状态下,如要切换到程序编辑状态,只需按[编辑]键,如要切换到参数设定状态,需按[编参]键2秒以上。

<注:上述所说的按键[编辑]、[编参]、[退出]其实是同一个按键,由三个功能复合,我们介绍某一功能时,按键的名字只取其一,下同)

五,参数设定:

参数设定状态的进出方式为:在手动状态下,按住[编参]键2秒以上,直到进入参数设定状态后才能松开。参数设定完成后按[退出]键返回到手动状态<参数将被自动保护)。

参数分两行显示,第一行显示参数的名称,第二行显示参数数据。

参数修改方式:进入参数设定状态后,首先显示第一行[JF-------]。且前2位的参数名称闪动显示:如按[∧]、[∨],将会显示下一个或上一个参数名称。如按[回车]键,将进入<下一行)参数数据的编辑修改状态,这时数据的第一位闪动显示,如按[∧]、[∨],数据将被改变。如按[<]、[>]键,将移至下一位进行修改,如此类推。数据修改后,按[回车]确认,按[取消]放弃修改。

总之,参数的设定通过[∧]、[∨]、[<]、[>]、[回车]、[取消]六个按键完成的:通过移动左右键使光标移至相应位上,这时数码将跳动显示,再通过上下键改变数值;用回车键进入数据修改状态,数据修改完成后,再用回车键确认退出或用取消键放弃修改。请参考《操作流

一、程序编辑及指令详解:

程序编辑状态的进出方式为:在手动状态下,按[编辑]键。即可进入到程序编辑状态。程序编辑完成后,按[退出]键返回到手动状态<参数将自动保存)。

本控制器的程序区最多可以编辑99条指令,程序中每一条指令有一个行号。行号为自动编号,从00开始按顺序排列,您可以在程序中插入或删除某行,但行号会重新分配。

程序格式是:每一条程序分两行显示<无参数程序除外),第一行显示行号和指令名称,第二行显示指令数据。程序的最后一条指令固定为“END”。

总之,程序的修改通过[∧]、[∨]、[<]、[>]、[插入]、[删除]、[回车]、[取消]八个键来完成;通过移动左右键使光标移至相应位上,这时数码将跳动显示,再通过上下键改变数值:用回车键进入数据修改状态,数据修改完成后,再用回车键确认退出或用取消键放弃修改。请参与《操作流程速度表》。

二、手动运行方式:

在自动状态下按[自动/手动]将进入手动状态,前二位数码管将显示为┥┝,以表示为手动状态。按

[>]或[<],电机将按不同的方向手动运行,手动运行的位移量和速度由参数庙宇状态下的HL和HF值决定,请参考“控制器操作流程图”。

三、自动运行方式:

控制器上电或按复位键后,自动使坐标值清零,并以此作为坐标零点,在把上一次的手动存盘的计数器的值调入计数器单元,然后处于自动待运行状态,按[启动]键或从端子上输入启动信号后,控制器将从第00行程序开始运行,直至运行到最后一条程序END,这时自动运行结束,控制器返回自动待运行状态。请参考“控制器操作流程图”

在自动状态下,又有3种不同的子状态:

1、自动待运行状态,表示控制器准备运行程序,只需按[启动]键或端子上输入启动信号即可,程序完成运行后也将处于此状态;

2、自动运行状态,表示控制器正在运行程序;

3、自动运行停止状态,表示控制器正在运行程序时被[停止]键或端子上输入的停止信号中断运行程序将在断点处等待再次被启动。

在自动状态下,又有三种不同的显示方式:<通过按同一个键[步数]、[计数]、[∧]进行切换)

1、步数显示方式:控制器显示当前的坐标值,单位:脉冲数;

2、计数显示方式:控制器显示当前计数器单元的计数值,单位:个数;

3、程序显示方式:控制器显示当前所处的程序行及程序名。

四、外形尺寸及安装尺寸:

本控制器采用嵌入仪表外壳,体积小重量轻<500G),前面板为71MM*71MM的方形,长度为120MM,具体尺寸见下图:

十一、编辑及应用举例:

例一:

参数要求:起跳频率2.5KHZ,升降速较快,间隙补偿为0。

运行要求:以2.9KHZ的速度运行98765步,再以15KHZ的速度反向运行8765步,停止。

参数清单:<进入参设定状态修改)JF=02500,rS=H,CC=0000。

清序清单:<进入程序编辑状态)

00 SPEED 02900 ;给下面的运行赋值速度2.9KHZ

01 G-LEN 00098765 ;电机正向运行98765步

02 SPEED 15000 ;给下面的运行赋值速度15KHZ

03 G-LEN -0008765;电机反向运行8765步

04 END ;程序结束

例二:

参数要求:起跳频率2.5KHZ,升降速较慢。间隙补偿为12;

运行要求:启动时要求蜂鸣器响一短声后以39KHZ的速度运行1234567步,使3个输出量为101状态,延时55.9秒后使后二位输出状态为11,程序在此处暂停,直到再次启动后使用电机以同样的速度返回起始点的另一侧第888步的位置,到位后发出一长声通知,结束。

参数清单:<进入参数设定状态修改)JF=02500,rS=L,CC=0012。

程序清单:<进入程序编辑状态)

00 OUT nnno ;使蜂鸣器响一短声

01 SPEED 39000 ;给下面的运行赋值速度39KHZ

02 G-LEN 01234567 ;电机正向运行1234567步

03 OUT 101n ;使3个输出量为101状态

04 DELAY 0055900 ;延时55.9秒

05 OUT n11n ;使后二位输出状态为11

06 PAUSE ;程序在此处暂停

07 GOTO-0000888 ;电机返回起始点的另一侧第888步的位置

08 OUT nnn1 ;使蜂鸣器响一长声

09 END ;程序结束

例三:

运行要求:<参数设定省略)有一物体,从零点以2.9KHZ的速度向前运行100步<此点作为物体的参考点);在参考点停止后输出010;检测输入位,若INI=0,电机同速度返回零。若INI≠0,电机以15KHZ的速度再向前运行10000步后使蜂鸣器短声报警;再以35KHZ的速度返回参考点。若这时INI=0,则返回零点,否则继续按第一次的方式循环,以此类推。要求返回零点后,蜂鸣器响长声报警。

程序清单:<进入程序编辑状态)

00 SPEED 02900 ;给下的运行赋值速度2,9KHZ

01 G-LEN 00000100 ;电机向前运行100步

02 OUT 010n ;使输出状态为010

03 SPEED 15000 ;INI≠0,则赋值新的速度15KHZ

04 G-LEN 00010000 ;再向前运行1000步

05 OUT nnn0 ;使蜂鸣器短声报警

06 SPEED 35000 ;给下面返回参考点的运行赋值速度35KHZ

07 GOTO 00000100 ;电机以15KHZ速度返回参考点

08 LOOP 03 00000 ;电机作无限循环,直到INI=0才返回零点

09 SPEED 02900 ;赋值返回零点的速度2.9KHZ

10 GOTO 00000000 ;电机以2.9KHZ速度返回零点

11 OUT nnn1 ;返回零点后蜂鸣器长声报警

12 END ;程序结束

例四:

运行要求:<参数设定省略)某一物体从零点处以高速39KHZ向前运行直到碰到前方的行程开关,再同速返回至零点处,结束。<假设此系统的起跳频率为500HZ,零点至接近开关的距离大于100000步,小于100010)。

设计分析:此运动的位移量并不知道其精确值,而只是知道一个大概范围<属于未知变量控制)。我们采用中断操作解决这一问题。我们把行程开关连接至A操作端口,因为中断操作时电机降速停止,如果以高速直接运行至行程开关,必然会关生过冲,为了避免过冲,我们采用先高速后低速<低速低于起跳频率)。

参数设定:<进入参数设定状态改变)设定A操作入口地址nA=04,其他参数略。

程序清单:<进入程序编辑状态)

00 SPEED 39000 ;赋值速度39KHZ

01 G-LEN 0099000 ;先高速接近,但不能碰上行程开关

02 SPEED 00400 ;低速值频率要低于起跳频率

03 G-LEN 07999999 ;任意设置一个大位移量去接确行程开关

04 SPEED 39000 ;A操作入口,赋值回零速度39KHZ

05 GO-AB —A ;按反方向,运行相同位移量,回零

06 END ;程序结束

例五:

运行要求:<参数设定省略)某一物体在两个行程开关之间

设计分析:因为起始位置为坐标零点,假设零点至B点为正位移、零点到A为负位移,此运动和例四一样属于未知变量控制。

参数设定:<进入参数设定状态)设定A操作入口地址n4=03、B操作入口地址n8=09,其他参数略。

程序清单:<进入程序编辑状态录入程序,运行程序前,把控制器设定为计数显示方式)

00 CNT-0 ;计数器清零

01 SPEED 00400 ;赋值速度400HZ<低于起跳频率500HZ,以保证在行程开关处不过冲)

02 G-LEN —7999999 ;先以低速向A运动,直到碰到行程开关A

03 CNT-1 ;A操作入口,讲数器加1

04 J-CNT 00 800 ;往复次数到800次,转移;不到800次,运行下一条指令

05 SPEED 20000 ;赋值速度20KHZ

06 G-LEN 0099000 ;以高速20KHZ向B点运行

07 SPEED 00400 ;低速值要低于起跳频率

08 G-LEN 07999999 ;快到B点时,改为低速去接触B点行程开关

09 SPEED 20000 ;B操作入口,赋值速度20KHZ

10 G-LEN —0099000 ;以高速20KHZ向A点运行

11 SPEED 00400 ;低速值要低于起跳频率

12 G-LEN —07999999 ;快到A点时,改为低速去接触A点行程开关

13 OUT NNN1 ;往复次数己到800次,蜂鸣器长声报警

14 END ;程序结束

例六:一台AKS-01Z控制器分时控制二台步进电机控制器

运行要求:二台步进电机不同时工作,1 # 电机以7KHZ的速度运行7777步,停止1秒后,2 # 电机以8KHZ的速度运行8888步,停止5秒,再分别以9KHZ的速度返回零点,结束。

设计分析:因为二台步进电机不同时工作,我们可以用一个单刀双掷小继电器来切换CP脉冲,如果要求切换很快,可以选用电子开关。用控制器的输出口

参数设定:<进入参数设定状态)本例省略。

示意图

程序清单:

00 OUT ONNN ;把CP信号切换至1#电机<本例用OUT1作为切换控制端)

01 SPEED 07000 ;为1#电机赋值速度7KHZ

02 G-LEN 777 ;1#电机运行777步

03 OUT 1NNN ;先把CP信号切换至2#电机

04 DELAY 1000 ;再延时1秒

05 SPEED 08000 ;为2#电机赋值速度8KHZ

06 G-LEN 8888 ;2#电机运行8888步

07 OUT 0NNN ;把CP信号切换至1#电机

08 DELAY 5000 ;延时5秒

09 SPEED 09000 ;为1#和2#电机赋值回零速度9KHZ

10 G-LEN —7777 ;1#电机先回零

11 OUT 1NNN ;把CP信号切换至2#电机

12 DELAY 0500 ;延时0。5秒<主要考虑继电器切换时间)

13 G-LEN —8888 ;2#电机回零

14 END ;程序结束

例七:AKS-01Z——更先进的自动制袋机控制器

系统配置:AKS-01Z控制器二相步进电机130BYG250A、驱动器、可选配AC220A隔离变压器。压轮周长200MM。

操作面板除了AKS-01Z以外,还配有:1、有效/无效按键<为自锁按键):当此键按下后才能启动电机运行;在此键抬起状态,即使有光电开关信号,电机也不动作。2、印刷/定长选择按键<为自锁按键):按下为印刷方式;抬起为定长方式。

运行要求:我们以袋长500MM为例,在定长方式下,每启动一次,高速运行500MM。在印刷方式下,每启动一次,先高速运行480M M,再改为低速运行去寻找色标,找到色标立即停车。如果运行了510MM,仍未找到色标,则认为是故障运行,马上停

车报警<短声100次)。另外要求切纸5万张,则长声报警10次。这时计数器需清零重新开始。在控制按键中,有计数器

清零按键[∨]和计数器存储键[>],可随时使用。

设计分析:以二相电机为例,使驱动器工作在20细分状态,这时的步距角为0。09度,脉冲当量为:每毫M20个CP脉冲。

参数设定:<进入参数设定状态)

JF=1000,RS=H,CC=0,HL=10,HF=1000,BF=1000,NA=12,NB=00上述参数可以根据具体的制袋机有所调整。

说明:我们提供的程序可能和您的要求有些出入,但我们会免费帮您设计您满意的程序和硬件配置!

程序清单:<控制器上电后,使其显示方式为计数方式)

00 J-BIT 18 1 1 ;如果有效/无效按键为无效状态<未按下,1N1=1),则程序返回

01 SPEED 28000 ;假设高速运行速度28KHZ

02 J-BIT 05 2 0 ;如果印刷/定长按键为印刷方式<按下,1N2=0),则转至05行程序

03 G-LEN 10000 ;在定长的方式下,电机运行500MM<10000步)

04 JUMP 12 ;转至第12行程序

05 G-LEN 9600 ;在印刷方式下,电机先高速运行480MM<9600步)

06 SPEED 1000 ;假设低速寻找色标时的速度为1KHZ

07 G-LEN 600 ;以低速运行去寻找色标,如找到则转入A操作入口

08 OUT NNN0 ;运行510MM,仍未找到色标,则短声报警<100次)

09 DELAY 200 ;延时0。2秒

10 LOOP 07 100 ;短声报警100次

11 JUMP 18 ;转至

12 CNT-1

13 J-CNT 15 50000

14 JUMP 18

15 OUT NNN1

16 DELAY 200

17 LOOP 07 10

18 END

例八:AKS-01Z——更先进的自动切分机控制器

系统配置:AKS-01Z控制器、两相步进电机130BYG250A<或三相130BC3100A)、驱动器、可选配AC220A隔离变压器。压轮周长200 mm。操作面板除了AKS-01Z以外,还配有:1、有效/无效按键<自所按键)。当此按键按下后才能启动电机运行;在此按键抬起状态,即使有光电开关信号,电机也不动作。

运行要求:我们切纸长度500mm为例,每启动一次,高速运行500mm。另外要求切纸5万张,则长声报警10次。这时计数器需清零重新开始。在控制按键中,有计数器清零按键[∨]和计数器存储键[>],可随时使用。

设计分析:以二相电机为例,使驱动器工作在20细分状态,这时的步距角为0。09度,脉冲当量为:每毫M20个CP脉冲。

参数设定:<进入参数设定状态)

JF=1000,RS=H,CC=0,HL=10,HF=1000,BF=1000,NA=00,NB=00上述参数可以根据具体的制袋机有所调整。

说明:我们提供的程序可能和您的要求有些出入,但我们会免费帮您设计您满意的程序和硬件配置!

程序清单:<控制器上电后,使其显示方式为计数方式)

00 J-BIT 09 1 1 ;如果有效/无效按键为无效状态<未按下,1N1=1),则程序返回

01 SPEED 28000 ;假设高速运行速度28KHZ

02 G-LEN 10000 ;电机运行500MM<10000步)

03 CNT-1 ;计数器加1

04 J-CNT 06 50000 ;计数器=5万,转至长声报警10次

05 JUMP 09 ;计数值不到5万,转至结束

06 OUT NNN1 ;计数值已到5万,长声报警10次

07 DELAY 200 ;延时0.2秒

08 LOOP 07 10 ;长声报警10次

09 END

例九:AKS-01Z——更先进的粉剂包装控制器

系统配置:AKS-01Z控制器、两相步进电机110BYG250A<或三相110BC380)、驱动器,可选配AC110V/AC220A隔离变压器。操作面板除了AKS-01Z以外,还配有:1、有效/无效按键<自所按键)。当此按键按下后才能启动电机运行;在此按键抬起状态,即使有光电开关信号,电机也不动作。

运行要求:我们以主轴运行速度每秒2圈为例,主轴每转1圈,启动步进电机一次,步进电机要在0.25秒内带动蜗杆旋转一周。要求包装5万袋,则长声报警10次。这时计数器需清零重新开始。在控制按键中,有计数器清零按键[∨]和计数器存储键[>],可随时使用。

设计分析:以二相电机为例,使驱动器工作在20细分状态,这时的步距角为0。09度,脉冲当量为:步进电机每运行一周需4000个CP 脉冲。

参数设定:<进入参数设定状态)

JF=1000,RS=H,CC=0,HL=10,HF=1000,BF=1000,NA=00,NB=00上述参数可以根据具体的切分机有所调整。

说明:我们提供的程序可能和您的要求有些出入,但我们会免费帮您设计您满意的程序和硬件配置!

程序清单:<控制器上电后,使其显示方式为计数方式)

00 J-BIT 09 1 1 ;如果有效/无效按键为无效状态<未按下,1N1=1),则程序返回

01 SPEED 38000 ;假设高速运行速度38KHZ

02 G-LEN 4000 ;电机运行一周<4000步)

03 CNT-1 ;计数器加1

04 J-CNT 06 50000 ;计数器=5万,转至长声报警10次

05 JUMP 09 ;计数值不到5万,转至结束

06 OUT NNN1 ;计数值已到5万,长声报警10次

07 DELAY 200 ;延时0.2秒

08 LOOP 07 10 ;长声报警10次

09 END

十二、指令搜查表

四相步进电机控制系统设计资料讲解

四相步进电机控制系 统设计

课题:四相五线单4拍步进制电动机的正反转控制专业:机械电子工程 班级:2班 学号: 20110259 姓名:周后银 指导教师:李立成 设计日期: 2014.6.9~2014.6.20 成绩:

1概述 本实验旨在通过控制STC89C52芯片,实现对四相步进电机的转动控制。具体功能主要是控制电机正转10s、反转10s,连续运行1分钟,并用1602液晶显示屏显示出来。 具体工作过程是:给系统上电后,按下启动开关,步进电机按照预先 实验具体用到的仪器:STC89C52芯片、开关单元、四项步进电机、等硬件设 备。 实验具体电路单元有:单片机最小系统、步进电机连接电路、开关连接电路、1602液晶显示屏显示电路。 2四相步进电机 2.1步进电机 步进电机是一种将电脉冲转化为角位移的执行机构。电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 2.2步进电机的控制 1.换相顺序控制:通电换相这一过程称为脉冲分配。 2.控制步进电机的转向控制:如果给定工作方式正序换相通电,步进 电机正转,如果按反序通电换相,则电机就反转。

3.控制步进电机的速度控制:如果给步进电机发一个控制脉冲,它就 转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。 2.3步进电机的驱动模块 ABCD四相工作指示灯指示四相五线步进电机的工作状态 2.4步进电机的工作过程 开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动, 1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,

步进电机驱动器的设计

1 绪论 1.1 引言 步进电动机一般以开环运行方式工作在伺服运动系统中,它以脉冲信号进行控制,将脉冲电信号变换为相应的角位移或线位移。步进电动机可以实现信号的变换,是自动控制系统和数字控制系统中广泛应用的执行元件。由于其控制系统结构简单,控制容易并且无累积误差,因而在20世纪70 年代盛行一时。80 年代之后,随着高性能永磁材料的发展、计算机技术以及电力电子技术的发展,矢量控制技术等一些先进的控制方法得以实现,使得永磁同步电机性能有了质的飞跃,在高性能的伺服系统中逐渐处于统治地位。相应的,步进电机的缺点越来越明显,比如,其定位精度有限、低频运行时振荡、存在失步等,因而只能运用在对速度和精度要求不高,且对成本敏感的领域。 技术进步给步进电动机带来挑战的同时,也带来了新的发展遇。由于电力电子技术及计算机技术的进步,步进电动机的细分驱动得以实现。细分驱动技术是70 年代中期发展起来的一种可以显著改善步进电机综合性能的驱动控制技术。实践证明,步进电机脉冲细分驱动技术可以减小步进电动机的步距角,提高电机运行的平稳性,增加控制的灵活性等。由于电机制造技术的发展,德国百格拉公司于1973 年发明了五相混合式步进电动机,又于1993 年开发了三相混合式步进电动机。根据混合式步进电动机的结构特点,可以将交流伺服控制方法引入到混合式步进电机控制系统中,使其可以以任意步距角运行,并且可以显著削弱步进电机的一些缺点。若引入位置反馈,则混合式步进电机控题正是借鉴了永磁交流伺服系统的控制方法,研制了基于DSP的三相混合式步进电机驱动器。 1.2 步进电机及其驱动器的发展概况 按励磁方式分类,可以将步进电动机分为永磁式(PM)、反应式(VR)和混合式(HB)三类,混合式步进电动机在结构和原理上综合了反应式和永磁式步进电动机的优点,因此混合式步进电动机具有诸多优良的性能,本课题的研究对象正是混合式步进电机。20 世纪60 年代后期,各种实用性步进电动机应运而生,而半导体技术的发展则推进了步进电动机在众多领域的应用。在近30 年间,步进电动机迅速的发展并成熟起来。从发展趋势来讲,步进电动机已经能与直流电动机、异步电动机以及同步电动机并列,从而成为电动机的一种基本类型。特别是混合式步进电动机以其优越的性能(功率密度高于同体积的反应式步进电动机50%)得到了较快的发展。其中,60 年代德国百格拉公司申请了四相(两相)混合式步进电动机专利,70 年代中期,百格拉公司又申请了五相混合式步进电动机

步进电机控制器--说明书[1].答案

步进电机,伺服电机可编程控制器KH-01使用说明 一、系统特点 ●控制轴数:单轴; ●指令特点:任意可编程(可实现各种复杂运行:定位控制和非定位控制); ●最高输出频率:40KHz(特别适合控制细分驱动器); ●输出频率分辨率:1Hz; ●编程条数:99条; ●输入点:6个(光电隔离); ●输出点:3个(光电隔离); ●一次连续位移范围:—7999999~7999999; ●工作状态:自动运行状态,手动运行状态,程序编辑状态,参数设定状态; ●升降速曲线:2条(最优化); ●显示功能位数:8位数码管显示、手动/自动状态显示、运行/停止状态显示、步数/计数值/程序显示、编辑程序,参数显示、输入/输出状态显示、CP脉冲和方向显示; ●自动运行功能:可编辑,通过面板按键和加在端子的电平可控制自动运行的启动和停止; ●手动运行功能:可调整位置(手动的点动速度和点动步数可设定); ●参数设定功能:可设定起跳频率、升降速曲线、反向间隙、手动长度、手动速度、中断跳转行号和回零速度; ●程序编辑功能:可任意插入、删除可修改程序。具有跳转行号、数据判零、语句条数超长和超短的判断功能; ●回零点功能:可双向自动回到零点; ●编程指令:共14条指令; ●外操作功能:通过参数设定和编程,在(限位A)A操作和(限位B)B操作端子上加开关可执行外部中断操作; ●电源:AC220V(电源误差不大于±15%)。

一、前面板图 前面板图包括: 1、八位数码管显示 2、六路输入状态指示灯 3、三路输出状态指示灯 4、 CP脉冲信号指示灯

5、 CW方向电平指示灯 6、按键:共10个按键,且大部分按键为复合按键,他们在不同状态表示的功能不同,下面的说明中,我们只去取功能之一表示按键。 后面板图及信号说明: 后面板图为接线端子,包括: 1、方向、脉冲、+5V为步进电机驱动器控制线,此三端分别连至驱动器的相应端,其中: 脉冲————步进脉冲信号 方向————电机转向电平信号 +5V————前两路信号的公共阳端 CP、CW的状态分别对应面板上的指示灯 2、启动:启动程序自动运行,相当于面板上的启动键。 3、停止:暂停正在运行的程序,相当于面板上的停止键,再次启动后,程序继续运行。 4、 (限位A)A操作和(限位B)B操作是本控制器的一大特点:对于步进电机,我们一般进行定量定位控制,如控制电机以一定的速度运行一定的位移这种方式很容易解决,只需把速度量和位移量编程即可。但还有相当多的控制是不能事先定位的,例如控制步进电机从起始点开始朝一方向运行,直到碰到一行程开关后停止,当然再反向运行回到起始点。再例如要求步进电机在两个行程开关之间往复运行n次,等等。在这些操作中,我们事先并不知道步进电机的位移量的具体值,又应当如何编程呢?本控制器利用:“中断操作”,我们称之为“(限位A)A操作”和“(限位B)B操作”。以“(限位A)A操作”为例,工作流程为:当程序在运行时,如果“(限位A)A 操作”又信号输入,电机作降速停止,程序在此中断,程序记住了中断处的座标,程序跳转到“(限位A)A操作”入口地址所指定的程序处运行程序。 5、输入1和输入2通过开关量输入端。 6、输出1、输出2和输出3通过开关量输出端。 7、+24V、地—输入输出开关量外部电源,本电源为DC24V/0.2A,此电源由控制器内部隔离提供。 8、 ~220V控制器电源输入端。 输入信号和输出信号接口电路: 本控制器的“启动”、“停止”、“(限位A)A操作”、“(限位B)B操作”、“输入1”、“输入2”为输入信号,他们具有相同的输入接口电路。“输出1”、“输出2”、“输出3”称为输出信号。他们具有相同的输出接口电路。输入和输出电路都有光电隔离,以保证控制器的内部没有相互干扰,控制器内部工作电源(+5V)和外部工作电源(+24V)相互独立,并没有联系,这两组电源由控制器内部变压器的两个独立绕组提供。 开关量输入信号输出信号的状态,分别对应面板上的指示灯。对于输入量,输入低电平(开关闭合时)灯亮,反之灯灭;对于输出量,输出0时为低电平,指示灯灭,反之灯亮。 开关量输入电路:

步进电机驱动电路设计

如对您有帮助,请购买打赏,谢谢您! 引言 步进电机是一种将电脉冲转化为角位移的执行机构。驱动器接收到一个脉冲信号后,驱动步进电机按设定的方向转动一个固定的角度。首先,通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;其次,通过控制脉冲顿率来控制电机转动的速度和加速度,从而达到涮速的目的。目前,步进电机具有惯量低、定位精度高、无累积误差、控制简单等特点,在机电一体化产品中应用广泛,常用作定位控制和定速控制。步进电机驱动电路常用的芯片有l297和l298组合应用、3977、8435等,这些芯片一般单相驱动电流在2 a左右,无法驱动更大功率电机,限制了其应用范围。本文基于东芝公司2008年推出的步进电机驱动芯片tb6560提出了一种步进电机驱动电路的设计方案 1步进电机驱动电路设计 1.1 tb6560简介 tb6560是东芝公司推出的低功耗、高集成两相混合式步进电机驱动芯片。其主要特点有:内部集成双全桥mosfet驱动;最高耐压40 v,单相输出最大电流3.5 a(峰值);具有整步、1/2、1/8、1/16细分方式;内置温度保护芯片,温度大于150℃时自动断开所有输出;具有过流保护;采用hzip25封装。tb6560步进电机驱动电路主要包括3部分电路:控制信号隔离电路、主电路和自动半流电路。 1.2步进电机控制信号隔离电路 步进电机控制信号隔离电路如图1所示,步进电机控制信号有3个(clk、cw、enable),分别控制电机的转角和速度、电机正反方向以及使能,均须用光耦隔离后与芯片连接。光耦的作用有两个:首先,防止电机干扰和损坏接口板电路;其次,对控制信号进行整形。对clk、cw信号,要选择中速或高速光耦,保证信号耦合后不会发生滞后和畸变而影响电机驱动,且驱动板能满足更高脉冲频率驱动要求。本设计中选择2片6n137高速光耦隔离clk、cw,其信号传输速率可达到10 mhz,1片tlp521普通光耦隔离enable信号。应用时注意:光耦的同向和反向输出接法;光耦的前向和后向电源应该是单独隔离电源,否则不能起到隔离干扰的作用。 1.3步进电机主电路 如图2所示,步进电机主电路主要包括驱动电路和逻辑控制电路两大部分。 驱动电路电源采用28 v,电压范嗣为4.5~40 v,提高驱动电压可增大电机在高频范围转矩的输出,电压选择要根据使用情况而定。vmb、vma为步进电机驱动电源引脚,应接入瓷片去耦电容和电解电容稳压。out_ap、out_am、out_bp、out_bm 引脚分别为电机2相输出接口,由于内部集成了续流二极管,这4个输出口不用

基于单片机的步进电机控制系统的设计_毕业设计

本科毕业设计 基于单片机的步进电机控制系统的设计

摘要 随着自动控制系统的发展和对高精度控制的要求,步进电机在自动化控制中扮演着越来越重要的角色,区别于普通的直流电机和交流电机,步进电机可以对旋转角度和转动速度进行高精度控制。步进电机作为控制执行元件,是机电一体化的关键组成之一,广泛应用在各种自动化控制系统和精密机械等领域。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 本系统介绍了一种基于单片机的步进电机控制系统的设计,包括了硬件设计和软件设计两部分。其中,硬件设计包括单片机最小系统、键盘控制模块、LCD显示模块、步进电机驱动模块、位置检测模块共5个功能模块的设计。系统软件设计采用C语言编写,包括主程序、数字键处理程序、功能键处理程序、电机驱动处理程序、显示模块、位置采集模块。 本设计采用STC89C52单片机作为主控制器,4*4矩阵键盘作为输入,LCD1602液晶作为显示,ULN2003A芯片驱动步进电机。系统具有良好的操作界面,键盘输入步进电机的运行距离;步进电机能以不同的速度运行,可以在不超过最大转速内准确运行到任意设定的位置,可调性较强;显示设定的运行距离和实际运行距离;方便操作者使用。关键词:单片机步进电机液晶显示键盘驱动

Design of the Stepping Motor Control System Based on SCM Qiu Haizhao (College of Engineering, South China Agricultural University, Guangzhou 510642,China) Abstract:With the development of automatic control system and the requirements of high-precision control, stepping motor control in automation is playing an increasingly important role, different from the common DC and AC motor, stepper motor rotation angle and rotational speed can be high-precision controlled. Stepper motor as a control actuator is a key component of mechanical and electrical integration, widely used in a variety of automated control systems and precision machinery and other fields. Stepper motor is the open-loop control components changing electric pulse signals into angular displacement or linear displacement .In the case of non-overloaded, the motor speed, stop position depends only on the pulse frequency and pulse number, regardless of load changes, that is, to add a pulse motor, the motor is turned a step angle. This system introduces a design of stepper motor control system based on single chip microcomputer, including hardware design and software design in two parts. Among them, the hardware design, including single chip minimal system, keyboard control module, LCD display module, the stepper motor drive module, position detection module five functional modules. System software design using C language, including the main program, process number keys, the key of function processes, motor driver handler, the display module, position acquisition module. This design uses STC89C52 microcontroller as the main controller, 4 * 4 matrix keyboard as an input, LCD1602 LCD as a display, ULN2003A chip as stepper motor driver. System has a good user interface, keyboard input stepper motor running distance; Stepper motor can run at different speed, and run to any given position accurately in any speed without exceeding the maximum speed, with a strong adjustable ; Display the running distance and the actual running distance, which is more convenient for the operator to use. Key words: SCM stepper LCD keyboard driver

【matlab编程代做】步进电机控制器设计

步进电机控制器设计报告 1.绪言 在本次EDA课程设计中,我们组选择了做一个步进电机驱动程序的课题。对于步进电机我们以前并未接触过,它的工作原理是什么,它是如何工作的,我们应该如何控制它的转停,这都是我们迫切需要了解的。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 步进电机及驱动电源是互相联系的整体。步进电机驱动电源框图如图1所示。变频信号源产生频率可调的脉冲信号,调节步进电机的速度。脉冲分配器则根据要求把脉冲信号按一定的逻辑关系加到脉冲放大器上,使步进电机按确定的运行方式工作。 感应子式步进电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。以机座号(电机外径)可分为:42BYG(BYG 为感应子式步进电机代号)、57BYG、86BYG 、110BYG 、(国际标准),而像70BYG 、90BYG 、130BYG 等均为国内标准。 1.1 驱动控制系统组成 使用、控制步进电机必须由环形脉冲,功率放大等组成的控制系统。 1.1.1 脉冲信号的产生 脉冲信号一般由单片机或CPU 产生,一般脉冲信号的占空比为0.3-0.4 左右,电机转速越高,占空比则越大。 1.1.2 信号分配 感应子式步进电机以二、四相电机为主,二相电机工作方式有二相四拍和二相八拍二种,具体分配如下:二相四拍为,步距角为1.8 度;二相八拍为,步距角为0.9 度。四相电机工作方式也有二种,四相四拍为AB-BC-CD-DA-AB,步距角为1.8 度;四相八拍为 AB-B-BC-C-CD-D-AB,(步距角为0.9 度)。

步进电机控制器说明手册

步进电机,伺服电机可编程控制器K H-01使用说明 一、系统特点 ●控制轴数:单轴; ●指令特点:任意可编程(可实现各种复杂运行:定位控制和非定位控制); ●最高输出频率:40KHz(特别适合控制细分驱动器); ●输出频率分辨率:1Hz; ●编程条数:99条; ●输入点:6个(光电隔离); ●输出点:3个(光电隔离); ●一次连续位移范围:—7999999~7999999; ●工作状态:自动运行状态,手动运行状态,程序编辑状态,参数设定状态; ●升降速曲线:2条(最优化); ●显示功能位数:8位数码管显示、手动/自动状态显示、运行/停止状态显示、步数/计数值/程序显示、编辑程序,参数显示、 输入/输出状态显示、CP脉冲和方向显示; ●自动运行功能:可编辑,通过面板按键和加在端子的电平可控制自动运行的启动和停止; ●手动运行功能:可调整位置(手动的点动速度和点动步数可设定); ●参数设定功能:可设定起跳频率、升降速曲线、反向间隙、手动长度、手动速度、中断跳转行号和回零速度; ●程序编辑功能:可任意插入、删除可修改程序。具有跳转行号、数据判零、语句条数超长和超短的判断功能; ●回零点功能:可双向自动回到零点; ●编程指令:共14条指令; ●外操作功能:通过参数设定和编程,在(限位A)A操作和(限位B)B操作端子上加开关可执行外部中断操作; ●电源:AC220V(电源误差不大于±15%)。 一、前面板图 前面板图包括: 1、八位数码管显示 2、六路输入状态指示灯 3、三路输出状态指示灯 4、CP脉冲信号指示灯 5、CW方向电平指示灯 6、按键:共10个按键,且大部分按键为复合按键,他们在不同状态表示的功能不同,下面的说明中,我们只去取功能之 一表示按键。 后面板图及信号说明: 后面板图为接线端子,包括: 1、方向、脉冲、+5V为步进电机驱动器控制线,此三端分别连至驱动器的相应端,其中: 脉冲————步进脉冲信号 方向————电机转向电平信号 +5V————前两路信号的公共阳端 CP、CW的状态分别对应面板上的指示灯 2、启动:启动程序自动运行,相当于面板上的启动键。 3、停止:暂停正在运行的程序,相当于面板上的停止键,再次启动后,程序继续运行。 4、(限位A)A操作和(限位B)B操作是本控制器的一大特点:对于步进电机,我们一般进行定量定位控制,如控制电机以一 定的速度运行一定的位移这种方式很容易解决,只需把速度量和位移量编程即可。但还有相当多的控制是不能事先定位的,例如控制步进电机从起始点开始朝一方向运行,直到碰到一行程开关后停止,当然再反向运行回到起始点。再例如要求步

步进电机驱动器及细分控制原理

步进电机驱动器及细分控制原理 步进电机驱动器原理: 步进电机必须有驱动器和控制器才能正常工作。驱动器的作用是对控制脉冲进行环形分配、功率放大,使步进电机绕组按一定顺序通电。 以两相步进电机为例,当给驱动器一个脉冲信号和一个正方向信号时,驱动器经过环形分配器和功率放大后,给电机绕组通电的顺序为AA BB A A B B ,其四个状态周而复始 进行变化,电机顺时针转动;若方向信号变为负时,通电时序就变为 AA B B A A BB ,电机就逆时针转动。 随着电子技术的发展,功率放大电路由单电压电路、高低压电路发展到现在的斩波电路。其基本原理是:在电机绕组回路中,串联一个电流检测回路,当绕组电流降低到某一下限值时,电流检测回路发出信号,控制高压开关管导通,让高压再次作用在绕组上,使绕组电流重新上升;当电流回升到上限值时,高压电源又自动断开。重复上述过程,使绕组电流的平均值恒定,电流波形的波顶维持在预定数值上,解决了高低压电路在低频段工作时电流下凹的问题,使电机在低频段力矩增大。 步进电机一定时,供给驱动器的电压值对电机性能影响较大,电压越高,步进电机转速越高、加速度越大;在驱动器上一般设有相电流调节开关,相电流设的越大,步进电机转速越高、力距越大。 细分控制原理: 在步进电机步距角不能满足使用要求时,可采用细分驱动器来驱动步进电机。细分驱动器的原理是通过改变A,B相电流的大小,以改变合成磁场的夹角,从而可将一个步距角细分为多步。

定子 A 转子 S N B B B S N A A (a)(b) A S N B B N S B S N A (c)(d) 图3.2步进电机细分原理 图 仍以二相步进电机为例,当A、B相绕组同时通电时,转子将停在A、B相磁极中间,如图3.2。 若通电方向顺序按AA AA BB BB BB AA AA AA BB BB BB AA,8个状态周而 复 始进行变化,电机顺时针转动;电机每转动一步,为45度,8个脉冲电机转一周。与图2.1相比,它的步距角小了一半。 驱动器一般都具有细分功能,常见的细分倍数有:1/2,1/4,1/8,1/16,1/32,1/64;或:1/5,1/10,1/20。 细分后步进电机步距角按下列方法计算:步距角=电机固有步距角/细分数 例如:一台1.8°电机设定为4细分,其步距角为 1.8°/4=0.45°。当细分 等级大于1/4后,电机的定位精度并不能提高,只是电机转动更平稳。

步进电机控制系统设计.

毕业设计论文 论文题目:基于单片机的步进电机控制电路板设计 摘要 随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 步进电机是一种能将电脉冲信号转换成角位移或线位移的机电元件,步进电机控制系统主要由步进控制器,功率放大器及步进电机等组成。采用单片机控制,用软件代替上述步进控制器,使得线路简单,成本低,可靠性大大增加。软件编程可灵活产生不同类型步进电机励磁序列来控制各种步进电机的运行方式。 本设计是采用AT89C51单片机对步进电机的控制,通过IO口输出的时序方波作为步进电机的控制信号,信号经过芯片ULN2003驱动步进电机;同时,用 4个按键来对电机的状态进行控制,并用数码管动态显示电机的转速。 系统由硬件设计和软件设计两部分组成。其中,硬件设计包括AT89C51单片机的最小系统、电源模块、键盘控制模块、步进电机驱动(集成达林顿ULN2003)模块、数码显示(SM420361K数码管)模块、测速模块(含霍尔片UGN3020)6个功能模块的设计,以及各模块在电路板上的有机结合而实现。软件设计包括键盘控制、步进电机脉冲、数码管动态显示以及转速信号采集模块的控制程序,最终实现对步进电机转动方向及转动速度的控制,并将步进电机的转动速度动态显示在LED数码管上,对速度进行实时监控显示。软件采用在Keil软件环境下编辑

************* 第1章绪论 1.1 课题背景 当今社会,电动机在工农业生产、人们日常生活中起着十分重要的作用。步进电机是最常见的一种控制电机,在各领域中得到广泛应用。步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。 随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,其优点是结构简单、运行可靠、控制方便。尤其是步距值不受电压、温度的变化的影响、误差不会长期积累的特点,给实际的应用带来了很大的方便。它广泛用于消费类产品(打印机、照相机、雕刻机)、工业控制(数控机床、工业机器人)、医疗器械等机电产品中。研究步进电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。控制核心采用C51芯片,它以其独特的低成本,小体积广受欢迎,当然其易编程也是不可多得的优点为此,本文设计了一个单片机控制步进电机的控制系统,可以实现对步进电机转动速度和转动方向的高效控制。 1.2 设计目的及系统功能 本设计的目的是以单片机为核心设计出一个单片机控制步进电机的控制系统。本系统采用AT89C51作为控制单元,通过键盘实现对步进电机转动方向及转动速度的控制,并且将步进电机的转动速度动态显示在LED数码管上。 1

XMTD-5000单轴步进电机控制器使用说明书

XMTD-5000 单轴步进电机控制器 使 用 说 明 书 郑州航模星光电自动化设备有限公司

目录 第一章概述 ............................................................................................................. 错误!未定义书签。 1.1 主要特点 .................................................................................................... 错误!未定义书签。 1.2 用户须知 ...................................................................................................... 错误!未定义书签。 1.3 技术参数 ...................................................................................................... 错误!未定义书签。第二章产品简介 .. (4) 2.1 外观与尺寸 (4) 2.2 型号与功能简介 (4) 第三章操作与参数 (5) 3.1 控制面板说明 (5) 3.2 按键操作 (5) 3.3 参数表及功能 (6) 3.4 显示状态与指示灯状态说明 (9) 第四章接线端子与接线方法 (10) 4.1 端子接线图 (10) 4.2 连接步进电机驱动器详细图 (10) 4.3 端子功能详细说明 (11) 第五章调试与运行 (11) 5.1 快速调试方式 (11) 5.2 运行测试 (12) 第六章使用实例 (13) 6.1 连续运行模式(自动换画面广告箱示例) (13) 6.2 单段运行模式(转盘分度头控制示例) (15) 6.3 触发段运行模式(丝杠送料控制示例) (16) 6.4 正反触发运行模式(两行程开关之间往返运动) (17) 第七章常见故障排除方法 (19) 7.1 常见故障问题解答 (19) 7.2 升降速设计简介 (19) 第八章售后服务 (20) 8.1 保修概要 (20)

毕业设计论文 基于单片机的步进电机控制器

第1章绪论 (2) 1.1引言 (2) 1.2步进电机常见的控制方案与驱动技术简介 (4) 1.2.1常见的步进电机控制方案 (4) 1.2.2步进电机驱动技术 (6) 1.3本文研究的内容 (8) 第2章步进电机概述 (9) 2.1步进电机的分类 (9) 2.2步进电机的工作原理 (10) 2.2.1结构及基本原理 (10) 2.2.2两相电机的步进顺序 (10) 2.3 步进电机的工作特点 (13) 2.4本章小结 (15) 第3章系统的硬件设计 (16) 3.1系统设计方案 (16) 3.1.1系统的方案简述与设计要求 (16) 3.1.2系统的组成及其对应功能简述 (16) 3.2单片机最小系统 (18) 3.2.1AT89S51简介 (18) 3.2.2单片机最小系统设计 (23) 3.2.3单片机端口分配及功能 (24) 3.3串口通信模块 (24) 3.4数码管显示电路设计 (25) 3.4.1共阳数码管简介 (25) 3.4.2共阳数码管电路图 (26) 3.5电机驱动模块设计 (27) 3.5.1L298简介 (27) 3.5.2电机驱动电路设计 (28) 3.6驱动电流检测模块设计 (30) 3.6.1OP07芯片简介 (30) 3.6.2ADC0804芯片简介 (32) 3.6.3电流检测模块电路图 (35) 3.7独立按键电路设计 (36) 3.8本章小结 (36) 第4章系统的软件实现 (37) 4.1系统软件主流程图 (37) 4.2系统初始化流程图 (38) 4.3按键子程序 (39) 结论 (43) 1

第1章绪论 1.1引言 步进电动机又称脉冲电动机或阶跃电动机,国外一般称为Steppingmotor、Pulse motor或Stepper servo,其应用发展已有约80年的历史。步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。每来一个脉冲电压,转子就旋转一个步距角,称为一步。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率范围内通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点[1]。 正是由于步进电机具有突出的优点,所以成了机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用[2]。比如在数控系统中就得到广泛的应用。目前世界各国都在大力发展数控技术,我国的数控系统也取得了很大的发展,我国已经能够自行研制开发适合我国数控机床发展需要的各种档次的数控系统。虽然与发达国家相比,我们我国的数控技术方面整体发展水平还比较低,但已经在我国占有非常重要的地位,并起了 2

步进电机控制系统课程设计

河北xxxxxx学院 课程设计说明 书 题目:步进电机控制系统 学院(系): 年级专业: 学号: 学生姓名: 同组学生: 指导教师:

步进电机控制系统 设计者:xxxxx 指导老师:xxxx 1摘要: 由于步进电机自身的特点、不需要位置、速度等信号反馈,只需要脉冲发生器产生足够的脉冲数和合适的脉冲频率,就可以控制步进电机移动的距离和速度。步进电机的运转方向的控制为输入电机各绕组的通电顺序。例如,一个三相步进电机的通电顺序为:a—ab—b—bc—c—ca—a--.....,此时点击正转,若通电顺序改为:a—ac—c—cb—b—ba—a--.....时点击反转。既可以通过改变环形分配器的脉冲输出顺序,也可以通过编程改变输出脉冲的顺序,来改变输入到各绕组的通电顺序,达到控制电击方向的目的。 关键词:步进电机 PLC 步进电机驱动器 引言步进电机是一种常用的电气执行原件,一种多相或单相同步点击,在数控机床、包装机械等自动控制及检测仪表等方面得到广泛运用。随着plc的不短发展。其功能越来越强大,除了有简单的逻辑功能和顺序控制外,运算功能的加入、pid和各类高速指令、使得plc对复杂和特殊系统的控制应用更加广泛。Plc与数控技术的结合产生了各种不同类型的数控设备。 2 任务与要求 (1) 了解步进电机的原理 (2) 熟练使用PLC控制步进电机,了解步进电机驱动器原理 3 装置原理介绍 3.1控制系统功能框图 在步进电机控制系统中,首先控制步进电机使之稳步启动,然后高速运动,接近制定位置时,减速之后低速运动一段时间,在准确地停在预定的位置上,最后步进电机停留2s后,按照前进时的加速—高速—减速—低速的步骤返回到起始点,其运动状态转换过程平稳,其功能框图如图3.1所以,其简单工作过程如图3.2所示。 由于步进电机本身的结构特性决定了它要实现高速运转必须有加速过程,如果在启动时突然加载高频脉冲,电机会产生啸叫、失步甚至不能启动,在停止阶段也是这样,当高频脉冲突然降到零时,电机会产生啸叫和振动,所以在启动和停止时,都必须有一个加速和减速过程。 3.2步进电机控制系统硬件设计 由于步进电机的硬件结构特性,所以对输入的脉冲的频率有所限制,对于低频的脉冲输出时,plc可以利用定时器来完成。若要求步进电机的速度较快时,就需要用plc的高速脉冲输出指令,这时就需要在程序中设置相应的步骤来完成对步进电机的控制。 3.21 组建器材 (1)主机plc 根据系统的控制要求,采用三菱FX系统系列的plc作为控制器。(2)限位开关此系统中共用了两个限位开关:左限位开关和右限位开关。这两个限位开关的作用是控制物体的位置,防止物体超出合理的工作范围。 (3)步进电机步进电机是该系统的执行机构

两相步进电机驱动器设计

两相步进电机驱动器设计 目录 第1章绪论 (3) 1.1 引言 (3) 1.2 步进电机常见的控制方法与驱动技术简介 (3) 第2章设计方案 (5) 2.1 步进电机的介绍 (5) 2.2 步进电机的特点 (6) 2.3 步进电机的分类 (6)

2.4步进电机运动特性及性能参数 (7) 2.5 设计方案的确定 (8) 2.6 设计思想与设计原理 (9) 第3章单元电路的设计 (9) 3.1方波产生电路设计 (9) 3.2 信号的分配 (13) 3.3功率放大电路设计 (15) 3.4 总体设计 (16) 第4章设计方案的论证 (18) 第5章心得体会 (18) 第6章参考文献 (19) 第1章 1.1 引言 步进电动机一般以开环运行方式工作在伺服运动系统中,它以脉冲信号进行控制,将脉冲电信号变换为相应的角位移或线位移。步进电动机可以实现信号的变换,是自动控制系统和数字控制系统中广泛应用的执行元件。由于其控制系统结构简单,控制容易并且无累积误差,因而在20世纪70 年代盛行一时。80 年代之后,随着高性能永磁材料的发展、计算机技术以及电力电子技术的发展,矢量控制技术等一些先进的控制方法得以实现,使得永磁同步电机性能有了质的飞跃,在高性能的伺服系统中逐渐处

于统治地位。相应的,步进电机的缺点越来越明显,比如,其定位精度有 限、低频运行时振荡、存在失步等,因而只能运用在对速度和精度要求不 高,且对成本敏感的领域。技术进步给步进电动机带来挑战的同时,也带 来了新的发展遇。由于电力电子技术及计算机技术的进步,步进电动机的 细分驱动得以实现。细分驱动技术是70 年代中期发展起来的一种可以显 著改善步进电机综合性能的驱动控制技术。实践证明,步进电机脉冲细分 驱动技术可以减小步进电动机的步距角,提高电机运行的平稳性,增加控 制的灵活性等。由于电机制造技术的发展,德国百格拉公司于1973 年发 明了五相混合式步进电动机,又于1993 年开发了三相混合式步进电动机。 根据混合式步进电动机的结构特点,可以将交流伺服控制方法引入到混合 式步进电机控制系统中,使其可以以任意步距角运行,并且可以显著削弱 步进电机的一些缺点。若引入位置反馈,则混合式步进电机控题正是借鉴 了永磁交流伺服系统的控制方法,研制了基于DSP的三相混合式步进电机驱 动器. 1.2 步进电机常见的控制方法与驱动技术简介 1.2.1常见的步进电机控制方案 1、基于电子电路的控制 步进电机受电脉冲信号控制,电脉冲信号的产生、分配、放大全靠电子元器件的动作来实现。由于脉冲控制信号的驱动能力一般都很弱,因此必须有功率放大驱动电路。步进电机与控制电路、功率放大驱动电路组成一体,构成步进电机驱动系统。此种控制电路设计简单,功能强大,可实现一般步进电机的细分任务。这个系统由三部分组成:脉冲信号产生电路、脉冲信号分配电路、功率放大驱动电路。系统组成如图1.1所示。 脉冲控制器 功 率 放 大 驱 动 电 路 环 形 分 配 器 步 进 电 机

《步进电机控制器》.(DOC)

步进电机控制器 步进电机是一种将电脉冲信号转换成相应的角位移的特殊电机,每改变一次通电状态,步进电机的转子就转动一步。目前大多数步进电机控制器需要主控制器发送时钟信号,并且要至少一个I/O口来辅助控制和监控步进电机的运行情况。在单片机或DSP的应用系统中,经常配合CPLD或者FPGA来实现特定的功能。本文介绍通过FPGA实现的步进电机控制器。该控制器可以作为单片机或DSP的一个直接数字控制的外设,只需向控制器的控制寄存器和分频寄存器写入数据,即可实现对步进电机的控制。1 步进电机的控制原理步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合对数字系统的控制。步进电机可分为反应式步进电机(简称“VR”)、永磁式步进电机(简称“PM”)和混合式步进电机(简称“HB”)。步进电机区别于其他控制电机的最大特点是,通过输入脉冲信号来进行控制,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。步进电机的驱动电路根据控制信号工作,控制信号由各类控制器来产生。其基本原理作用如下: ①控制换相顺序,通电换相。这一过程称为“脉冲分配”。例如:四相步进电机的单四拍工作方式,其各相通电顺序为A—B—C— D。通电控制脉冲必须严格按照这一顺序分别控制A、B、C、D相的通断,控制步进电机的转向。如果给定工作方式正序换相通电,则步进电机正转;如果按反序换相通电,则电机就反转。 ②控制步进电机的速度。如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。调整控制器发出的脉冲频率,就可以对步进电机进行调速。 2 控制器的总体设计 控制器的外部接口电路如图1所示。各引脚的功能如F: data[7~O] 控制器与单片机等设备的总线接口; CS 片选信号,低电平有效; Wr 写信号,低电平有效; reset 复位信号,低电平有效; adr[1~O] 内部寄存器地址信号,与单片机等设备地址线相连; clk 待分频的时钟,可由FPGA提供; abcd[3~O] 四相位输出。 控制器的内部原理框图如图2所示,由命令字寄存器(CmcL-reg)、分频系数备份寄存器(fdiv —back)、分频器、相位输出状态机组成。

如何配用步进电机驱动器

如何配用步进电机驱动器? 根据电机的电流,配用大于或等于此电流的驱动器。如果需要低振动或高精度时,可配用细分型驱动器。对于大转矩电机,尽可能用高电压型驱动器,以获得良好的高速性能。 1,2相和5相步进电机有何区别,如何选择? 2相电机成本低,但在低速时的震动较大,高速时的力矩下降快。5相电机则振动较小,高速性能好,比2相电机的速度高30~50%,可在部分场合取代伺服电机。 2。使用电机时要注意的问题? 上电运行前要作如下检查: 1)电源电压是否合适(过压很可能造成驱动模块的损坏);对于直流输入的+/-极性一定不能接错,驱动控制器上的电机型号或电流设定值是否合适(开始时不要太大); 2)控制信号线接牢靠,工业现场最好要考虑屏蔽问题(如采用双绞线); 3)不要开始时就把需要接的线全接上,只连成最基本的系统,运行良好后,再逐步连接。 4)一定要搞清楚接地方法,还是采用浮空不接。 5)开始运行的半小时内要密切观察电机的状态,如运动是否正常,声音和温升情况,发现问题立即停机调整。 3,步进电机启动运行时,有时动一下就不动了或原地来回动,运行时有时还会失步,是什么问题? 一般要考虑以下方面作检查: 1)电机力矩是否足够大,能否带动负载,因此我们一般推荐用户选型时要选用力矩比实际需要大50%~100%的电机,因为步进电机不能过负载运行,哪怕是瞬间,都会造成失步,严重时停转或不规则原地反复动。 2)上位控制器来的输入走步脉冲的电流是否够大(一般要>10mA),以使光耦稳定导通,输入的频率是否过高,导致接收不到,如果上位控制器的输出电路是CMOS电路,则也要选用CMOS 输入型的驱动器。 3)启动频率是否太高,在启动程序上是否设置了加速过程,最好从电机规定的启动频率内开始加速到设定频率,哪怕加速时间很短,否则可能就不稳定,甚至处于惰态。 4)电机未固定好时,有时会出现此状况,则属于正常。因为,实际上此时造成了电机的强烈共振而导致进入失步状态。电机必须固定好。 5)对于5相电机来说,相位接错,电机也不能工作。 4,用开关电源给步进和直流电机系统供电好不好? 一般最好不要,特别是大力矩电机,除非选用比需要的功率大一倍以上的开关电源。因为,电机工作时是大电感型负载,会对电源端形成瞬间的高压。而开关电源的过载性能不好,会保护关断,且其精密的稳压性能又不需要,有时可能造成开关电源和驱动器的损坏。可以用常规的环形或R 型变压器变压的直流电源。 5,使用大于额定电压值的直流电源电压驱动电机安全吗? 正常来说这不是问题,只要电机在所设定的速度和电流极限值内运行。因为电机速度与电机线电压成正比,因此选择某种电源电压不会引起过速,但可能发生驱动器等故障。此外, 必须保证电机符合驱动器的最小电感系数要求,而且还要确保所设定的电流极限值小于或等于电机的额定

相关文档
最新文档