最优化问题-寻找最优解

最优化问题-寻找最优解
最优化问题-寻找最优解

第一章绪论

1.1 问题的提出

人们在做任何一件事情(工作)时,总是希望在可能(现有)的条件下,从众多可能方案中选择一个方案,使事情(工作)的结果最能满足自己的心愿,或者说使结果的目标值与自己的期望值最为符合。这个方案就可以称为最优方案,而这个选择最优方案的行为或过程就是一个最优化的过程。正是人类活动中无数这种寻找最优方案的过程,形成了最优化与最优控制理论与方法产生的基础。

例如,古代人类在生产和生活活动中经过无数次摸索认识到,在使用同样数量和质量材料的条件下,圆截面的容器比其他任何截面的容器能够盛放的谷物都要多,而且容器的强度也最大。也就是说,人们认识到了圆截面容器是各种截面容器中的最优容器。

古代人类这种寻找最优方案的例子比比皆是,如北半球朝南的房屋冬暖夏凉可以获得最舒适的居住条件、农作物生长过程中在某些最佳时机灌溉可以显著增产,等等。

人类进入现代社会以后,生产和社会活动的规模不断扩大,复杂性日益增加,这就意味着完成一项工作或进行一项活动可以选择的方案数量也急剧增加,从中寻找最优方案几乎已经是进行任何一件工作所必须面对的问题。

例如,工厂在安排生产计划时,首先要考虑在现有原材料、设备、人力等资源条件下,如何安排生产,使产品的产值最高,或产生的利润最大;

又如,在多级火箭发射过程中,如何控制燃料的燃烧速率,从而用火箭所载的有限燃料使火箭达到最大升空速度;

再如,在城市交通管理中,如何控制和引导车辆的流向,尽量减少各个交叉路口的阻塞和等待时间、提高各条道路的车辆通行速度,在现有道路条件下取得最大的道路通行能力。

随着人类对自然界认识的不断深入,寻找最优逐渐从下意识的、缺乏系统性的行为发展到目的明确的有意识活动,并在数学工具日渐完善的基础上,对各种寻找最优的活动进行数学描述和分析,指导寻优活动更有效地进行,从而形成了最优化理论与方法这一应用数学理论分支。

采用现代数学工具,很多最优化问题,尤其是工程领域的最优化问题都可以得到明确的描述。

例1.1. 飞行器软着陆问题

考虑一人造外星探测飞行器在外星表面实行软着陆。为保证飞行器上仪器设备的安全,要求飞行器落在外星球表面时垂直速度为0。同时,为保证飞行器返回时有足够的燃料,要求在着陆过程中飞行器消耗的燃料最少。

对这个最优化问题可以进行如下数学描述:记飞行器质量m(t),其中自重M1,燃料初始重量M2,

图1-1. 飞行器软着

飞行器高度 h(t),初始高度h 0, 飞行器垂直速度v(t),初始速度v 0, 飞行器发动机推力 u(t), 开始时间 t 0 = 0, 外星球引力加速度 g w 。 列出飞行器的运动方程,有

初始状态为:

h(0) = h 0 ,v(0) = v 0,m(0) = M 1 + M 2=m 0 从初始状态出发,要求在某一终端时刻t f 有: h( t f ) = 0 v( t f ) = 0 m( t f )≥ M 1

在运动过程中,有0 ≤ u(t) ≤u M , 其中u M 为飞行器的最大推力。

则该软着陆最优问题是要求在0 ≤t ≤t f 区间求满足上述运动方程和初、终态约束的u(t),使目标函数J = m( t f ) 最大。

例1.2. 最小热损耗问题

如图1-2所示,一搅拌混合槽,原存放0o C 液体,要经过t f 小时将其升温至T f o C ,同时保持液面恒定。送入一定量温度为u(t) o C 的液体,假定槽内混合均匀,出口温度为槽内温度x(t) o C 。 槽内温度的变化由热力学定律有

其中k 为常数,即温度变化与温差成正比。

加热过程中热损耗与混合槽温度以及输入液体温度有关,可以认为这里要求在初始条件x(0)=0,终值条件x(t f )= T f 条件下,求输入液体温度u(t),使

最小。

例1.3. 最大产值生产资源分配问题

某工厂生产A 和B 两种产品,A 产品单位价格为P A 万元, B 产品单位价格为P B 万元。每生产一个单位A 产品需消耗煤a C 吨,电a E 度,人工a L 个人日;每生产一个单位B 产品需消耗煤b C 吨,电b E 度,人工b L 个人日。现有可利用生产资源煤C 吨,电E 度,劳动力L 个人日,欲找出其最优分配方案,使产值最大。

该问题可以用如下模型表示:

假定生产x A 单位A 产品,x B 单位B 产品,则有约束条件:

)()()()

()()()(t ku t m

g t m t u t v

t v t h

w

-=-== )]()([t x t u k dt

dx

-=?+=f

T dt

t ru t qx J 022)]()([L

x b x a E x b x a C x b x a B L A L B E A E B C A C ≤+≤+≤

+

图1-2. 搅拌混合槽

x A ≥0, x B ≥0

求满足约束条件的x A 和x B ,使产值(目标函数)

最大。

1.2 最优化问题的提法

上一节的三个例子虽然涉及不同的工程应用问题,但实质都是考虑最优方案的求取问题。从中不难看出,最优化问题的数学描述或最优化问题的提法具有一定的必要形式或要素。三个例子前两个变量的变化与时间有关,考虑的是动态问题,而后一个则在一段时期内变量变化与时间无关,是静态问题,因此最优化问题的提法可以分为两种情况表述。

(1) 最优控制问题(例1.1、例1.2) 其数学描述应包括:

a) 系统动态模型——状态方程(微分方程) b) 动态系统初态、终态——状态方程的边界条件

严格意义上讲,最优控制只对一个有起始点和终止点的动态过程而言有

意义。

c) 性能指标——衡量是否达到最优的判据或标准,又称目标函数、性能泛函等。

d) 容许控制——在允许取值范围Ω内的控制作用u(t),即u(t)∈Ω。 最优控制?(t)满足: a) 是容许控制;

b) 将系统从初态转移到终态; c) 使性能指标最优。

(2) 最优化问题(例1.3)

其数学描述与最优控制类似但有区别,包括: a) 系统模型——代数方程 b) 系统边界——变量取值范围

c) 优化目标——衡量是否达到最优的判据,即目标函数 d) 独立变量——其变化影响优化目标取值的自变量

最优化问题就是寻找满足系统模型和边界条件约束的独立变量,使优化目标达到最优值。

1.3 最优化问题的分类及求解方法

(1) 最优化问题的分类

最优化问题按其描述模型和变量取值要求的不同,主要有以下几种分类: a) 动态最优化(最优控制)与静态最优化

最优化问题的数学描述和解有的与时间有关(如前节中例1.1和例1.2),有的与时间无关(如前节中例1.3)。前者称为动态最优化问题,或更一般称为最优控制问题,后者称为静态态最优化问题,或更一般称为最优化问题。两类最优化

B

B A A B A x P x P x x f +=),(

问题的解法不同,但相互之间有联系,在一定条件下可以转换。

b)无约束最优化与有约束最优化

如果除目标函数以外,对参与优化的各变量没有其他函数或变量约束,则称为无约束最优化问题。反之,称为有约束最优化问题。实际的最优化问题一般除了目标函数外都有其他约束条件,因此多为有约束最优化问题。

有约束最优化问题的约束条件又可以分为等式约束和不等式约束。

c)线性最优化与非线性最优化

如果最优化问题的目标函数和所有约束条件均为线性的,则为线性最优化问题。而只要最优化问题目标函数和约束条件中有一个是非线性的,就是非线性最优化问题。

线性最优化问题是非线性最优化问题的特例。但由于非线性系统问题的求解难度远远大于线性系统问题,目前线性最优化问题的研究较为成熟,而非线性最优化问题仍然是当前的研究热点之一。

d)确定性最优化与随机性最优化

如果在最优化问题中,每个变量的取值都是确定可知的,则该问题为确定性最优化问题。如果某个或某些变量的取值是不确定的,但服从一定的统计规律,则属于随机性最优化问题。

(2) 最优化问题的解法

a)间接法(解析法)

对于系统模型具有简单明确的数学解析表达式的最优化问题,采用数学分析的方法,根据函数(泛函)极值的必要条件和充分条件求出其最优解析解的求解方法。

b)直接法(数值解法)

对于无法用简单明确的数学解析表达式表达其系统模型的最优化问题,通过数值计算,在经过一系列迭代过程产生的点列中直接搜索,使其逐步逼近最优点的。

c)以解析法为基础的数值解法

以梯度法为基础,将解析法与数值计算相结合的最优化求解方法。

d)网络最优化方法

以网络图作为数学模型,用图论方法进行搜索的最优化求解方法。

e)现代优化算法

运用现代智能计算方法,如遗传算法、模拟退火算法、蚁群算法等,进行直接搜索的最优化求解方法,主要解决大规模复杂优化问题中的NP-hard问题。

1.4最优化与最优控制理论的发展过程

如前所述,最优化问题的产生可以追溯到开始有人类活动的远古时代。但是,最优化与最优控制理论却是现代科学技术发展的产物,确切地说,是生产力发展到大工业生产后的产物。

微分学关于函数极值问题的研究,可以看作是最优化与最优控制理论发展的起点。从函数极值问题出发,最优化理论分别向有约束极值问题和变分学(泛函极值问题)两个方向发展,奠定了最优化理论和最优控制理论的基础。20世纪40年代第二次世界大战开始军事上的需求和现代工业的迅速发展、以及电子计算机技术的出现,极大地推动了最优化与最优控制理论的进步。最优化理论中的

单纯形方法、共轭方向法、罚函数法等方法以及在线性规划和非线性规划两大类问题中更加细化的分支如凸规划、二次规划等,最优控制理论中的动态规划方法和极大值原理等重要理论和方法,都是在20世纪40至60年代产生的。图1-3给出了最优化与最优控制理论发展的一个概括表示。

最优化与最优控制理论与方法是控制科学的重要组成部分,也是绝大部分控制与系统理论和方法的重要基础。本课程将以最优控制为主要内容,并对最优化理论进行必要的讨论。

浅谈最优控制

浅谈最优控制 发表时间:2008-12-10T10:25:09.263Z 来源:《黑龙江科技信息》供稿作者:李晶1 陈思2 [导读] 主要阐述了关于最优控制问题的基本概念,最优控制是最优化方法的一个应用。最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。 摘要:主要阐述了关于最优控制问题的基本概念,最优控制是最优化方法的一个应用。最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。而最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。通过以上知识的讲解使初学者能够快速掌握最优控制的问题。关键词:最优化;最优控制;极值 最优控制是最优化方法的一个应用,如果想了解最优控制必须知道什么是最优化方法。所谓最优化方法为了达到最优化目的所提出的各种求解方法。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。 最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。(1)最优设计:世界各国工程技术界,尤其是飞机、造船、机械、建筑等部门都已广泛应用最优化方法于设计中,从各种设计参数的优选到最佳结构形状的选取等,结合有限元方法已使许多设计优化问题得到解决。一个新的发展动向是最优设计和计算机辅助设计相结合。电子线路的最优设计是另一个应用最优化方法的重要领域,它存在着巨大的开发潜力,尤其是对于学电工学的学生来说。配方配比的优选方面在化工、橡胶、塑料等工业部门都得到成功的应用,并向计算机辅助搜索最佳配方、配比方向发展。(2)最优计划:现代国民经济或部门经济的计划,直至企业的发展规划和年度生产计划,尤其是农业规划、种植计划、能源规划和其他资源、环境和生态规划的制订,都已开始应用最优化方法。一个重要的发展趋势是帮助领导部门进行各种优化决策,使工作结构简单,工作效率最高化,节省了很多时间。(3)最优管理:一般在日常生产计划的制订、调度和运行中都可应用最优化方法。随着管理信息系统和决策支持系统的建立和使用,使最优管理得到迅速的发展。(4)最优控制:主要用于对各种控制系统的优化。下面着重来解释一下最优控制。 最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。它是现代控制理论的重要组成部分。这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的动态规划和庞特里亚金等人提出的最大值原理。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。1948年维纳发表了题为《控制论——关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。钱学森1954年所著的《工程控制论》(EngineeringCybernetics)直接促进了最优控制理论的发展和形成。 为了解决最优控制问题,必须建立描述受控运动过程的运动方程,即系统的数学模型,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。 1 古典变分法 研究对泛函求极值的一种数学方法。古典变分法只能用在控制变量的取值范围不受限制的情况。在许多实际控制问题中,控制函数的取值常常受到封闭性的边界限制,如方向舵只能在两个极限值范围内转动,电动机的力矩只能在正负的最大值范围内产生等。因此,古典变分法对于解决许多重要的实际最优控制问题,是无能为力的。 2 极大值原理 极大值原理,是分析力学中哈密顿方法的推广。极大值原理的突出优点是可用于控制变量受限制的情况,能给出问题中最优控制所必须满足的条件。 3 动态规划 动态规划是数学规划的一种,同样可用于控制变量受限制的情况,是一种很适合于在计算机上进行计算的比较有效的方法。随着社会科技的不断进步,最优控制理的应用领域十分广泛,如时间最短、能耗最小、线性二次型指标最优、跟踪问题、调节问题和伺服机构问题等。但它在理论上还有不完善的地方,其中两个重要的问题就是优化算法中的鲁棒性问题和最优化算法的简化和实用性问题。大体上说,在最优化理论研究和应用方面应加强的课题主要有:(1)适合于解决工程上普遍问题的稳定性最优化方法的研究;(2)智能最优化方法、最优模糊控制器设计的研究;(3)简单实用的优化集成芯片及最优化控制器的开发和推广利用;(4)复杂系统、模糊动态模型的辩识与优化方法的研究;(5)最优化算法的改进。相信随着对这些问题的研究和探索的不断深入,最优控制技术将越来越成熟和实用,它也将给人们带来不可限量的影响。 参考文献 [1]胡寿松.最优控制理论与系统[M].(第二版)北京:科学出版社,2005. [2]阳明盛.最优化原理、方法及求解软件[M].北京:科学出版社,2006. [3]葛宝明.先进控制理论及其应用[M].北京:机械工业出版社,2007. [4]章卫国.先进控制理论与方法导论[M].西安:西北工业大学出版社,2000.

最优控制综述

最优控制综述 摘要:本文主要阐述了关于最优控制问题的基本概念。最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划,同时本文也介绍了最优控制理论在几个研究领域中的应用,并对最优控制理论做了一定的总结。 关键字:最优控制;最优化;最优控制理论 Abstract: This article mainly elaborated on the basic concept of optimal control problems. Optimal control theory is studied and solved from all possible solutions to find the optimal solution of a discipline, to solve optimal control problems of the main methods are classical variational method, with the maximum principle and dynamic programming principle. At the same time, this paper also introduces the application of optimal control theory in several research fields, and a summary of optimal control theory. Key Words: Optimal control; optimization; optimal control theory 1.引言 最优控制是现代控制理论的重要组成部分,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法。可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。最优控制是最优化方法的一个应用。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。 最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,基本内容和常用方法包括动态规划、最大值原理和变分法。这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的“动态规划”和庞特里亚金等人提出的“极大值原理”,到了60年代,卡尔曼(Kalman)等人又提出了可控制性及可观测性概念,建立了最优估计理论。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。最优控制理论的实现离不开最优化技术。控制系统最优化问题,包括性能指标的合理选择以及最优化控制系统的设计,而性能指标在很大程度上决定了最优控制性能和最优控制形式。最优化技术就

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

3.最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2最速下降法算法原理和步骤

4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进

最优控制理论课程总结

《最优控制理论》 课程总结 姓名:肖凯文 班级:自动化1002班 学号:0909100902 任课老师:彭辉

摘要:最优控制理论是现代控制理论的核心,控制理论的发展来源于控制对象的要求。尽50年来,科学技术的迅速发展,对许多被控对象,如宇宙飞船、导弹、卫星、和现代工业设备的生产过程等的性能提出了更高的要求,在许多情况下要求系统的某种性能指标为最优。这就要求人们对控制问题都必须从最优控制的角度去进行研究分析和设计。最优控制理论研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定要求运行,并使某一性能指标达到最优值[1]。 关键字:最优控制理论,现代控制理论,时域数学模型,频域数学模型,控制率Abstract: The Optimal Control Theory is the core of the Modern Control Theory,the development of control theory comes from the requires of the controlled objects.During the 50 years, the rapid development of the scientific technology puts more stricter requires forward to mang controlled objects,such as the spacecraft,the guide missile,the satellite,the productive process of modern industrial facilities,and so on,and requests some performance indexes that will be best in mang cases.To the control problem,it requests people to research ,analyse,and devise from the point of view of the Optimal Control Theory. There are mang major problems of the Optimal Control Theory studying,such as the building the time domain’s model or the frenquency domain’s model according to the controlled objects,controlling a control law with admitting, making the controlled objects to work according to the scheduled requires, and making the performance index to reseach to a best optimal value. Keywords: The Optimal Control Theroy, The Modern Control Theroy, The Time Domaint’s Model, The Frequency domain’s Model,The Control Law

最优化方法及其应用 - 更多gbj149 相关pdf电子书下载

最优化方法及其应用 作者:郭科 出版社:高等教育出版社 类别:不限 出版日期:20070701 最优化方法及其应用 的图书简介 系统地介绍了最优化的理论和计算方法,由浅入深,突出方法的原则,对最优化技术的理论作丁适当深度的讨论,着重强调方法与应用的有机结合,包括最优化问题总论,线性规划及其对偶问题,常用无约束最优化方法,动态规划,现代优化算法简介,其中前八章为传统优化算法,最后一章还给出了部分优化问题的设计实例,也可供一般工科研究生以及数学建模竞赛参赛人员和工程技术人员参考, 最优化方法及其应用 的pdf电子书下载 最优化方法及其应用 的电子版预览 第一章 最优化问题总论1.1 最优化问题数学模型1.2 最优化问题的算法1.3 最优化算法分类1.4

组合优化问題简卉习题一第二章 最优化问题的数学基础2.1 二次型与正定矩阵2.2 方向导数与梯度2.3 Hesse矩阵及泰勒展式2.4 极小点的判定条件2.5 锥、凸集、凸锥2.6 凸函数2.7 约束问题的最优性条件习题二第三章 线性规划及其对偶问题3.1线性规划数学模型基本原理3.2 线性规划迭代算法3.3 对偶问题的基本原理3.4 线性规划问题的灵敏度习题三第四章 一维搜索法4.1 搜索区间及其确定方法4.2 对分法4.3 Newton切线法4.4 黄金分割法4.5 抛物线插值法习题四第五章 常用无约束最优化方法5.1 最速下降法5.2 Newton法5.3 修正Newton法5.4 共轭方向法5.5 共轭梯度法5.6 变尺度法5.7 坐标轮换法5.8 单纯形法习題五第六章 常用约束最优化方法6.1外点罚函数法6.2 內点罚函数法6.3 混合罚函数法6.4 约束坐标轮换法6.5 复合形法习题六第七章 动态规划7.1 动态规划基本原理7.2 动态规划迭代算法7.3 动态规划有关说明习题七第八章 多目标优化8.1 多目标最优化问题的基本原理8.2 评价函数法8.3 分层求解法8.4目标规划法习题八第九章 现代优化算法简介9.1 模拟退火算法9.2遗传算法9.3 禁忌搜索算法9.4 人工神经网络第十章 最优化问题程序设计方法10.1 最优化问题建模的一般步骤10.2 常用最优化方法的特点及选用标准10.3 最优化问题编程的一般过程10.4 优化问题设计实例参考文献 更多 最优化方法及其应用 相关pdf电子书下载

《最优化方法与应用》实验指导书

《最优化方法与应用》 实验指导书 信息与计算科学系编制

1 实验目的 基于单纯形法求解线性规划问题,编写算法步骤,绘制算法流程图,编写单纯形法程序,并针对实例完成计算求解。 2实验要求 程序设计语言:C++ 输入:线性规划模型(包括线性规划模型的价值系数、系数矩阵、右侧常数等) 输出:线性规划问题的最优解及目标函数值 备注:可将线性规划模型先转化成标准形式,也可以在程序中将线性规划模型从一般形式转化成标准形式。 3实验数据 123()-5-4-6=Min f x x x x 121231212320 324423230,,03-+≤??++≤??+≤??≥? x x x x x x st x x x x x

1 实验目的 基于线性搜索的对分法、Newton 切线法、黄金分割法、抛物线法等的原理及方法,编写算法步骤和算法流程图,编写程序求解一维最优化问题,并针对实例具体计算。 2实验要求 程序设计语言:C++ 输入:线性搜索模型(目标函数系数,搜索区间,误差限等) 输出:最优解及对应目标函数值 备注:可从对分法、Newton 切线法、黄金分割法、抛物线法中选择2种具体的算法进行算法编程。 3实验数据 2211 ()+-6(0.3)0.01(0.9)0.04 = -+-+Min f x x x 区间[0.3,1],ε=10-4

实验三 无约束最优化方法 1实验目的 了解最速下降法、牛顿法、共轭梯度法、DFP 法和BFGS 法等的基本原理及方法,掌握其迭代步骤和算法流程图,运用Matlab 软件求解无约束非线性多元函数的最小值问题。 2实验要求 程序设计语言:Matlab 针对实验数据,对比最速下降法、牛顿法、共轭梯度法、DFP 法和BFGS 法等算法,比较不同算法的计算速度和收敛特性。 3实验数据 Rosenbrock's function 222211()(100)+(1-)=-Min f x x x x 初始点x=[-1.9, 2],,ε=10-4

最优化方法与最优控制复习文件

最优化方法与最优控制复习文件 1. 非线性优化的基本概念,最优解的一阶和二阶条件,最速下降方法,拟牛顿法情况,BFGS 修正。 2. 变分问题的最优必要性条件推导,各种情况下的必要性条件,Hamilton 函数、拉格让日 函数。PPT 中讲到的最优控制实例,包括求解过程需要掌握。 3. 极大值原理搞清楚,以及PPT 中的计算实例。 4. 动态规划,原理和简单的求解技术。 5. LQR 问题也要看一下。 除此之外,还有几个作业题目大家做一下,如下所示: 1. 非线性优化中,从直观考虑最速下降法是一种最快速的迭代优化方法,实际过程中为什 么不理想?为什么采用二阶方法?二阶方法中的二阶导数矩阵怎么得到的?有什么要求? (15分) 2. 对于函数形式为 的优化问题,若采用最速下降法求解,请给出最优搜索方向p k 的表达式。变量初值为X0=[1,1,1]T ,请写出第一步迭代过程,以及得到的X1的关于搜索步长α0表达式,在这种情况下,使得))0()0((F 0p x α+最小的搜索步长α0应该等于多少?(15分) 3. 题目要求如下,采用动态规划方法寻求从A 点到B 点的最小时间路径(A 到B 仅能向前 走),(20分) 4. 对于以下简单的标量非线性系统,请通过求解相关HJB 方程得到其最优反馈控制策略。 提示,HJB 微分方程允许如此形式的解。

5.写出如下优化控制问题的Hamiltonian 函数、优化求解的必须性条件,并通过必要性条 件的求解计算出该优化控制和状态轨线。最小化目标函数 6.根据你对优化控制求解方法的了解,目前对于优化控制问题(或者成为动态优化问题, DAOPs问题)有哪些求解方法, 7.

优化理论和最优控制

分数: ___________ 任课教师签字:___________ 华北电力大学研究生结课作业 学年学期:2013-2014第二学期 课程名称:优化理论和最优控制 学生姓名: 学号: 提交时间:2014年4月26日

《优化理论和最优控制》结课总结 摘要:最优控制理论是现代控制理论的核心,控制理论的发展来源于控制对象的要求。尽50年来,科学技术的迅速发展,对许多被控对象,如宇宙飞船、导弹、卫星、和现代工业设备的生产过程等的性能提出了更高的要求,在许多情况下要求系统的某种性能指标为最优。这就要求人们对控制问题都必须从最优控制的角度去进行研究分析和设计。最优控制理论研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定要求运行,并使某一性能指标达到最优值[1]。 关键字:最优控制理论,现代控制理论,时域数学模型,频域数学模型,控制率 Abstract: The Optimal Control Theory is the core of the Modern Control Theory,the development of control theory comes from the requires of the controlled objects.During the 50 years, the rapid development of the scientific technology puts more stricter requires forward to mang controlled objects,such as the spacecraft,the guide missile,the satellite,the productive process of modern industrial facilities,and so on,and requests some performance indexes that will be best in mang cases.To the control problem,it requests people to research ,analyse,and devise from the point of view of the Optimal Control Theory. There are mang major problems of the Optimal Control Theory studying,such as the building the time domain’s model or the frenquency domain’s model according to the controlled objects,controlling a control law with admitting, making the controlled objects to work according to the scheduled requires, and making the performance index to reseach to a best optimal value. Keywords: The Optimal Control Theroy, The Modern Control Theroy, The

最优控制课程介绍

最优控制 先修课程:常微分方程,最优化方法最优控制问题是具有特殊数学结构的一类最优化问题,在科学、工程和管理乃至人文领域都存在大量的最优控制问题。最优控制研究动态系统在各种约束条件下,寻求目标泛函取极值的最优控制函数与最优状态轨线的数学理论和方法,它是静态最优化在无穷维空间的扩展。希望学生通过本课程的学习,能够结合实际背景,建立最优控制的模型,理解求解最优控制的三大类基本方法的数学思想,灵活地掌握这些方法的基本过程,并能解释计算结果的意义。主要内容如下:最优控制问题及其建模;数学基础;变分法及其在最优控制的应用;极小值原理及其应用;动态规划方法及其应用;应用。 最优控制 一、课程基本信息 1.先修课程:数学系本科包括到大三的全部课程 2.面向对象:理学院数学系各专业 3.推荐教学参考书:吴沧浦,《最优控制的理论与方法》,国防工业出版社,2000 王朝珠等,《最优控制理论》,科学出版社,2003 邢继祥等,《最优控制应用基础》,科学出版社,2003 W. L. Brogan, Modern C ontrol Theor y, (3th eidition), Prentice-Hall, Englew ood C liffs,1991 二、课程的性质和任务本课程是数学与应用数学专业本科生高年级选修课程之一。从数学的角度,最优控制问题是最优化问题中具有特殊结构的一类问题。就问题的来源看,它又是控制问题。最优控制研究动态系统在各种约束条件下寻求使目标泛函取极值的最优控制函数和最优状态轨线的数学理论和方法。最优控制问题涉及范围广跨度大,几乎理工医农,管理军事乃至人文经法领域,都存在着大量此类问题。最优化已是寻求最优系统和结构,挖掘系统潜力的有力武器,学会求解最优控制问题,是应用数学工作者的最基本素养之一。通过本课程的主要任务是,从各个教学环节引导学生认识不同数学问题的特点和相应数学模型的结构,自己学会分析实际问题,建立各种数量之间的联系,写出正确的合理的最优控制的模型;领会求解最优控制问题解法是如何提出的数学思想,并学会如何根据这些思想来构成相应方法的技巧;学会能正确地解释计算结果的物理意义的能力。最根本的是学会和培养系统地、动态地、综合地考虑,认识和处理问题的思想方法和动手能力。这样,通过本课程的各个教学环节,提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。三、教学内容和要求基本要求:期望学生能够结合工程背景认识最优控制问题的数学结构的特点,从而能灵活地建立实际问题的数学模型,深刻领会求解它们的三大类方法的数学思想,熟练地掌握这些方法的运用步骤,能正确地解释求解结果的意义,并学会最优控制问题的数值解法。第一章最优控制与最优化问题 1.1 最优化问题的源和流 1.2 最优控制问题的例子和数学描述 1.3 最优控制问题求解的基本思想第二章数学基础 2.1 向量与矩阵的求导法则 2.2 函数极值的几个条件 2.3 线性微分方程的解第三章变分法 3.1 泛函的变分与极值 3.2 Euler方程 3.3 等式约束条件下泛函极值问题的必要条件 3.4 几类可用变分方法求解的最优控制问题 3.5 应用实例第四章极小值原理 4.1 极值曲线场与充分条件 4.2 有控制变量不等式约束的极小值原 理 4.3 含有状态变量不等式的极小值原理 *4.4 极小值原理的证明 4.5 极小值原理的应用实例 4.6 离散极小值原理第五章极小值原理的几类应用 5.1 时间最短最优控制问题 5.2 燃料最省最优控制问题 5.3 线性二次型最优控制问题第六章动态规划 6.1 多阶段决策问题与动态规划思想 6.2 用动态规划思想解最优化问题 6.3 离散系统最优控制问题的动态规划解法 6.4 离散线性二次型问题的动态规划解 6.5 连续系统做优控制问题的动态规划解和HJB方程 6.6 连续二次型问题的动态规划解 6.7 Riccatti方程的求解第七章最优控制的新发展 7.1 对策论和微分对策 7.2 随机最优控制四.实验(上机)内容和基本要求本课程无实验和上机的教学安排,但要求学生结合本专业的特点和所研究的课题,选择部分算法自己上机实现。要求学生熟悉至少一门数学软件平台(Mathematica/ matleb/Maple)和至少一种编程语言。教学实验就是编程解决实际问题。至少做有求解

最优化方法及应用

陆吾生教授是加拿大维多利亚大学电气与计算机工程系 (Dept. of Elect. and Comp. Eng. University of Victoria) 的正教授, 且为我校兼职教授,曾多次来我校数学系电子系讲学。陆吾生教授的研究方向是:最优化理论和小波理论及其在1维和2维的数字信号处理、数字图像处理、控制系统优化方面的应用。 现陆吾生教授计划在 2007 年 10-11 月来校开设一门为期一个月的短期课程“最优化理论及其应用”(每周两次,每次两节课),对象是数学系、计算机系、电子系的教师、高年级本科生及研究生,以他在2006年出版的最优化理论的专著作为教材。欢迎数学系、计算机系、电子系的研究生及高年级本科生选修该短期课程,修毕的研究生及本科生可给学分。 上课地点及时间:每周二及周四下午2:00开始,在闵行新校区第三教学楼326教室。(自10月11日至11月8日) 下面是此课程的内容介绍。 ----------------------------------- 最优化方法及应用 I. 函数的最优化及应用 1.1 无约束和有约束的函数优化问题 1.2 有约束优化问题的Karush-Kuhn-Tucker条件 1.3 凸集、凸函数和凸规划 1.4 Wolfe对偶 1.5 线性规划与二次规划 1.6 半正定规划 1.7 二次凸锥规划 1.8 多项式规划 1.9解最优化问题的计算机软件 II 泛函的最优化及应用 2.1 有界变差函数 2.2 泛函的变分与泛函的极值问题 2.3 Euler-Lagrange方程 2.4 二维图像的Osher模型 2.5 泛函最优化方法在图像处理中的应用 2.5.1 噪声的消减 2.5.2 De-Blurring 2.5.3 Segmentation ----------------------------------------------- 注:这是一门约二十学时左右的短期课程,旨在介绍函数及泛函的最优化理论和方法,及其在信息处理中的应用。只要学过一元及多元微积分和线性代数的学生就能修读并听懂本课程。课程中涉及到的算法实现和应用举例都使用数学软件MATLAB 华东师大数学系

最优化理论与方法 试题2006

2006级硕士生《最优化理论与方法》试题 姓名:学号:成绩: 注意:请将答案全部写在答题纸上。 1、填空题(5分) (1)最优化设计问题的三要素是、和。 (2)函数值的最大下降率的方向是函数在该点的方向。(3)线性规划问题是指的最优化问题。 2、判断题(5分) (1)黄金分割法(0.618法)的区间缩短率随问题性质的不同而改变。(2)虽然利用拉格朗日乘子法可以将约束最优化问题变成无约束最优化问题进行求解,但是要付出增加变量维数的代价。 (3)在求解约束优化设计问题时,可以将约束函数通过一定方式变为目标函数的一部分,从而将问题化为无约束问题进行求解。 (4)性态约束是在优化设计中由结构的某种性能和设计要求推导出来的一种约束条件,因此它通常为显约束。 (5)从消元法的观点看,等式约束的实质是使原最优化问题的的实际维数降低。 3、简答题(10分) (1)写出4种求解一维优化问题的主要方法。 (2)写出4种求解无约束多维最优化问题的主要方法。 (3)写出4种求解约束多维最优化问题的主要方法。 (4)写出2种用到目标函数的导数(梯度)的优化方法。

(5)写出1种用到目标函数的二次导数(Hessian 矩阵)的优化方法。 4、用单纯形法求解以下线性规划问题。(10分) ()2134x x f ??=X min s.t. 50321=++x x x 802421=++x x x 14023521=++x x x 0≥j x j = 1, 2, 3, 4 ,5 5、利用Kuhn-Tucker 条件,判断点[2,0]T 是否为下面约束问题的极值点。(10分) ()9612 221+?+=x x x F X min s.t. ()()()022 2111≤+?+=x x x g X ()012≤?=x g X ()023≤?=x g X 6、用黄金分割法求解目标函数()2 1 2??=x x f X 的极小值,用表格形式列出前四步计算过程,计算区间为[ 0, 1.2 ]。(10分) 7、简要说明A *算法。图1中起始节点S 和终止节点E 所给出的8数码问题,以离家将牌数Misplaced(n )为启发函数,用A *算法构造搜索图。(7分) ???? ? ?????=??????????=56748321 45761382E S 图1 已知8数码问题的起始布局和目标布局 8、用二进制编码的遗传算法解决如下数值优化问题。求下面优化问题的最优解: min f (x )=x 1+x 2+x 3

最优化方法与最优控制5

根据对偶问题的定义知道,原问题与对偶问题是互为对偶的。在给出原问题的对偶问题过程中应注意的几点关系: (1) 原问题各约束条件中的限制符号,必须统一是“≤”或统一为“≥”,不必考虑向量b 的元素是否是正值; (2) 如原问题有等式约束,则将该条件用等价的两个不等式约束条件替换,即“k f =)x (”可改写成两个不等式条件“k f ≤)x (,k f -≤-)x (”; (3) 对偶前后都要求变量是非负的; (4) 对偶关系是,“极大”对“极小”;“≤”对“≥”;向量c 与向量b 对调位置;矩阵A 转置。 例3-14 给出以下线性规划问题的对偶问题 212max x x z += 12321≤+x x ; 521=+x x ; 16421≤+x x ; 21≥x ;02≥x 。 解:原问题的规范形式及对偶形式写在表3-17中。 表3-17 线性规划对偶问题 原问题 对偶问题 min 543212551612w w w w w s --++= max 212x x z += 1354321≥--++w w w w w 12321≤+x x ; 244321≥-++w w w w 16421≤+x x ; 0≥i w ,51≤≤i 。 521≤+x x ; 对偶问题的线性规划标准形式 521-≤--x x ; max 543212551612w w w w w s ++---= 21-≤-x ; 13654321=---++w w w w w w 01≥x ,02≥x 。 2474321=--++w w w w w 0≥i w ,71≤≤i 。 下面介绍线性规划对偶问题的一些性质。 定理3-4 在式(3-23)定义的对偶问题中,若x 和w 分别是原问题和对偶问题的任意可 行解,则一定有 w b x c T T ≤。 (3-24) 证 因为是可行解,必然满足各自的全部约束条件,即 b A ≤x ,0x ≥; c w T ≥A ,0w ≥。 由此导出, b w x w T T ≤A ; c x w x T T T ≥A 。 标量的转置就是标量本身,即

最优控制理论的发展与展望

最优控制理论的发展与展 望 Last revision on 21 December 2020

最优控制理论的发展与展望 摘要:回顾最优控制的基本思想、常用方法及其应用,并对其今后的发展方向和面临的困难提出一些看法。 关键词:最优控制:最优化技术;遗传算法;预测控制 Abstract: The basic idea, method and application of optimal control are reviewed, and the direction of its development and possible difficulties are predicted. Keywords: optimal control; optimal Technology;Genetic Algorithm;Predictive Control 1引言 最优控制理论是本世纪60年代迅速发展的现代控制理论中的主要内容之一,它研究和解决如何从一切可能的方案中寻找一个最优的方案。1948年维纳等人发表《控制论一关于动物和机器中控制与通信的科学》论文,引进信息、反馈和控制等概念,为最优控制理论诞生和发展奠定了基础。我国着名学者钱学森在1954年编着的《工程控制论》直接促进了最优控制理论的发展与形成。在最优控制理论的形成和发展过程中,具有开创性的研究成果和开辟求解最优控制问题新途径的工作,主要是美国着名学者贝尔曼的“动态规划”和原苏联着名学者庞特里亚金的“最大值原理”。此外,构成最优控制理论及现代最优化技术理论基础的代表性工作,还有库恩和图克共同推导的关于不等式约束条件下的非线性最优必要条件(库恩一图克定理)及卡尔曼的关于随机控制系统最优滤波器等口 2最优控制理论的几个重要内容 最优控制理论的基本思想 最优控制理论是现代控制理论中的核心内容之一。其主要实质是:在满足一定约束条件下,寻求最优控制规律(或控制策略),使得系统在规定的性能指标(目标函数)下具有最优值,即寻找一个容许的控制规律使动态系统(受控对象、从初始状态转移到某种要求的终端状态,保证所规足的性能指标达到最小(大)值。

最优化方法及其应用课后答案

1 2 ( ( 最优化方法部分课后习题解答 1.一直优化问题的数学模型为: 习题一 min f (x ) = (x ? 3)2 + (x ? 4)2 ? g (x ) = x ? x ? 5 ≥ ? 1 1 2 2 ? 试用图解法求出: s .t . ?g 2 (x ) = ?x 1 ? x 2 + 5 ≥ 0 ?g (x ) = x ≥ 0 ? 3 1 ??g 4 (x ) = x 2 ≥ 0 (1) 无约束最优点,并求出最优值。 (2) 约束最优点,并求出其最优值。 (3) 如果加一个等式约束 h (x ) = x 1 ? x 2 = 0 ,其约束最优解是什么? * 解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0 (2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是 在约束集合即可行域中找一点 (x 1 , x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可 以看出,当 x * = 15 , 5 ) 时, f (x ) 所在的圆的半径最小。 4 4 ?g (x ) = x ? x ? 5 = 0 ? 15 ?x 1 = 其中:点为 g 1 (x ) 和 g 2 (x ) 的交点,令 ? 1 1 2 ? 2 求解得到: ? 4 5 即最优点为 x * = ? ?g 2 (x ) = ?x 1 ? x 2 + 5 = 0 15 , 5 ) :最优值为: f (x * ) = 65 ?x = ?? 2 4 4 4 8 (3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。 2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优 化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为: max f (x ) = x 1x 2 x 3 ?x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S

最优控制应用概述

最优控制的应用概述 1.引言 最优控制是现代控制理论的重要组成部分,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法。可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。最优控制是最优化方法的一个应用。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,是经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。 最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,基本内容和常用方法包括动态规划、最大值原理和变分法。这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的“动态规划”和庞特里亚金等人提出的“极大值原理”,到了60年代,卡尔曼(Kalman)等人又提出了可控制性及可观测性概念,建立了最优估计理论。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。最优控制理论的实现离不开最优化技术。控制系统最优化问题,包括性能指标的合理选择以及最优化控制系统的设计,而性能指标在很大程度上决定了最优控制性能和最优控制形式。最优化技术就是研究和解决最优化问题,主要包括两个需要研究和解决的方面:一个是如何将最优化问题表示为数学模型;另一个是如何根据数学模型尽快求出其最优解。 2.最优控制问题 所谓最优控制问题,就是指 在给定条件下,对给定系统确定 一种控制规律,使该系统能在规 定的性能指标下具有最优值。也 就是说最优控制就是要寻找容 许的控制作用(规律)使动态系 统(受控系统)从初始状态转移 到某种要求的终端状态,且保证 所规定的性能指标(目标函数)图1 最优控制问题示意图 达到最大(小)值。 最优控制问题的示意图如图1所示。其本质乃是一变分学问题。经典变分理论只能解决一类简单的最优控制问题。为满足工程实践的需要,20世纪50年代中期,出现了现代变分理论。最常用的方法就是极大值原理和动态规划。最优控制在被控对象参数已知的情况下,已成为设计复杂系统的有效方法之一。

最优化理论

最优化理论 一、最优化理论概述 优化是从处理各种事物的一切可能的方案中,寻求最优的方案。优化的原理与方法,在科学的、工程的和社会的实际问题中的应用,便是优化问题。优化一语来自英文Optimization,其本意是寻优的过程;优化过程:是寻找约束空间下给定函数取极大值(以max表示)或极小(以min表示)的过程。优化方法也称数学规划,是用科学方法和手段进行决策及确定最优解的数学。在生产过程、科学实验以及日常生活中,人们总希望用最少的人力、物力、财力和时间去办更多的事,获得最大的效益,在管理学中被看作是生产者的利润最大化和消费者的效用最大化,如果从数学的角度来看就被看作是“最优化问题”。在最优化的研究生教学中我们所说的最优化问题一般是在某些特定的“约束条件”下寻找某个“目标函数”的最大(或最小)值,其解法称为最优化方法。 最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。 最优化理论与方法作为一个重要的数学分支,它所研究的就是在众多的方案中怎么能找到最优、最好的方案。由于科学技术与生产技术的迅速发展,尤其是计算机应用的不断扩大,使最优化问题的研究不仅成为了一种迫切的需要,而且有了求解的有力工具,因此,发展成了一种新的科学。最优化理论与方法,狭义的主要指非线性规划的相关内容,而广义的则涵盖:连续优化:包括线性规划、非线性规划、全局优化、锥优化等;离散优化:网络优化、组合优化等;和近年来发展迅速的智能优化等。 一般而言,最优化问题的求解方法大致可分为4类:1)解析法:对于目标函数及约束条件具有简单而明确的数学表达式的最优化问题,一般都可采用解析法。在解决实际问题时,由于描述实际问题的解析形式的数学表达式很难找到,因此,这种表达式则缺

相关文档
最新文档