数值分析计算实习三

数值分析计算实习三
数值分析计算实习三

数值计算方法比较

有限差分方法(FDM:Finite Difference Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。有限差分法主要集中在依赖于时间的问题(双曲型和抛物型方程)。有限差分法方面的经典文献有Richtmeyer & Morton的《Difference Methods for Initial-Value Problems》;R. LeVeque《Finite Difference Method for Differential Equations》;《Numerical Methods for C onservation Laws》。 注:差分格式: (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法: 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限差分法的不足:由于采用的是直交网格,因此较难适应区域形状的任意性,而且区分不出场函数在区域中的轻重缓急之差异,缺乏统一有效的处理自然边值条件和内边值条件的方法,难以构造高精度(指收敛阶)差分格式,除非允许差分方程联系更多的节点(这又进一步增加处理边值条件韵困难)。另外它还有编制不出通用程序的困难。 有限差分法的优点:该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念 直观,表达简单,精度可选而且在一个时间步内,对于一个给定点来说其相关的空间点只是 与该相邻的几点,而不是全部的空间点。是发展较早且比较成熟的数值方法 广义差分法(有限体积法)(GDM:Generalized Difference Method):1953年,Mac—Neal 利用积分插值法(也称积分均衡法)建立了三角网格上的差分格 式,这就是以后通称的不规划网格上的差分法.这种方法的几何误差小,特别是给出了处理自然边值条件(及内边值条件)的有效方法,堪称差分法的一大进步。1978年,李荣华利用有限元空间和对偶单元上特征函数的推广——局部Taylor展式的公项,将积分插值法改写成广义Galerkin法形式,从而将不规则网格差分法推广为广义差分法.其基本思路是,将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有

北航数值分析大作业一

《数值分析B》大作业一 SY1103120 朱舜杰 一.算法设计方案: 1.矩阵A的存储与检索 将带状线性矩阵A[501][501]转存为一个矩阵MatrixC[5][501] . 由于C语言中数组角标都是从0开始的,所以在数组MatrixC[5][501]中检索A的带内元素a ij的方法是: A的带内元素a ij=C中的元素c i-j+2,j 2.求解λ1,λ501,λs ①首先分别使用幂法和反幂法迭代求出矩阵按摸最大和最小的特征值λmax和λmin。λmin即为λs; 如果λmax>0,则λ501=λmax;如果λmax<0,则λ1=λmax。 ②使用带原点平移的幂法(mifa()函数),令平移量p=λmax,求 出对应的按摸最大的特征值λ,max, 如果λmax>0,则λ1=λ,max+p;如果λmax<0,则λ501=λ,max+p。 3.求解A的与数μk=λ1+k(λ501-λ1)/40的最接近的特征值λik (k=1,2,…,39)。 使用带原点平移的反幂法,令平移量p=μk,即可求出与μk最接近的特征值λik。 4.求解A的(谱范数)条件数cond(A)2和行列式d etA。 ①cond(A)2=|λ1/λn|,其中λ1和λn分别是矩阵A的模最大和 最小特征值。

②矩阵A的行列式可先对矩阵A进行LU分解后,detA等于U所有对角线上元素的乘积。 二.源程序 #include #include #include #include #include #include #include #define E 1.0e-12 /*定义全局变量相对误差限*/ int max2(int a,int b) /*求两个整型数最大值的子程序*/ { if(a>b) return a; else return b; } int min2(int a,int b) /*求两个整型数最小值的子程序*/ { if(a>b) return b; else return a; } int max3(int a,int b,int c) /*求三整型数最大值的子程序*/ { int t; if(a>b) t=a; else t=b; if(t

数值分析第五版计算实习题

数值分析计算实习题 第二章 2-1 程序: clear;clc; x1=[0.2 0.4 0.6 0.8 1.0]; y1=[0.98 0.92 0.81 0.64 0.38]; n=length(y1); c=y1(:); for j=2:n %求差商 for i=n:-1:j c(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1)); end end syms x df d; df(1)=1;d(1)=y1(1); for i=2:n %求牛顿差值多项式 df(i)=df(i-1)*(x-x1(i-1)); d(i)=c(i)*df(i); end disp('4次牛顿插值多项式'); P4=vpa(collect((sum(d))),5) %P4即为4次牛顿插值多项式,并保留小数点后5位数pp=csape(x1,y1, 'variational');%调用三次样条函数 q=pp.coefs; disp('三次样条函数'); for i=1:4 S=q(i,:)*[(x-x1(i))^3;(x-x1(i))^2;(x-x1(i));1]; S=vpa(collect(S),5) end x2=0.2:0.08:1.08; dot=[1 2 11 12]; figure ezplot(P4,[0.2,1.08]); hold on y2=fnval(pp,x2); x=x2(dot); y3=eval(P4); y4=fnval(pp,x2(dot)); plot(x2,y2,'r',x2(dot),y3,'b*',x2(dot),y4,'co'); title('4次牛顿插值及三次样条'); 结果如下: 4次牛顿插值多项式 P4 = - 0.52083*x^4 + 0.83333*x^3 - 1.1042*x^2 + 0.19167*x + 0.98 三次样条函数

数值分析(计算方法)总结

第一章绪论 误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差 是的绝对误差,是的误差,为的绝对误差限(或误差限) 为的相对误差,当较小时,令 相对误差绝对值得上限称为相对误差限记为:即: 绝对误差有量纲,而相对误差无量纲 若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共有n位,则称近似值有n位有效数字,或说精确到该位。 例:设x==…那么,则有效数字为1位,即个位上的3,或说精确到个位。 科学计数法:记有n位有效数字,精确到。 由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为 由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字 令 1.x+y近似值为和的误差(限)等于误差(限)的 和 2.x-y近似值为 3.xy近似值为 4. 1.避免两相近数相减 2.避免用绝对值很小的数作除数 3.避免大数吃小数 4.尽量减少计算工作量 第二章非线性方程求根 1.逐步搜索法 设f (a) <0, f (b)> 0,有根区间为(a, b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)

一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)>0(而 f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根), 然后从x k-1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k-x k-1|0.将[a0,b0]对分,中点x0= ((a0+b0)/2),计算 f(x0)。 3.比例法 一般地,设[a k,b k]为有根区间,过(a k, f(a k))、(b k, f(b k))作直线,与x轴交于一点x k,则: 1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛。 2.比例法不是通过使求根区间缩小到0来求根,而是在一定条件下直接构造出一个点列(递推公式),使该点列收敛到方程的根。——这正是迭代法的基本思想。 事先估计: 事后估计 局部收敛性判定定理: 局部收敛性定理对迭代函数的要求较弱,但对初始点要求较高,即初始点必须选在精确解的附近 Steffensen迭代格式: Newton法: Newton下山法:是下山因子 弦割法: 抛物线法:令 其中:

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

北航数值分析大作业第一题幂法与反幂法

《数值分析》计算实习题目 第一题: 1. 算法设计方案 (1)1λ,501λ和s λ的值。 1)首先通过幂法求出按模最大的特征值λt1,然后根据λt1进行原点平移求出另一特征值λt2,比较两值大小,数值小的为所求最小特征值λ1,数值大的为是所求最大特征值λ501。 2)使用反幂法求λs ,其中需要解线性方程组。因为A 为带状线性方程组,此处采用LU 分解法解带状方程组。 (2)与140k λλμλ-5011=+k 最接近的特征值λik 。 通过带有原点平移的反幂法求出与数k μ最接近的特征值 λik 。 (3)2cond(A)和det A 。 1)1=n λλ2cond(A),其中1λ和n λ分别是按模最大和最小特征值。 2)利用步骤(1)中分解矩阵A 得出的LU 矩阵,L 为单位下三角阵,U 为上三角阵,其中U 矩阵的主对角线元素之积即为det A 。 由于A 的元素零元素较多,为节省储存量,将A 的元素存为6×501的数组中,程序中采用get_an_element()函数来从小数组中取出A 中的元素。 2.全部源程序 #include #include void init_a();//初始化A double get_an_element(int,int);//取A 中的元素函数 double powermethod(double);//原点平移的幂法 double inversepowermethod(double);//原点平移的反幂法 int presolve(double);//三角LU 分解 int solve(double [],double []);//解方程组 int max(int,int); int min(int,int); double (*u)[502]=new double[502][502];//上三角U 数组 double (*l)[502]=new double[502][502];//单位下三角L 数组 double a[6][502];//矩阵A int main() { int i,k; double lambdat1,lambdat2,lambda1,lambda501,lambdas,mu[40],det;

数值分析计算实习题

插值法 1.下列数据点的插值 x 0 1 4 9 16 25 36 49 64 y 0 1 2 3 4 5 6 7 8 可以得到平方根函数的近似,在区间[0,64]上作图. (1)用这9个点作8次多项式插值Ls(x). (2)用三次样条(第一边界条件)程序求S(x). 从得到结果看在[0,64]上,哪个插值更精确;在区间[0,1]上,两种插值哪个更精确? 解:(1)拉格朗日插值多项式,求解程序如下 syms x l; x1=[0 1 4 9 16 25 36 49 64]; y1=[0 1 2 3 4 5 6 7 8]; n=length(x1); Ls=sym(0); for i=1:n l=sym(y1(i)); for k=1:i-1 l=l*(x-x1(k))/(x1(i)-x1(k)); end for k=i+1:n l=l*(x-x1(k))/(x1(i)-x1(k)); end Ls=Ls+l; end Ls=simplify(Ls) %为所求插值多项式Ls(x). 输出结果为 Ls = -24221063/63504000*x^2+95549/72072*x-1/3048192000*x^8-2168879/435456000 *x^4+19/283046400*x^7+657859/10886400*x^3+33983/152409600*x^5-13003/2395008 000*x^6 (2)三次样条插值,程序如下

x1=[0 1 4 9 16 25 36 49 64]; y1=[0 1 2 3 4 5 6 7 8]; x2=[0:1:64]; y3=spline(x1,y1,x2); p=polyfit(x2,y3,3); %得到三次样条拟合函数 S=p(1)+p(2)*x+p(3)*x^2+p(4)*x^3 %得到S(x) 输出结果为: S = 23491/304472833/8*x+76713/*x^2+6867/42624*x^3 (3)在区间[0,64]上,分别对这两种插值和标准函数作图, plot(x2,sqrt(x2),'b',x2,y2,'r',x2,y3,'y') 蓝色曲线为y=函数曲线,红色曲线为拉格朗日插值函数曲线,黄色曲线为三次样条插值曲线 010203040506070 -200 20 40 60 80100 可以看到蓝色曲线与黄色曲线几乎重合,因此在区间[0,64]上三次样条插值更精确。 在[0,1]区间上由上图看不出差别,不妨代入几组数据进行比较 ,取x4=[0:0.2:1]

北航数值分析报告第三次大作业

数值分析第三次大作业 一、算法的设计方案: (一)、总体方案设计: x y当作已知量代入题目给定的非线性方程组,求(1)解非线性方程组。将给定的(,) i i

得与(,)i i x y 相对应的数组t[i][j],u[i][j]。 (2)分片二次代数插值。通过分片二次代数插值运算,得到与数组t[11][21],u[11][21]]对应的数组z[11][21],得到二元函数z=(,)i i f x y 。 (3)曲面拟合。利用x[i],y[j],z[11][21]建立二维函数表,再根据精度的要求选择适当k 值,并得到曲面拟合的系数矩阵C[r][s]。 (4)观察和(,)i i p x y 的逼近效果。观察逼近效果只需要重复上面(1)和(2)的过程,得到与新的插值节点(,)i i x y 对应的(,)i i f x y ,再与对应的(,)i i p x y 比较即可,这里求解 (,)i i p x y 可以直接使用(3)中的C[r][s]和k 。 (二)具体算法设计: (1)解非线性方程组 牛顿法解方程组()0F x =的解* x ,可采用如下算法: 1)在* x 附近选取(0) x D ∈,给定精度水平0ε>和最大迭代次数M 。 2)对于0,1, k M =执行 ① 计算() ()k F x 和()()k F x '。 ② 求解关于() k x ?的线性方程组 () ()()()()k k k F x x F x '?=- ③ 若() () k k x x ε∞∞ ?≤,则取*()k x x ≈,并停止计算;否则转④。 ④ 计算(1) ()()k k k x x x +=+?。 ⑤ 若k M <,则继续,否则,输出M 次迭代不成功的信息,并停止计算。 (2)分片双二次插值 给定已知数表以及需要插值的节点,进行分片二次插值的算法: 设已知数表中的点为: 00(0,1,,) (0,1,,)i j x x ih i n y y j j m τ=+=???=+=?? ,需要插值的节点为(,)x y 。 1) 根据(,)x y 选择插值节点(,)i j x y : 若12h x x ≤+ 或12 n h x x ->-,插值节点对应取1i =或1i n =-,

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

北航数值分析大作业第二题精解

目标:使用带双步位移的QR 分解法求矩阵10*10[]ij A a =的全部特征值,并对其中的每一个实特征值求相应的特征向量。已知:sin(0.50.2)() 1.5cos( 1.2)(){i j i j ij i j i j a +≠+== (i,j=1,2, (10) 算法: 以上是程序运作的逻辑,其中具体的函数的算法,大部分都是数值分析课本上的逻辑,在这里特别写出矩阵A 的实特征值对应的一个特征向量的求法: ()[]()() []()[]()111111I 00000 i n n n B A I gause i n Q A I u Bu u λλ-?-?-=-?-?? ?-=????→=??????→= ?? ? 选主元的消元 检查知无重特征值 由于=0i A I λ- ,因此在经过选主元的高斯消元以后,i A I λ- 即B 的最后一行必然为零,左上方变 为n-1阶单位矩阵[]()()11I n n -?-,右上方变为n-1阶向量[]()11n Q ?-,然后令n u 1=-,则 ()1,2,,1j j u Q j n ==???-。

这样即求出所有A所有实特征值对应的一个特征向量。 #include #include #include #define N 10 #define E 1.0e-12 #define MAX 10000 //以下是符号函数 double sgn(double a) { double z; if(a>E) z=1; else z=-1; return z; } //以下是矩阵的拟三角分解 void nishangsanjiaodiv(double A[N][N]) { int i,j,k; int m=0; double d,c,h,t; double u[N],p[N],q[N],w[N]; for(i=0;i

数值分析(第五版)计算实习题第四章作业

第四章: 1、(1):复合梯形 建立m文件: function t=natrapz(fname,a,b,n) h=(b-a)/n; fa=feval(fname,a);fb=feval(fname,b); f=feval(fname,a+h:h:b-h+0.001*h); t=h*(0.5*(fa+fb)+sum(f)); 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,10) 输出: ans = -0.417062831779470 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,100) 输出: ans = -0.443117908008157 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> natrapz(f,eps,1,1000) 输出: ans = -0.444387538997162 复合辛普森 建立m文件: function t=comsimpson(fname,a,b,n)

h=(b-a)/n; fa=feval(fname,a);fb=feval(fname,b); f1=feval(fname,a+h:h:b-h+0.001*h); f2=feval(fname,a+h/2:h:b-h+0.001*h); t=h/6*(fa+fb+2*sum(f1)+4*sum(f2)); 输入: >> syms x >> f=inline('sqrt(x).*log(x);'); >> format long; >>comsimpson(f,eps,1,10) 输出: ans = -0.435297890074689 输入: >>syms x >>f=inline('sqrt(x).*log(x);'); >>comsimpson(f,eps,1,100) 输出: ans = -0.444161178415673 输入: >>syms x >>f=inline('sqrt(x).*log(x);'); >>comsimpson(f,eps,1,1000) 输出: ans = -0.444434117614180 (2)龙贝格 建立m文件: function [RT,R,wugu,h]=Romberg(fun,a,b,wucha,m) %RT是龙贝格积分表 %R是数值积分值 %wugu是误差估计 %h是最小步长 %fun是被积函数 %a b是积分下、上限

北航数值分析大作业第二题

数值分析第二次大作业 史立峰 SY1505327

一、 方案 (1)利用循环结构将sin(0.50.2)() 1.5cos( 1.2)() {i j i j ij i j i j a +≠+==(i,j=1,2,……,10)进行赋值,得到需要变换的 矩阵A ; (2)然后,对矩阵A 利用Householder 矩阵进行相似变换,把A 化为上三角矩阵A (n-1)。 对A 拟上三角化,得到拟上三角矩阵A (n-1),具体算法如下: 记A(1)=A ,并记A(r)的第r 列至第n 列的元素为()n r r j n i a r ij ,,1,;,,2,1) ( +==。 对于2,,2,1-=n r 执行 1. 若 ()n r r i a r ir ,,3,2) ( ++=全为零,则令A(r+1) =A(r),转5;否则转2。 2. 计算 () ∑+== n r i r ir r a d 1 2 )( ()( )r r r r r r r r r r d c a d a c ==-=++则取,0sgn ) (,1)(,1若 )(,12r r r r r r a c c h +-= 3. 令 () n T r nr r r r r r r r r R a a c a u ∈-=++) ()(,2)(,1,,,,0,,0 。 4. 计算 r r T r r h u A p /)(= r r r r h u A q /)(= r r T r r h u p t /= r r r r u t q -=ω T r r T r r r r p u u A A --=+ω)()1( 5. 继续。 (3)使用带双步位移的QR 方法计算矩阵A (n-1)的全部特征值,也是A 的全部特征值,具体算法如下: 1. 给定精度水平0>ε和迭代最大次数L 。 2. 记n n ij n a A A ?-==][) 1()1()1(,令n m k ==,1。

北航数值分析报告大作业第八题

北京航空航天大学 数值分析大作业八 学院名称自动化 专业方向控制工程 学号 学生姓名许阳 教师孙玉泉 日期2014 年11月26 日

一.题目 关于x , y , t , u , v , w 的方程组(A.3) ???? ?? ?=-+++=-+++=-+++=-+++79 .0sin 5.074.3cos 5.007.1cos sin 5.067.2cos 5.0y w v u t x w v u t y w v u t x w v u t (A.3) 以及关于z , t , u 的二维数表(见表A-1)确定了一个二元函数z =f (x , y )。 表A-1 二维数表 t z u 0 0.4 0.8 1.2 1.6 2 0 -0.5 -0.34 0.14 0.94 2.06 3.5 0.2 -0.42 -0.5 -0.26 0.3 1.18 2.38 0.4 -0.18 -0.5 -0.5 -0.18 0.46 1.42 0.6 0.22 -0.34 -0.58 -0.5 -0.1 0.62 0.8 0.78 -0.02 -0.5 -0.66 -0.5 -0.02 1.0 1.5 0.46 -0.26 -0.66 -0.74 -0.5 1. 试用数值方法求出f (x , y ) 在区域}5.15.0,8.00|), {≤≤≤≤=y x y x D (上的近似表达式 ∑∑===k i k j s r rs y x c y x p 00 ),( 要求p (x , y )以最小的k 值达到以下的精度 ∑∑==-≤-=10020 7210)],(),([i j i i i i y x p y x f σ 其中j y i x i i 05.05.0,08.0+==。 2. 计算),(),,(* ***j i j i y x p y x f (i =1,2,…,8 ; j =1,2,…,5) 的值,以观察p (x , y ) 逼 近f (x , y )的效果,其中j y i x j i 2.05.0,1.0**+==。

数值分析计算实习题

《数值分析》计算实习题 姓名: 学号: 班级:

第二章 1、程序代码 Clear;clc; x1=[0.2 0.4 0.6 0.8 1.0]; y1=[0.98 0.92 0.81 0.64 0.38]; n=length(y1); c=y1(:); for j=2:n %求差商 for i=n:-1:j c(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1)); end end syms x df d; df(1)=1;d(1)=y1(1); for i=2:n %求牛顿差值多项式 df(i)=df(i-1)*(x-x1(i-1)); d(i)=c(i-1)*df(i); end P4=vpa(sum(d),5) %P4即为4次牛顿插值多项式,并保留小数点后5位数 pp=csape(x1,y1, 'variational');%调用三次样条函数 q=pp.coefs; q1=q(1,:)*[(x-.2)^3;(x-.2)^2;(x-.2);1]; q1=vpa(collect(q1),5) q2=q(1,:)*[(x-.4)^3;(x-.4)^2;(x-.4);1]; q2=vpa(collect(q2),5) q3=q(1,:)*[(x-.6)^3;(x-.6)^2;(x-.6);1]; q3=vpa(collect(q3),5) q4=q(1,:)*[(x-.8)^3;(x-.8)^2;(x-.8);1]; q4=vpa(collect(q4),5)%求解并化简多项式 2、运行结果 P4 = 0.98*x - 0.3*(x - 0.2)*(x - 0.4) - 0.625*(x - 0.2)*(x - 0.4)*(x - 0.6) - 0.20833*(x - 0.2)*(x - 0.4)*(x - 0.8)*(x - 0.6) + 0.784 q1 = - 1.3393*x^3 + 0.80357*x^2 - 0.40714*x + 1.04

数值分析计算实习题(二)

数值分析计算实习题(二) SY1004114 全昌彪一:算法设计方案概述: 本题采用fortran90语言编写程序,依据题目要求,采用带双步位移QR分解法求出所给矩阵的所有特征值,并求出相应于其实特征值的特征向量,以及相关需要给出的中间结果。 1、矩阵的A的初始化(赋值):利用子函数initial(a,n)来实现,返回n×n 维二维数组a。 2、A矩阵的拟上三角化:利用子函数hessenberg(a,n),在对矩阵进行QR分解前进行拟上三角化,这样可以提高计算效率,减少计算量,返回A矩阵的相似矩阵Hessenberg阵A(n-1)。 3、对A(n-1)进行带双步位移QR分解得出Cm及A矩阵的所有特征值,这一步利用了两个子函数eigenvalue(a,n,lamda,lamdai)和qrresolve(b,c,m) 带双步位移QR分解可以加速收敛。每次QR分解前先进行判断,若可以直接得到矩阵的特征值,则对矩阵直接降阶处理;若不可以,则进行QR分解,这样就进一步减少了计算量,提高了计算效率。考虑到矩阵A可能有复特征值,采用两个一维数组lamda(n)及lamdai(n)分别存储其实部和虚部。在双步位移处理及降阶过程中,被分解的矩阵Ak(m ×m)及中间矩阵M k(m×m)的维数随m不断减少而降阶,于是引入了动态矩阵C(m×m)和B(m×m)分别存储,在使用前,先声明分配内存,使用结束后立即释放内存。返回A(n-1)经双步位移QR分解后的矩阵及A矩阵的所有特征值。 4、特征向量的求解:采用子函数eigenvector(a,lamda)实现求解A矩阵的属于实特征值的特征向量。核心算法为高斯列主元消去法,(A-λI)x=b,b=0,回代过程令x(10)=1,即可求出对应于每一实特征值的特征向量的各个元素。 5、相关输出结果:所有数据均采用e型输出,数据保留到小数点后12位。对于A矩阵的拟上三角化结果集双步位移QR分解结果比较庞大,为了更好的显示,还采用了f型输出,保留5位小数。所有计算精度水平E=10-12。 二:算法fortran源程序 !此函数用于给A赋值,即初始化A矩阵 subroutine initial(a,n) integer :: i,j dimension a(n,n) double precision a do i=1,n do j=1,n if (i==j) then a(i,j)=1.5*cos(i+1.2*j) else a(i,j)=sin(0.5*i+0.2*j) end if end do end do

数值分析计算方法试题集及答案

数值分析复习试题 第一章 绪论 一. 填空题 1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误 差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 位;又取 1.73≈-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得 到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2, 如果取0 1.41y ≈作计算,则计算到10y 时,误 差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3

北航数值分析课程第一次大作业讲解

《数值分析A》计算实习题目第一题 一.算法设计方案: 1.矩阵A的存储与检索 将带状线性矩阵A[501][501]转存为一个矩阵MatrixC[5][501] . 由于C语言中数组角标都是从0开始的,所以在数组MatrixC[5][501]中检索A的带内元素a ij的方法是: A的带内元素a ij=C中的元素c i-j+2,j 2.求解λ1,λ501,λs ①首先分别使用幂法和反幂法迭代求出矩阵按摸最大和最小的特征值λmax和λmin。λmin即为λs; 如果λmax>0,则λ501=λmax;如果λmax<0,则λ1=λmax。 ②使用带原点平移的幂法(mifa()函数),令平移量p=λmax,求出对应的按摸最大的特征值λ,max, 如果λmax>0,则λ1=λ,max+p;如果λmax<0,则λ501=λ,max+p。 3.求解A的与数μk=λ1+k(λ501-λ1)/40的最接近的特征值λik (k=1,2,…,39)。 使用带原点平移的反幂法,令平移量p=μk,即可求出与μk最接近的特征值λik。 4.求解A的(谱范数)条件数cond(A)2和行列式d etA。 ①cond(A)2=|λ1/λn|,其中λ1和λn分别是矩阵A的模最大和最小特征值。 ②矩阵A的行列式可先对矩阵A进行LU分解后,detA等于U所有

对角线上元素的乘积。 二.源程序(VS2010环境下,C++语言) #include #include #include #include #include #include #include #define E 1.0e-12 /*定义全局变量相对误差限*/ int max2(int a,int b) /*求两个整型数最大值的子程序*/ { if(a>b) return a; else return b; } int min2(int a,int b) /*求两个整型数最小值的子程序*/ { if(a>b) return b; else return a; } int max3(int a,int b,int c) /*求三整型数最大值的子程序*/ { int t; if(a>b) t=a; else t=b; if(t

数值分析计算实习作业一

数值分析计算实习题一 学号: : 院系: 2015年11月5日

一、分析 1.1算法分析 题目要求求出: 1)特征值从小到大排列的最小特征值1λ和最大特征值501λ。 2)特征值中模最小的特征值s λ。 3)靠近一组数k μ的一组特征值k i λ。 4)矩阵A 的条件数cond(A)2。 5)行列式detA 。 解决方法: 1)若将所有行列式按模的大小排列则模最大的特征值一定是1λ和501λ中的一个,因此利用幂法求出模最大的特征值1m λ。然后利用带原点平移的幂法,将系数矩阵变为1m A I λ-即将所有特征值都减去1m λ,则特征值按大小顺序排列的次序不变,模最大的特征值依然在整个排列的两端,再用一次幂法得到模最大的特征值 21=m m λλλ-,其中λ为带原点平移的幂法求出的特征值,最后两个特征值1m λ、2m λ比较大小,大的为501λ,小的为1λ。 2)因为s λ为按模最小的特征值,因此用反幂法可求的其特征值。 3)因为k i λ靠近数k μ,因此k i k λμ-一定是所有的k λμ-中模最小的,因此可利用带原点平移的反幂法求出特征值k i λ,此时的系数矩阵变为k A I μ-。 4)条件数cond(A)2为模最小的特征值与模最大的特征值的比的绝对值,因此利用1和2中求出的1m λ和s λ可解出条件数。 5)可对矩阵A 进行LU 分解,即A LU =则det()det()det()A L U =?,又因为矩阵L 对角线元素为1,则det()L =1,所以det()det()A U =,U 为上三角阵,行列式为对角线元素的乘积,因此可得A 的行列式。 1.2程序分析

北航数值分析大作业3

一、算法设计方案 1.使用牛顿迭代法,对原题中给出的i x i 08.0=,j y j 05.05.0+=, (010 ,020i j ≤≤≤≤)的11*21组j i y x ,分别求出原题中方程组的一组解,于是得到一组和i i y x ,对应的j i t u ,。 2.对于已求出的j i t u ,,使用分片二次代数插值法对原题中关于u t z ,,的数表进行插值得到 ij z 。于是产生了z=f(x,y)的11*21个数值解。 3.从k=1开始逐渐增大k 的值,并使用最小二乘法曲面拟合法对z=f(x,y)进行拟合,得到每次的σ,k 。当7 10-<σ时结束计算,输出拟合结果。 4.计算)5,,2,1,8,,2,1)(,(),,(* ***???=???=j i y x p y x f j i j i 的值并输出结果,以观察),(y x p 逼近),(y x f 的效果。其中j y i x j i 2.05.0,1.0* *+==。 二、算法实现方案 1、求(,)f x y : (1)Newton 法解非线性方程组 0.5cos 2.670.5sin 1.07(1)0.5cos 3.740.5sin 0.79 t u v w x t u v w y t u v w x t u v w y +++-=??+++-=? ? +++-=??+++-=?, 其中,t, u, v ,w 为待求的未知量,x, y 为代入的已知量。 设(,,,)T t u v w ξ=,给定精度水平12110ε-=和最大迭代次数M ,则解该线性方程组的迭代格式为: *(0)(0)(0)(0)(0)(k+1) ()()1()(,,,)()()0,1,T k k k t u v w F F k ξξξ ξξξ-?=?'=-??= ? 在附近选取初值, 迭代终止条件为()(1) () 1/k k k ξξ ξε-∞ ∞ -≤,若k M >时仍未达到迭代精度,则迭代计算失 败。 其中,雅可比矩阵 0.5*cos(t) + u + v + w - x - 2.67t + 0.5*sin(u) + v + w - y - 1.07()0.5*t + u + cos(v) + w - x - 3.74t + 0.5*u + v + sin(w) - y - 0.79F ξ???? ? ?=?????? ,

相关文档
最新文档