初二数学面积法几何专题

初二数学面积法几何专题
初二数学面积法几何专题

初二数学---面积法解题

【本讲教育信息】

【讲解内容】——怎样证明面积问题以及用面积法解几何问题 【教学目标】

1. 使学生灵活掌握证明几何图形中的面积的方法。

2. 培养学生分析问题、解决问题的能力。 【 重点、难点】:

重点:证明面积问题的理论依据和方法技巧。 难点:灵活运用所学知识证明面积问题。 【教学过程】

(一)证明面积问题常用的理论依据

1. 三角形的中线把三角形分成两个面积相等的部分。

2. 同底同高或等底等高的两个三角形面积相等。

3. 平行四边形的对角线把其分成两个面积相等的部分。

4. 同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。

5. 三角形的面积等于等底等高的平行四边形的面积的一半。

6. 三角形的中位线截三角形所得的三角形的面积等于原三角形面积的。

1

4 7. 1

4三角形三边中点的连线所成的三角形的面积等于原三角形面积的。

8. 有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。

(二)证明面积问题常用的证题思路和方法

1. 分解法:通常把一个复杂的图形,分解成几个三角形。

2. 作平行线法:通过平行线找出同高(或等高)的三角形。

3. 利用有关性质法:比如利用中点、中位线等的性质。

4. 还可以利用面积解决其它问题。

【典型例题】

(一)怎样证明面积问题 1. 分解法

例1. 从△ABC 的各顶点作三条平行线AD 、BE 、CF ,各与对边或延长线交于D 、E 、F ,求证:△DEF 的面积=2△ABC 的面积。

F

E

A

B D C

分析:从图形上观察,△DEF 可分为三部分,其中①是△ADE ,它与△ADB 同底等

高,故S S ADE ADB ??=

②二是△,和上面一样,ADF S S ADF ADC ??=

③三是△AEF ,只要再证出它与△ABC 的面积相等即可 由S △CFE =S △CFB

故可得出S △AEF =S △ABC 证明:∵AD//BE//CF

∴△ADB 和△ADE 同底等高 ∴S △ADB =S △ADE

同理可证:S △ADC =S △ADF ∴S △ABC =S △ADE +S △ADF 又∵S △CEF =S △CBF ∴S △ABC =S △AEF

∴S △AEF +S △ADE +S △ADF =2S △ABC ∴S △DEF =2S △ABC

2. 作平行线法

例2. 已知:在梯形ABCD 中,DC//AB ,M 为腰BC 上的中点

求证:S S ADM ABCD ?=

1

2

分析:由M 为腰BC 的中点可想到过M 作底的平行线MN ,则MN 为其中位线,再利用平行线间的距离相等,设梯形的高为h

A B

S S S MN h S AMD DMN AMN ABCD ???=+=

?=121

2

证明:过M 作MN//AB ∵M 为腰BC 的中点 ∴MN 是梯形的中位线 设梯形的高为h

MN DC AB

=

+2

则S MN h ABCD =?

又 S S S MN h AMD AMN MND ???=+=

?1

2

∴=

S S ADM ABCD ?1

2

(二)用面积法解几何问题

有些几何问题,往往可以用面积法来解决,用面积法解几何问题常用到下列性质: 性质1:等底等高的三角形面积相等 性质2:同底等高的三角形面积相等

性质3:三角形面积等于与它同底等高的平行四边形面积的一半 性质4:等高的两个三角形的面积比等于底之比

性质5:等底的两个三角形的面积比等于高之比 1. 证线段之积相等

例3. 设AD 、BE 和CF 是△ABC 的三条高,求证:AD ·BC =BE ·AC =CF ·AB

A

F

E

B D C

分析:从结论可看出,AD 、BE 、CF 分别是BC 、AC 、AB 三边上的高,故可联想到可用面积法。

证明:∵AD 、BE 、CF 是△ABC 的三条高

∴=

?=?=?S AD BC BE AC CF AB

ABC ?222

∴?=?=?AD BC BE AC CF AB

2. 证等积问题

例4. 过平行四边形ABCD 的顶点A 引直线,和BC 、DC 或其延长线分别交于E 、F ,求证:S △ABF =S △ADE

A D

B E C

F

分析:因为AB//DF ,所以△ABF 与△ABC 是同底AB 和等高的两个三角形,所以这两个三角形的面积相等。 证明:连结AC ∵CF//AB

∴==

S S S ABF ABC ABCD ??1

2平行四边形 又∵CE//AD

∴==

S S S

A D E ACD ABCD ??12平行四边形

∴=S S ABF ADE ??

3. 证线段之和

例5. 已知△ABC 中,AB =AC ,P 为底边BC 上任一点,PE ⊥AB ,PF ⊥AC ,BH ⊥AC ,求证:PE+PF =BH

A

H

F E

B P C

分析:已知有垂线,就可看作三角形的高,连结AP ,则

S S S AB PE AC PF ABC ABP APC ???=+=

?+?121

2

又由,所以AB AC S AC PE PF ABC ==?+?1

2()

又S AC BH

ABC ?=?1

2

故PE+PF =BH

证明:连结AP ,则

S S S ABC ABP APC ???=+

∵AB =AC ,PE ⊥AB ,PF ⊥AC

∴=

?+?=?+S AB PE AC PF AC PE PF ABC ?12121

2() 又∵BH ⊥AC

∴=

?S AC BH ABC ?1

2

?+=?121

2AC PE PF AC BH ()

∴PE+PF =BH

4. 证角平分线

例6. 在平行四边形ABCD 的两边AD 、CD 上各取一点F 、E ,使AE =CF ,连AE 、CF 交于P ,求证:BP 平分∠APC 。

分析:要证BP 平分∠APC ,我们可以考虑,只要能证出B 点到PA 、PC 的距离相等即可,也就是△ABE 和△BFC 的高相等即可,又由已知AE =FC 可联想到三角形的面积,因此只要证出S △ABE =S △BCF 即可

由平行四边形ABCD 可得S △ABE =S △ABC ,S △BFC =S △ABC 所以S △ABE =S △BFC ,因此问题便得解。 证明:连结AC 、BE 、BF

∵四边形ABCD 是平行四边形 ∴S △ABE =S △ABC S △BFC =S △ABC

∴S △ABE =S △BFC 又∵AE =CF

而△ABE 和△BFC 的底分别是AE 、CF ∴△ABE 和△BFC 的高也相等 即B 到PA 、PC 的距离相等 ∴B 点在∠APC 的平分线上 ∴PB 平分∠APC

【模拟试题】(答题时间:25分钟)

1. 在平行四边形ABCD 中,E 、F 点分别为BC 、CD 的中点,连结AF 、AE ,求证:S △ABE =S △ADF

D F C

E

2. 在梯形ABCD 中,DC//AB ,M 为腰BC 上的中点,求证:S S S ADM DCM ABM ???=+

D C

M

A B

3. Rt △ABC 中,∠ACB =90°,a 、b 为两直角边,斜边AB 上的高为h ,求证:

111222a b h += C

b a h

B

4. 已知:E 、F 为四边形ABCD 的边AB 的三等分点,G 、H 为边DC 的三等分点,求证:

S S EFGH ABCD =

1

3

D

A G E

F H

B C

5. 在△ABC中,D是AB的中点,E在AC上,且CE

AC

1

3,CD和BE交于G,求△ABC

和四边形ADGE的面积比。

A

D

G E

B C

【试题答案】

1. 证明:连结AC ,则S S ABC ADC ??= 又∵E 、F 分别为BC 、CD 的中点

∴=

S S ABE ABC ??1

2

S S ADF ADC ??=

1

2 ∴=S S ABE

ADF ??

2. 证明:过M 作MN//DC//AB

∵M 为腰BC 上的中点

∴△DCM 和△ABM 的高相等,设为h 1

∴+=

?+?=+?S S DC h AB h DC AB h DCM ABM ??12121

2111()

又∵△DMN 与△AMN 的高也为h 1 ∴=+S S S A D M D M N A M N ???

=

?+?=+=?121

21

2

11111MN h MN h MN h h MN h ()

∵MN 为梯形的中位线

∴MN AB CD =

+1

2()

∴=+S S S A D M D C M ABM ???

3. 证明:∵在Rt △ABC 中,∠ACB =90°,CD ⊥AB

∴=

=?S ab AB h ABC ?121

2

∴=?ab AB h

∴=?=+?a b AB h a b h 2222222

()

∴两边同时除以a b 2

2

+得:

1112

22a

b h += 4. 证明:连结FD 、FG 、FC

则由已知可得S S FGH DFC ??=

1

3

作DM//AB ,设它们之间的距离为h ,G 到DM 的距离为a ,则由已知可得H 、C 到DM 的距离分别为2a 、3a

∴=

+S EF h a EFG ?1

2()

S S AF h BF h a AFD BFC ??+=?+?+121

23()

=?+?+?EF h EF h EF a

123

2

=?+?323

2EF h EF a

=?+?3121

2()

EF h EF a =??+31

2EF h a ()

=3S EFG ?

即S S S EFG AFD BFC ???=+1

3()

①+②得:S S EFGH ABCD

=1

3

5. 证明:作DF//AC 交BE 于F

B C

可得△DFG ≌△CEG

∴==

?S S ABE CEG DFG ???141

2

=??=141223112S S ABC ABC

?? 而S S S S ADGE ABC ABC ABC

=-=121125

12???

∴△ABC 和四边形ADGE 的面积比是12:5

初中数学几何图形综合题(供参考)

初中数学几何图形综合题 必胜中学2018-01-30 15:15:15 题型专项几何图形综合题 【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用. 【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等. 【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势. 为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.

类型1操作探究题 1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D作DF⊥AC于点F. (1)如图1,若点F与点A重合,求证:AC=BC;

人教版八年级下册数学几何题训练含答案

八年级习题练习 四、证明题:(每个5分,共10分) 1、在平行四边形ABCD 中,AE ⊥BC 于E ,CF ⊥AD 于F ,求证:BE = DF 。 2、在平行四边形DECF 中,B 是CE 延长线上一点,A 是CF 延长线上一点,连结AB 恰过点D ,求证:AD ·BE =DB ·EC 五、综合题(本题10分) 3.如图,直线y=x+b (b ≠0)交坐标轴于A 、B 两点,交双曲线y=x 2 于点D , 过D 作两坐标轴的垂线DC 、DE ,连接OD . (1)求证:AD 平分∠CDE ; (2)对任意的实数b (b ≠0),求证AD ·BD 为定值; (3)是否存在直线AB ,使得四边形OBCD 为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由. A B C E O D x y F E D C B A F E D C B A

4. 如图,四边形ABCD 中,AB=2,CD=1 ,∠A=60度,∠D=∠B=90度,求四边形ABCD 的面积S 5.如图,梯形ABCD 中,AD//BC,AB=DC. 如果P 是BC 上任意一点(中点除外),PE//AB ,PF//DC ,那么AB=PE+PF 成立吗?如果成立,请证明,如果不成立,说明理由。 参考答案 证明题 1、证△ABE ≌△CDF ; 2、 ??? ?∠=∠?∠=∠?A BDE AC DE B ADF BC DF △ADF ∽△DBE BE DF DB AD =? 综合题 1.(1)证:由y=x +b 得 A (b ,0),B (0,-b ). ∴∠DAC=∠OAB=45 o 又DC ⊥x 轴,DE ⊥y 轴 ∴∠ACD=∠CDE=90o ∴∠ADC=45o 即AD 平分∠CDE.

初中数学几何题及答案

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典难题(二) A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D B

P C G F B Q A D E 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) · A D H E M C B O · G A O D B E C Q P N M · O Q P B D E C N M · A A F D E C B

初二数学面积法几何专题

初二数学---面积法解题 【本讲教育信息】 【讲解内容】——怎样证明面积问题以及用面积法解几何问题 【教学目标】 1. 使学生灵活掌握证明几何图形中的面积的方法。 2. 培养学生分析问题、解决问题的能力。 【重点、难点】: 重点:证明面积问题的理论依据和方法技巧。 难点:灵活运用所学知识证明面积问题。 【教学过程】 (一)证明面积问题常用的理论依据 1. 三角形的中线把三角形分成两个面积相等的部分。 2. 同底同高或等底等高的两个三角形面积相等。 3. 平行四边形的对角线把其分成两个面积相等的部分。 4. 同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 5. 三角形的面积等于等底等高的平行四边形的面积的一半。 8. 有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。 (二)证明面积问题常用的证题思路和方法 1. 分解法:通常把一个复杂的图形,分解成几个三角形。 2. 作平行线法:通过平行线找出同高(或等高)的三角形。 3. 利用有关性质法:比如利用中点、中位线等的性质。 4. 还可以利用面积解决其它问题。 【典型例题】 (一)怎样证明面积问题 1. 分解法 例1. 从△ABC的各顶点作三条平行线AD、BE、CF,各与对边或延长线交于D、E、F,求证:△DEF的面积=2△ABC的面积。 分析:从图形上观察,△DEF可分为三部分,其中①是△ADE,它与△ADB同底等

③三是△AEF,只要再证出它与△ABC的面积相等即可 由S△CFE=S△CFB 故可得出S△AEF=S△ABC 证明:∵AD//BE//CF ∴△ADB和△ADE同底等高 ∴S△ADB=S△ADE 同理可证:S△ADC=S△ADF ∴S△ABC=S△ADE+S△ADF 又∵S△CEF=S△CBF ∴S△ABC=S△AEF ∴S△AEF+S△ADE+S△ADF=2S△ABC ∴S△DEF=2S△ABC 2. 作平行线法 例2. 已知:在梯形ABCD中,DC//AB,M为腰BC上的中点 分析:由M为腰BC的中点可想到过M作底的平行线MN,则MN为其中位线,再利用平行线间的距离相等,设梯形的高为h 证明:过M作MN//AB ∵M为腰BC的中点 ∴MN是梯形的中位线 设梯形的高为h (二)用面积法解几何问题 有些几何问题,往往可以用面积法来解决,用面积法解几何问题常用到下列性质:性质1:等底等高的三角形面积相等 性质2:同底等高的三角形面积相等 性质3:三角形面积等于与它同底等高的平行四边形面积的一半 性质4:等高的两个三角形的面积比等于底之比

最新初中数学几何图形初步易错题汇编附答案解析

最新初中数学几何图形初步易错题汇编附答案解析 一、选择题 1.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是() A.B. C.D. 【答案】D 【解析】 解:如右图, 连接OP,由于OP是Rt△AOB斜边上的中线, 所以OP=1 2 AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以 O为圆心的圆弧上,那么中点P下落的路线是一段弧线. 故选D. 2.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE∥CF,则∠BDF等于() A.30°B.25°C.18°D.15° 【答案】D 【解析】 【分析】

根据三角形内角和定理可得45ABC ∠=?和30EDF ∠=?,再根据平行线的性质可得45EDB ABC ==?∠∠,再根据BDF EDB EDF =-∠∠∠,即可求出BDF ∠的度数. 【详解】 ∵∠C =90°,∠A =45° ∴18045ABC A C =?--=?∠∠∠ ∵//DE CF ∴45EDB ABC ==?∠∠ ∵∠DFE =90°,∠E =60° ∴18030EDF E DFE =?--=?∠∠∠ ∴15BDF EDB EDF =-=?∠∠∠ 故答案为:D . 【点睛】 本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键. 3.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( ) A .8 B .9 C .10 D .11 【答案】C 【解析】 【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可. 【详解】 解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小 ∵四边形ABCD 是正方形 B D ∴、关于A C 对称 PB PD =∴ PB PE PD PE DE ∴+=+= 2,3BE AE BE ==Q

初二数学经典几何题型及答案

A P C D B 初二数学经典几何题型 1.已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形. 证明如下。 首先,PA=PD ,∠PAD=∠PDA=(180°-150°)÷2=15°,∠PAB=90°-15°=75°。 在正方形ABCD 之外以AD 为底边作正三角形ADQ , 连接PQ , 则 ∠PDQ=60°+15°=75°,同样∠PAQ=75°,又AQ=DQ,,PA=PD ,所以△PAQ ≌△PDQ , 那么∠PQA=∠PQD=60°÷2=30°,在△PQA 中, ∠APQ=180°-30°-75°=75°=∠PAQ=∠PAB ,于是PQ=AQ=AB , 显然△PAQ ≌△PAB ,得∠PBA=∠PQA=30°, PB=PQ=AB=BC ,∠PBC=90°-30°=60°,所以△PBC 是正三角形。 2.已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的延长线交 MN 于E 、F .求证:∠DEN =∠F . 证明:连接AC,并取AC 的中点G,连接GF,GM. 又点N 为CD 的中点,则GN=AD/2;GN ∥AD,∠GNM=∠DEM;(1) 同理:GM=BC/2;GM ∥BC,∠GMN=∠CFN;(2) 又AD=BC,则:GN=GM,∠GNM=∠GMN.故:∠DEM=∠CFN. A N F E C D M B

P C G F B Q A D E 3、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半. 证明:分别过E 、C 、F 作直线AB 的垂线,垂足分别为M 、O 、N , 在梯形MEFN 中,WE 平行NF 因为P 为EF 中点,PQ 平行于两底 所以PQ 为梯形MEFN 中位线, 所以PQ =(ME +NF )/2 又因为,角0CB +角OBC =90°=角NBF +角CBO 所以角OCB=角NBF 而角C0B =角Rt =角BNF CB=BF 所以△OCB 全等于△NBF △MEA 全等于△OAC (同理) 所以EM =AO ,0B =NF 所以PQ=AB/2. 4、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB . 过点P 作DA 的平行线,过点A 作DP 的平行线,两者相交于点E ;连接BE

面积法在平面几何问题求解中的巧妙应用

平面几何问题的证明——面积法(教案) 教学目的:掌握面积法在平面几何解题中的巧妙应用 教学重点:1、三角形、凸四边形面积公式的推导 2、面积法在平面几何解题中的巧妙应用 教学内容: 2002年,张景中院士推出《新概念几何》,其中对三角学作了全新的处理,他把边长为 1、夹角为α的菱形的面积定义为αsin ,由此研究正弦的性质,到处理余弦,用面积的方法证明大量的平面几何问题,把三角学和几何学打成一片,别具一格,极有新意。 张院士指出:抓住面积,不但能把平面几何课程变得更容易学,而且使几何问题求解变得更有趣味。 在求解平面几何问题的时候,根据有关几何量与涉及的有关图形面积之间的内在联系,用面积或面积比表示有关的几何量或其比,从而把要论证的几何量之间的关系转化为有关面积之间的关系,并通过图形面积的等积变换对所论问题来进行求解的方法,这就是面积法。 一、为运用面积法解题,我们需要一些面积公式: 1、设ABC ?中,角C B A ,,所对的边依次为c b a ,,,又a h 为a 边上的高,R 为其外接圆半径,r 为其内切圆半径,)(21c b a p ++= ,则 (1)a ABC ah S 21=?; (2)A bc S ABC sin 21?=?; (3)R abc S ABC 4=?; (4)A C B a S ABC sin 2sin sin 2?=?; (5)rp S ABC =?; (6)))()((c p b p a p p S ABC ---= ?。(海伦公式) 2、在凸四边形ABCD 中,边长分别为d c b a ,,,,两对角线长为,,f e 两对角线夹角θ,且)(2 1d c b a l +++= ,则: (1)θsin 21?=ef S ABCD (2) 2222222)(441d b c a f e S ABCD --+-= (3)))()()((d l c l b l a l S ABCD ----= (当D C B A ,,,四点共圆时) (4)?2cos ))()()((?-----=abcd d l c l b l a l S ABCD ,2D B +=?或2C A +=? 引理1:圆内接四边形ABCD 的四边是,,,,d DA c CD b BC a AB ====则四边形ABCD 的面积 ]1[ ))()()((d p c p b p a p S ABCD ----=,)(21d c b a p +++= 。

初中数学几何图形初步技巧及练习题

初中数学几何图形初步技巧及练习题 一、选择题 1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是() A.主视图B.俯视图C.左视图D.一样大 【答案】C 【解析】 如图,该几何体主视图是由5个小正方形组成, 左视图是由3个小正方形组成, 俯视图是由5个小正方形组成, 故三种视图面积最小的是左视图, 故选C. 2.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是 A.(0,0)B.(0,1)C.(0,2)D.(0,3) 【答案】D 【解析】 【详解】 解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′, 此时△ABC的周长最小,

∵点A 、B 的坐标分别为(1,4)和(3,0), ∴B ′点坐标为:(-3,0),则OB′=3 过点A 作AE 垂直x 轴,则AE=4,OE=1 则B′E=4,即B′E=AE ,∴∠EB ′A=∠B ′AE , ∵C ′O ∥AE , ∴∠B ′C ′O=∠B ′AE , ∴∠B ′C ′O=∠EB ′A ∴B ′O=C ′O=3, ∴点C ′的坐标是(0,3),此时△ABC 的周长最小. 故选D . 3.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( ) A .8 B .9 C .10 D .11 【答案】C 【解析】 【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可. 【详解】 解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小 ∵四边形ABCD 是正方形 B D ∴、关于A C 对称 PB PD =∴

八年级数学下册几何知识总结及试题

八年级数学下册几何知 识总结及试题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

§图形的旋转 概念:将图形绕一个顶点转动一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。图形的旋转不改变图形的形状、大小,只改变图形上点的位置 性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等。 基本画法:将图形上的一些特殊点与旋转中心连接,以旋转中心为圆心,连线段长为半径画图,按照旋转的角度来找出对应点,再画出所有的对应线段。 典型题:确定图形的旋转角度、确定图形的旋转中心、生活中的数学问题、作图题、 §中心对称与中心对称图形 1、中心对称的概念一个图形绕某点旋转180°,如果它能够与另一个图形重合,那么称这两个图 形关于这点对称,也称这两个图形成中心对称。这个点叫做对称中心,两个图形中的对应点叫做对称点。 2、中心对称的性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平 分。 3、中心对称图形的定义及其性质 把一个图形绕某点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。中心对称图形上的每一对对应点所连成的线段都被对称中心平分。 角线互相平分。 3、判定平行四边形的条件 (1)两组对边分别平行的四边形叫做平行四边形(概念) (2)一组对边平行且相等的四边形叫做平行四边形 (3)对角线互相平分的四边形叫做平行四边形 (4)两组对边分别相等的四边形叫做平行四边形 5、反证法 反证法是一种间接证明的方法,不是从已知条件出发直接证明命题的结论成立,而是先提出与结论相反的假设,然后由这个“假设”出发推导出矛盾,说明假设是不成立的,因而命题的结论是成立的。 常见题型:运用性质求值、添加条件题、实际问题相结合、体现数学思想的题型、 例6:如图,在四边形ABCD中,AD∥BC,AD>BC,BC=6cm,点P、Q分别以A、C点同时出发,P以1cm/ s 的速度由点A向点D运动,Q以2cm/s的速度由C出发向B运动,设运动时间为x秒.则当x=时,四边形ABQP是平行四边形. §矩形、菱形、正方形 1、矩形的概念和性质 有一角是直角的平行四边形叫做矩形,矩形也叫做长方形。矩形是特殊的平时行不行,它除了具有平行四边形的一切性质外,还具有的性质:矩形的对角线相等,四个角都是直角 2、判定矩形的条件 (1)有一个角是直角的平行四边形是矩形 (2)三个角是直角的四边形是矩形 (3)对角线相等的平行四边形是矩形 3、菱形的概念与性质

八年级数学几何经典题【含答案解析】

F 八年级数学几何经典题【含答案】 1、已知:如图,在四边形ABCD 中,AD =BC,M 、N 分别就是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F. 求证:∠DEN =∠F. 2、如图,分别以△ABC 的AC 与BC 为一边,在△ABC 的外侧作正方形ACDE 与正方形CBFG,点P 就是 EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 3、如图,四边形ABCD 为正方形,DE ∥AC,AE =AC,AE 与求证:CE =CF. 、 4、如图,四边形ABCD 为正方形,DE ∥AC,且CE =CA,直线EC 交DA 延长线于F. 求证:AE =AF. B E

5、设P 就是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠ DCE. 求证:PA =PF. 6、平行四边形ABCD 中,设E 、F 分别就是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF.求证:∠DPA =∠DPC. 7如图,△ABC 中,∠C 为直角,∠A=30°,分别以AB 、AC 为边在△ABC 的外侧作正△ABE 与正△ACD,DE 与AB 交于F 。 求证:EF=FD 。 8如图,正方形ABCD 中,E 、F 分别为AB 、BC 的中点,EC 与DF 相交于G,连接AG,求证:AG=AD 。 9、已知在三角形ABC 中,AD 就是BC 边上的中线,E 就是AD 上的一点,且BE=AC,延长BE 交AC 与F,求证AF=EF , D F E P C B A F P D E C B A

中考专题复习怎样证明面积问题以及用面积法解几何问题

中考专题复习——怎样证明面积问题以及用面积法解几何 问题 (一)证明面积问题常用的理论依据 1. 三角形的中线把三角形分成两个面积相等的部分。 2. 同底同高或等底等高的两个三角形面积相等。 3. 平行四边形的对角线把其分成两个面积相等的部分。 4. 同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 5. 三角形的面积等于等底等高的平行四边形的面积的一半。 8. 有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。 (二)证明面积问题常用的证题思路和方法 1. 分解法:通常把一个复杂的图形,分解成几个三角形。 2. 作平行线法:通过平行线找出同高(或等高)的三角形。 3. 利用有关性质法:比如利用中点、中位线等的性质。 4. 还可以利用面积解决其它问题。 【典型例题】 (一)怎样证明面积问题 1. 分解法 例1. 从△ABC的各顶点作三条平行线AD、BE、CF,各与对边或延长线交于D、E、F,求证:△DEF的面积=2△ABC的面积。 分析:从图形上观察,△DEF可分为三部分,其中①是△ADE,它与△ADB同底等 ③三是△AEF,只要再证出它与△ABC的面积相等即可 由S△CFE=S△CFB 故可得出S△AEF=S△ABC 证明:∵AD//BE//CF ∴△ADB和△ADE同底等高 ∴S△ADB=S△ADE

同理可证:S△ADC=S△ADF ∴S△ABC=S△ADE+S△ADF 又∵S△CEF=S△CBF ∴S△ABC=S△AEF ∴S△AEF+S△ADE+S△ADF=2S△ABC ∴S△DEF=2S△ABC 2. 作平行线法 例2. 已知:在梯形ABCD中,DC//AB,M为腰BC上的中点 分析:由M为腰BC的中点可想到过M作底的平行线MN,则MN为其中位线,再利用平行线间的距离相等,设梯形的高为h 证明:过M作MN//AB ∵M为腰BC的中点 ∴MN是梯形的中位线 设梯形的高为h (二)用面积法解几何问题 有些几何问题,往往可以用面积法来解决,用面积法解几何问题常用到下列性质:性质1:等底等高的三角形面积相等 性质2:同底等高的三角形面积相等 性质3:三角形面积等于与它同底等高的平行四边形面积的一半 性质4:等高的两个三角形的面积比等于底之比 性质5:等底的两个三角形的面积比等于高之比 1. 证线段之积相等 例3. 设AD、BE和CF是△ABC的三条高,求证:AD·BC=BE·AC=CF·AB

八年级数学几何图形练习题

八年级数学几何图形练 习题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

第 2 题 F E D C B A 八年级下册数学——几何图形 1.已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的 面积是( ) A .12cm 2 B . 24cm 2 C . 48cm 2 D . 96cm 2 2.如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重 合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为( )A .3 B .4 C .5 D .6 3.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为( ) A. 23 B. 332 C. 3 4.如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD .(1)求证: 四边形OCED 是菱形;(2)若∠ACB =30,菱形OCED 的面积为,求AC 的 长。 5.矩形ABCD 中,AE 平分∠BAD 交BC 于E,∠CAE=15°,求证:①△ODC 是等 边三角形;②BC=2AB 6.如图,在平行四边形ABCD 中,∠ABC=75°,AF ⊥BC 于点F BD 于点 E ,若DE=2AB ,求证∠AED 的度数。 A F B E B O 第3题

D C 7.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm.将△ABC沿射线BC 方向平移10 cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形。

初二数学下册几何题

初二数学下册几何练习题 一、填空题(每小题3分,共30分) 1、等腰梯形的周长为22cm,中位线长是7cm,两条对角线中点连线长为3cm,则梯形各边的长分别为______________________________. 2、梯形的一条对角线将中位线分成两部分的比是3:7,则中位线将梯形分成两部分的面积比为________________________________________。 3、菱形的周长20cm,一边上的高是4.8cm,较短的对角线长6cm,较长对角线长是___________________________ 4、如图,在矩形ABCD中,AB=3,AD=4,P为AD上一动点, PE⊥AC于E,PF⊥BD于F,则PE+PF的值为____________ 5、分别连结矩形、平行四边形、菱形、正方形、梯形、等腰梯形各边的中点,所得四边形为____________、______________、_____________________ ____________、________________ 、______________。 6、已知三角形三边长分别为6、8、10,则由它的中位线构成的三角形的面积为_____、周长为______________________ 7、等腰梯形的中位线长为6cm,腰长为5cm,则周长为_____________。 8、菱形ABCD中的一边与两条对角线夹角的差是20°,则该菱形各内角度数是_____ 9、对角线互相垂直的等腰梯形的高为5cm,则梯形的面积为______________________ 10、已知菱形的面积为96cm2,对角线长为16cm,则此菱形的边长为_______________ 二、单项选择题(每题3分,共30分) 11、已知:如图,D为△ABC的边AB的中点,E在AC上,CE= 1/3AC,BE、CD交于O点,若OE=2,则OB=() A、2 B、4 C、6 D、8 12、如图,等腰梯形ABCD中,AD∥BC,∠B+∠C=90°,E、F分别是 AD、BC的中点, 若AD=5cm,BC=13cm,则EF=()cm. A、4 B 、5 C、6.5 D、9 13、已知:△ABC的周长是a,D、E、F分别是△ABC三边的中点,在△DEF的内部再作这样的三角形……,则作出这样的第n 个三角形其周长为() A、a B、2a C、1/2a D、(1/2)n a 14、菱形的两条对角线长分别为6cm和8cm,则菱形的高为() A、24/5 B、48/5 C、6/5 D、12/5 15、如图,AB∥CD,,AE⊥CD,AE=12,BD=15,AC=20, 则梯形面积为() A、130 B、140 C、150 D、160 三、简答题(每题6分,共24分) 1、如图,MN是梯形ABCD的中位线,BC=5AD, 求四边形AMND与四边形ABCD的面积之比 2、等腰梯形的一个底角为45°,高为h,中位线长为m,求梯形下底的长

初二数学几何试题含答案

初二数学几何试题含答 案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

一、细心填一填 3.在数轴上与表示3的点距离最近的整数点所表示的数是 . 4.如图,△ABC 中,∠ABC =38,BC =6cm ,E 为BC 的中点,△ABC 平移得到△DEF ,则∠DEF = ,平移距离为 cm. 5.正九边形绕它的旋转中心至少旋转 后才能与原图形重合. 6.如图,若□ABCD 与□EBCF 关于BC 所在直线对称,且∠ABE =90°,则∠F = °. 7.如图,在正方形ABCD 中,以BC 为边在正方形外部作等边三角形BCE ,连结DE ,则∠CDE 的度数为 . 8.如图,在□ABCD 中,∠ABC 的平分线交AD 于点E ,且AE =DE =1,则□ABCD 的周长等于 . 9.在梯形ABCD 中,AD ∥BC 10.如图,在△ABC 中,AB =两点,则图中阴影部分的面积是11.直角三角形三边长分别为212.矩形ABCD 的周长为24 . 13.在四边形ABCD 中,对角线AC 、BD 相交于点O ,其中AC +BD =28,CD =10. (1)若四边形ABCD 是平行四边形,则△OCD 的周长为 ; (2)若四边形ABCD 是菱形,则菱形的面积为 ; (3)若四边形ABCD 是矩形,则AD 的长为 . 二、精心选一选(本大题共有7小题,每小题2分,共14分.在每小题所给出的四个 选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.) A D C E F 第4题 A B C D F 第6题 第10题

(完整word)初二几何面积法

专题复习一、面积法 何谓面积法 在求解平面几何问题的时候,根据有关几何量与涉及的有关图形面积之间的内在联系,用面积或面积之间的关系表示有关线段间的关系,从而把要论证的线段之间的关系转化为面积的关系,并通过图形面积的等积变换对所论问题来进行求解的方法,称之为面积法。 (一)证明面积问题常用的理论依据 用面积法解几何问题常用到下列性质: 1、全等三角形的面积相等; 2、三角形的中线把三角形分成面积相等的两部分; 3、同底同高或等底等高的两个三角形面积相等。 4、同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 一、证线段相等 1、已知:△ABC 中,∠A 为锐角,AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,求证:BD=CE E D C B A 2、已知:等腰△ABC 中,AB=AC ,D 为底边BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F. 求证:DE=DF. 3、(1)已知: △ABC 中,AB=AC ,P 为底边BC 上一点,PD ⊥AB 于D ,PE ⊥AC 于E ,BF ⊥AC 于F ,求证:PD+PE=BF. P (2)若P 为 △ABC 的底边BC 的延长线上一点,其他条件不变,请画出图形,并猜想(1)中的结论仍然成立吗?若成立,请说明理由;若不成立,请写出正确的结论,并证明。 F E C B A

A 4、(1)已知等边△ABC内有一点P,PD⊥AB,PE⊥BC,PF⊥CA,垂足分别为D、E、F,又AH 为△ABC的高,求证:PD+PE+PF=AH. P H F E D C B A (2)若P是等边△ABC外部一点,其他条件不变,(1)中的结论仍然成立吗?若成立,请说明理由;若不成立,请写出正确的结论,并说明理由。 A B C D E F H P 二、证角相等 5、点C是线段AB上一点,分别以AC、BC为边在AB同侧作等边△ACD和等边△BCE,连接BD、AE交于O点,再连接OC,求证:∠AOC=∠BOC. 1、Rt△ABC中,∠BAC=90°,AB=3,M为边BC上一点,连接AM,若将△ABM沿直线AM翻折

八年级下数学几何题(有答案)

八年级下期末复习5 如图1,四边形ABCD为正方形,E在CD上,∠DAE的平分线交CD于F,BG⊥AF于G,交AE 于H. (1)如图1,∠DEA=60°,求证:AH=DF; (2)如图2,E是线段CD上(不与C、D重合)任一点,请问:AH与DF有何数量关系并证明你的结论; (3)如图3,E是线段DC延长线上一点,若F是△ADE中与∠DAE相邻的外角平分线与CD的交点,其它条件不变,请判断AH与DF的数量关系(画图,直接写出结论,不需证明).

证明:(1)延长BG交AD于点S ∵AF是HAS的角的平分线,BS⊥AF ∴∠HAG=∠SAG,∠HGA=SGA=90°又∵AG=AG ∴△AGH≌△AGS ∴AH=AS, ∵AB∥CD ∴∠AFD=∠BAG, ∵∠BAG+∠ABS=∠ABS+∠ASB=90°∴∠BAG=∠ASB ∴∠ASB=∠AFD 又∵∠BAS=∠D=90°,AB=AD ∴△ABS≌△DAF ∴DF=AS ∴DF=AH. (2)DF=AH.

同理可证DF=AH. (3)DF=AH 如图,在△ABC中,点O是AC边上的一个动点(点O不与A、C两点重合),过点O作直线MN ∥BC,直线MN与∠BCA的平分线相交于点E,与∠DCA(△ABC的外角)的平分线相交于点F.(1)OE与OF相等吗?为什么? (2)探究:当点O运动到何处时,四边形AECF是矩形?并证明你的结论. (3)在(2)中,当∠ACB等于多少时,四边形AECF为正方形.(不要求说理由) 解:(1)如图所示:作EG⊥BC,EJ⊥AC,FK⊥AC,FH⊥BF, 因为直线EC,CF分别平分∠ACB与∠ACD,所以EG=EJ,FK=FH, 在△EJO与△FKO中,

初二数学几何证明初步练习题含答案

几何证明初步练习题 1、三角形的内角和定理:三角形的内角和等于180°. 推理过程: ○ 1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800( ,∴∠A+∠B+∠ACB=1800. ○ 2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800 . 2.求证:在一个三角形中,至少有一个内角大于或者等于60°。 3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。 4. 已知,如图,AE 5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°. 反证法经典例题 6.求证:两条直线相交有且只有一个交点. 7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。 求证:AB 与CD 必定相交。 8.2 一.角平分线--轴对称 9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC=13 求DE的长 第9题图 第10题图 第11题图 分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为Δ BCF 的中位线.∴DE=12FC=12 (AC-AB)=2. 10、已知在ΔABC 中,108A ∠=,AB =AC ,分ABC ∠.求证:BD 平BC =AB +CD . 分析:在BC上截取BE=BA,连接D E.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=,108A BED ∠=∠=, 36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴CD =CE ,∴BC =AB +CD . 11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC ∠的平分线AD 于D , 过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM =CN . 分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND . ∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN . 二、旋转 12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF =EF . 求证:45EAF ∠=. 分析:将ΔADF 绕A顺时针旋转90得ABG .∴GAB FAD ∠=∠.易 证ΔAGE ≌ΔAFE . ∴ 1452FAE GAE FAG ∠=∠=∠= 13、如图,点E 在ΔABC 外部,D 在边BC 上,DE 交AC 于F .若123∠=∠=∠, AC=AE.求证:ΔABC ≌ΔADE . C B A D E F D A B C B A E D N M B D A C 213E D B A

最新张景中——面积法开辟平面几何新天地

张景中——面积法开辟平面几何新天地

张景中——面积法开辟平面几何新天地 提起张景中,景仰之情不禁油然而生,心底涌出一堆的形容词和感叹句。诸如百折不回燃烧生命、身居逆境不改其志、目光如炬睿智如芒、思维如风顶尖成就、平凡之中凸显伟大、横扫千军势如破竹、与时俱进思维超前、破除迷信引领革命,等等等等,都不足以概括张景中院士对中国教育数学的贡献,即使在整个中国科学界,诞生这样的科学巨人,也是50年来仅见。 张景中的伟大,不在于在高等数学的多少个领域内做出了贡献,恰恰在所有人都认为不可能有突破性进展的初等数学领域,其中最稳定、最古老、最不可能创新的欧式几何王国内,取得了划时代的进展,颠覆性的进展。从17世纪以来的300多年,世界范围内的大科学家,他们在科学理论上的所有发现,几乎没有普通中学生能够读懂的东西。在初等数学领域,代数是一潭百年死水,平面几何更是一潭千年死水,没有活水也没有新鲜氧气注入。 是张景中,也仅仅是张景中,只在三年的初中几何教学中,就发现了问题并开始思考教材的改革。在平面几何2000多年的古老仓库中,捡起了从不被人重视的“面积方法”这件武器,将顽铁锻造成神器,像当年的孙悟空一样,从地下到天上,从18层地狱到33天兜率宫,将2300年不变的并被公认为完美杰作的欧几里德几何体系从公理体系到定理体系,从思想方法到解题思路搅了个天翻地覆,将欧几里德几何体系彻底改造了一番,创造了一个面目一新的张氏几何,名曰新概念几何。上至各路神仙、下至黎民百姓,看得目瞪口呆,看得如醉如痴。 张景中的这项科学发现,比起60年来国内任何一个科学家的发现影响面都要大得多,因为他的受众是8700万中学生!他影响的是整个中国的下一代。 张景中的脚步没有停歇,他的眼光自然而然地投向了机器证明几何定理这个百年难题。从莱布尼兹发明数值计算机械化以来,随着计算机科学的发展,机器证明几何定理也有了一定进展。中国老一辈数学家吴文俊将平面几何坐标化,创立了吴方法——代数消元法,

初中八年级数学下册几何知识总结及试题

§9.1 图形的旋转 概念:将图形绕一个顶点转动一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。图形的旋转不改变图形的形状、大小,只改变图形上点的位置 性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等。 基本画法:将图形上的一些特殊点与旋转中心连接,以旋转中心为圆心,连线段长为半径画图,按照旋转的角度来找出对应点,再画出所有的对应线段。 典型题:确定图形的旋转角度、确定图形的旋转中心、生活中的数学问题、作图题、 §9.2 中心对称与中心对称图形 1、中心对称的概念一个图形绕某点旋转180°,如果它能够与另一个图形重合,那么称这两 个图形关于这点对称,也称这两个图形成中心对称。这个点叫做对称中心,两个图形中的对应点叫做对称点。 2、中心对称的性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心 平分。 3、中心对称图形的定义及其性质 把一个图形绕某点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。中心对称图形上的每一对对应点所连成的线段都被对称中心平分。 §9.3 平行四边形 1、平行四边形的概念:两组对边分别平行的四边形叫做平行四边形 2、平行四边形的性质 平行四边形的性质:(1)平行四边形的对边相等;(2)平行四边形的对角相等(3)平行四边形的对角线互相平分。 3、判定平行四边形的条件 (1)两组对边分别平行的四边形叫做平行四边形(概念) (2)一组对边平行且相等的四边形叫做平行四边形

(3)对角线互相平分的四边形叫做平行四边形 (4)两组对边分别相等的四边形叫做平行四边形 5、反证法 反证法是一种间接证明的方法,不是从已知条件出发直接证明命题的结论成立,而是先提出与结论相反的假设,然后由这个“假设”出发推导出矛盾,说明假设是不成立的,因而命题的结论是成立的。 常见题型:运用性质求值、添加条件题、实际问题相结合、体现数学思想的题型、 例6:如图,在四边形ABCD中,AD∥BC,AD>BC,BC=6cm,点P、Q分别以A、C点同时出发,P以 1cm/ s的速度由点A向点D运动,Q以2cm/s的速度由C出发向B运动,设运动时间为x秒.则当x=时,四边形ABQP是平行四边形. §9.4 矩形、菱形、正方形 1、矩形的概念和性质 有一角是直角的平行四边形叫做矩形,矩形也叫做长方形。矩形是特殊的平时行不行,它除了具有平行四边形的一切性质外,还具有的性质:矩形的对角线相等,四个角都是直角2、判定矩形的条件 (1)有一个角是直角的平行四边形是矩形 (2)三个角是直角的四边形是矩形 (3)对角线相等的平行四边形是矩形 3、菱形的概念与性质 有一组邻边相等的平行四边形叫做菱形,菱形是特殊的平行四边形,它除了具有平行四边形的一切性质外,还具有一些特殊的性质:菱形的四条边相等;菱形的对角线互相垂直。 4、判定菱形的条件 (1)有一组邻边相等的平行四边形叫做菱形(概念) (2)四边相等的四边形是菱形 (3)对角线互相垂直的平行四边形是菱形 5、正方形的概念、性质和判定条件 有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。正方形不仅是特殊的平行四边形,而且是有一组邻边相等的特殊的矩形,也是有一个角是直角的特殊的菱形。它具有矩形和菱形的一切性质。 判定正方形的条件: (1)有一组邻边相等并且有一个角是直角的平行四边形叫做正方形(概念) (2)有一组邻边相等的矩形是正方形 (3)有一个角是直角的菱形是正方形 §9.5 三角形的中位线 1、三角形中线的概念和性质 连接三角形两边重点的线段叫做三角形的中位线。三角形中位线平行且等于第三边的一半

相关文档
最新文档