现代仪器分析在食品安全检测中的应用

现代仪器分析在食品安全检测中的应用
现代仪器分析在食品安全检测中的应用

现代仪器分析在食品安全检测中的应用

段晓江 2011314006

山西大学生命科学与技术学院太原 030006

摘要现代仪器分析是一门发展迅速,应用广泛的实用分析技术,这类技术具有快速、灵敏、准确的特点,并以化学和物理学为基础,在结构化学,光化学(化学动力学)、生物学和医学等领域起着重要作用。本文主要探讨现代仪器分析在食品安全、农产品质量等领域的应用。

关键词:仪器分析食品检测农药残留兽药残留

引言食品消费安全是人们日常关注的重大问题之一,食品中的农药残留、兽药残留、非法添加剂、重金属等有害物质的残留问题依然存在。在经历过三聚氰胺、瘦肉精、上海染色馒头,到如今的塑化剂等事件后,食品安全问题已然成为我们心中挥之不去的梦魇。当面对这些丧失道德和法制基准的食品安全事故的时候,我们应该全面反省在食品安全方面的不足,同时加强对食品安全的监督与检测。

1 食品安全检测的特点

1.1 样品基质复杂

在我们的日常检测中,样品的来源复杂,种类繁多。样品包含了有人们日常食用的各种产品,如:蔬菜,水果,肉类,水产品等等。这些食品或其制品的成分都是一些结构复杂的有机物,这给检测工作带来了极大的干扰。将样品进行前处理后,复杂的样品基质干扰仍难完全解决。

1.2 检测项目种类和检测组分多

(1)农药残留。

目前世界各国的化学农药品种约有1400多个,常见的主要有:有机氯、有机磷、氨基甲酸脂、拟除虫菊脂、有机硫、取代脲、杂环类、酰胺类、酚类等400种以上[1],作为基本使用的就有40种左右。基层常需检测其残留组分的是前四类,多达100种。

(2)兽药残留。

目前的兽药残留分为七类,分别为:抗生素类,驱肠虫药类,生长促进剂类,抗原虫药类,灭锥虫药类,镇静剂类和β-肾上腺素能受体阻断剂。根据欧盟96/23/EC指令为例(2000版),规定要检测的兽药残留组分约100多种,如:二苯乙烯及其衍生物、甲状腺抑别剂、类固醇、二羟基苯甲酸内脂、β-激动剂、磺胺类、唑诺酮类、四环素类、β-内酰胺、头孢霉菌素类、大环内酯类氨基(糖)苷类、驱虫药、镇静剂、抗球虫药、氯羟吡啶类、氨基甲酸脂类等等。

(3)重金属污染。

随着我国重工业、轻工业、农业、畜牧业、交通业、旅游业等行业的发展,自然生态环境受到的破坏越来越严重,直接或间接的影响着人类的健康。当今对人类健康威胁最大的污染物质有十大类,其中常见的重金属污染有的汞(Hg)、镉(Cd)、铅(Pb)、铬(Cr)和砷(As)等。

1.3 检测组分含量低

一般情况下,样品中的检测目标物浓度常为ppb(μg)级,ppn(ng)级甚至是ppt(pg)级,含量很低。

2 食品安全检测常用的分析仪器

2.1 气相色谱

气相色谱是20世纪50~60年代发展起来的一种高效、快速分析的方法。在食品安全检测中,只要样品能在气相色谱仪操作许可的温度下,直接或间接气化,均可采用气相色谱仪进行定性、定量分析,如蛋白质、氨基酸、核酸、糖类、脂肪酸、农药多残留等。

2.2 液相色谱

高效液相色谱法是60年代末、70年代初发展起来的快速分离分析的方法。它的基础是液相柱层析[2]。由于新型固定相、性能良好的高压输液泵以及具有选择性的高灵敏的检测器的使用,尤其是近年来利用电子计算机进行自动化控制及数据处理,使液相色谱法得到了很大的发展。高效液相色谱法被广泛应用于许多领域,同样亦被应用于食品安全检测领域。它不仅可以对食品中各类营养成分及含量进行分离和测定,而且还可以对食品中残留的一些有害的微量物质及在食品腐败过程中产生的各种毒素进行分析[3],从而向人们展示出高效液相色谱法在食品安全检测中的重要地位。近年来很多新型专用的高效液相色谱仪不断问世,如氨基酸分析仪、糖分析仪等,分别在检测食品中的污染物、营养成分、添加剂、毒素等方面得以充分应用。

2.3 质谱

随着科学技术的发展,质谱技术在食品安全检测中发挥着越来越大的作用,主要有气相色谱-质谱联用,高效液相色谱-质谱联用,气相色谱-原子光谱/质谱联用,超临界流体色谱-电感耦合等离子-质谱联用,高效液相色谱-原子光谱/质谱联用,高效液相色谱-电感耦合等离子/质谱联用等。这些高新技术具有传统方法无法比拟的优势,它们既发挥了现代色谱对复杂样品的高分离能力,又应用了质谱具有的高选择性、高灵敏度以及能够准确提供化合物的分子量与结构信息的优点。色谱与质谱的结合,帮助人类在自然界中寻找和发掘新的物质,并分离鉴定出了某些微乎其微的痕量物质。高效液相色谱-质谱联用技术始于20世纪70年代,其分析的化合物多数无需经过衍生化处理而直接进样在HPLC上得到分离,并进一步在MS 上获得准确的定性和定量,从而大大地缩短了分析时间,提高了分析的灵敏度和准确性。由于色谱-质谱联用技术化合物的分离和鉴定具有独特的优势,因此广泛地应用于食品、医药、生化、环保等各方面[4]。在食品检测中能够定性或定量地检测出食品中挥发性成分、糖类组成、氨基酸(蛋白质)、香味成分及有毒有害物质等成分。

2.4 原子吸收光谱

20世纪60~70年代原子吸收光谱仪日渐普及,目前,与其他分析技术联用促进了原子吸收光谱法的发展。与流动注射联用,消除了基体效应,提高了测定灵敏度和精密度。与氢化物发生器联用,使测定Ge、Sn、Pb、Sb、Bi、Se、Te、In等元素的检出限降低到ng以至pg 级。原子吸收光谱已在食品分析、食品营养、食品生物化学、食品毒理学等诸多领域得到了广泛应用。

2.5 原子荧光光谱

原子荧光光谱在元素及其形态分析方面有着广泛的应用,特别是与氢化物发生进样技术的结合,在测定食品、生物样品等中的As、Bi、Se、Te和Hg等元素都有很好的效果。原子荧光光谱法和原子吸收光谱法相互补充,在食品安全检测中同样得到了日益广泛的应用。

3 食品安全监控建议

人们对自然的认识和对自身健康的关切是无止境的,在日新月异的社会新环境下,对于食品安全的监管似乎还不够,要杜绝食品安全事故的发生,本文提出以下监控建议。

(1)严格审查和检查食品生产许可证制度,提高食品生产的进入门槛,规范生产流程和有效监督生产过程。

(2)完善食品安全生产规章制度,建立食品安全事故追责制,加大对食品安全事故的惩治力度。

(3)普及现代分析仪器的应用,建设日常性的食品、农产品质量安全检测机构,针对地区性的食品、农产品质量安全进行日常性的检测,防止问题食品流出市面。

参考文献

[1] 中国农业百科全书《农药卷》[M].北京:农业出版社,1993.

[2] 曾泳怀.分析化学(仪器分析部分)(第3版 ) .

[3] 于世林 . 高效液相色谱方法及应用[M].北京:化学工业出版社,2000,3.

最新食品现代仪器分析实验指导课件

食品现代仪器分析实验指导福州大学生物科学与工程学院 吴佳

2016年5月

实验一苦味饮料中硫酸奎宁的荧光法测定 1. 目的意义 喹啉结构是“苯并吡啶”。即一个苯环与一个吡啶环稠合而成。奎宁是喹啉的衍生物,其结构如下: N 喹啉 CH2 CH N CH 3 O C H OH C H 2 N CH2 CH2 CH2 奎宁 奎宁是金鸡纳树皮中含有的苦味晶状粉末,抗疟疾药。疟疾曾是热带、亚热带地区猖獗流行的疾病,曾夺走成千上万人的生命。17世纪末,奎宁由欧洲传入我国,曾称为“金鸡纳霜”,当时是非常罕见的药。后来,瑞典纳尤斯对这种植物的树皮进行了认真的研究,提取了其中的有效成分金鸡纳碱,起名为“奎宁”。“奎宁”这个词在秘鲁文字中是树皮的意思。直到1945年,奎宁才实现了人工合成。奎宁是碱性物质,与硫酸反应生成盐,俗名硫酸奎宁。 在饮料中硫酸奎宁是调味料,主要用在滋补品和苦柠檬水中,有调味及预防疟疾之功效,例如汤力水是Tonic Water的音译,又叫奎宁水、通宁汽水。是苏打水与糖、水果提取物和奎宁调配而成的。可作为苦味饮料或用于配制鸡尾酒或其它饮料。奎宁饮料以其微苦的口味成为畅销的解渴饮料,特别是在夏季人们大量饮用,但大量消费含奎宁成分的饮料对一些个体有害,如新陈代谢紊乱或对这种物质有超敏性的人要避免摄取奎宁,特别是孕妇。对怀孕期间每天饮用一升以上奎宁饮料的孕妇进行的调查显示,出生后24小时,新生儿就出现神经战栗症状,在他们的尿液中发现了奎宁成分,但2个月以后这些症状就不存在了。为此,对奎宁含量的测定具有重要意义。 2. 原理: 本实验包括荧光光谱和激发光谱测定,以及苦味饮料中硫酸奎宁含量测定。硫酸奎宁是强荧光性物质,在紫外光照射下,会发射蓝色荧光。在稀溶液中荧光强度与硫酸奎宁浓度成正比,可根据荧光强度求出硫酸奎宁浓度。 荧光(发射)光谱: 固定激发光波长和强度,在不同的波长下测定所发射的荧光强度,以发射波长为横坐标,以荧光强度为纵坐标,所作曲线为荧光发射光谱。 荧光发射光谱是选择最大荧光发射波长的依据。 荧光激发光谱: 固定荧光发射波长(一般在最大发射波长处),改变激发光波长,得出不同激发波长的荧光强度,以激发光波长为横坐标,以荧光强度为纵坐标,所得曲线称为激发光谱。

农产品与食品安全检测技术分析

农产品与食品安全检测技术分析 在世界人口急剧膨胀的今天,合理的使用农药能够提升粮食产量,但过量使用会造成严峻的环境污染,并导致许多遗传疾病。近年来,由于农药在食品中残留超标而造成的中毒事件时有发生。因此,在食品安全那个全球关注的热点咨询题中,如何快速、准确地检测农副产品中残留的农药咨询题就成为了重中之重的咨询题。 食品中农药残留分析存在的困难包括:样品基质背景复杂、前处理过程繁琐,需要耗费较多的时刻、被测成分浓度较低、分析仪器的定性能力受到限制、仪器检测灵敏度不够等一系列咨询题。如何解决这些咨询题,满足目前越来越严格的法规的要求,是许多科技工作者研究的方向。 一)、样品的净化:选择简洁、有效的样品处理方法,能够得到事半功倍的成效。常用的样品制备方法包括: 1. 溶剂萃取法: 2. 柱层析法: 3. SPE固相萃取法: 4. SFC超临界流体色谱法: 5. SPME无溶剂固相萃取法: 二)、提升仪器的检出能力 提升仪器检测有机农药能力的方法包括:免疫法、HPLC法、GC选择性检测方法、多级质谱分析法等。 1. 使用选择性气相色谱检测器:对含氯农药使用电子捕捉检测器(ECD)、对含硫、磷、氮的农药使用脉冲式火焰光度检测器(PFPD)、对含氮、含磷的农药使用氮磷检测器(TSD)、对含硫、含磷农药使用脉冲式火焰光度检测器(FPD)或火焰光度检测器。 2. 使用衍生化方法的方式,改善被测物的挥发性能及色谱行为,提升检出

限。但会将大量的衍生化试剂带入色谱系统,加速色谱柱效的降低过程。 3. 使用质谱仪对被测物进行定性分析:通过四极杆质谱仪的选择离子检测(SIM)、离子阱技术的选择离子储存技术(SIS)、对卤代化合物采纳NCI 技术、对低含量、背景干扰严峻难以定性分析的化合物分子采纳串联质谱(MS/MS)的方式分析,能够获得专门好的检测成效。 串联质谱(MSMS)分析技术专门适用于分析背景干扰严峻、定性困难、样品组份含量专门低的情形。其要紧特点是在提升分析能力的基础上提供足够的结构信息,用于结构的定性。近年来逐步被世界各国的权威检测机构用于仲裁分析。 三)、质谱的快速分析 农残分析的另一个重要的咨询题是快速有效。瓦里安的快速质谱分析技术利用质谱强大的定性能力,在比正常的质谱分析时刻缩短2-10的基础上,将信噪比提升3倍以上。实验结果见图五。 四)、液相色谱-串联质谱联用分析 液相色谱-串联质谱技术的进展,为分析鉴定难挥发、热不稳固化合物的结构提供了专门有用的数据。 四)、结论: 在对食品、蔬菜、水果、茶叶、调味品等农副产品中的农药残留、及有毒有害物质的检验工作中,按照中化人民共和国的国标,并参考其他国家或地区的检测标准,需要涉及的分析仪器大致可分为以下几类: 气相色谱:ECD测定含氯化合物、TSD测定含硫、磷化合物、PFPD测定含硫、磷、氮、铅、砷、锡等有机化合物、EI-MS/MS准确确定化合物结构,专门是同分异构体的鉴定、FID、TCD、MS 通用型检测器 进样技术:顶空、吹扫捕集、自动进样器、固体直截了当进样、自动固相微萃取(SPME)、气体样品预浓缩进样(SPT) 结果要求:准确——GC/MS/MS、GC-MS 快速——Rapid-MS 液相色谱:补充GC方法、快速检测有关有机化合物 测定氨基甲酸酯类农药(柱后衍生法)

XX大学2017年硕士学位研究生招生专业介绍【模板】

**大学2017年硕士学位研究生招生专业介绍 化学与环境工程学院 学术学位:********化学(一级学科);********应用化学(二级学科); 专业学位:********化学工程(二级学科); 学院主页:无; 咨询电话: ********; 电子信箱:shaoyr77@https://www.360docs.net/doc/f818872218.html,; 办公室:**大学实验楼P317。 学院简介: **大学化学与化工学院是理工类综合学院,拥有广东省化学教学示范中心、**市功能高分子重点实验室、**市新型锂离子电池与介孔正极材料重点实验室、**市石墨烯复合锂离子动力电池正极材料工程实验室。学院现有化学、应用化学、食品科学与工程、环境科学与工程、新能源科学与工程5个本科专业。拥有化学一级学科硕士学位点(理学)、应用化学(工学)二级学科硕士点以及化学工程专业学位硕士点。学院拥有一流的实验设备,原值近6000万元。 学院拥有一支实力雄厚、教学经验丰富的师资队伍。现有教职员工80人(专任教师68人),其中教授25人、副教授26人,占教师人数的75%,拥有博士学位者57人,占教师人数的84%,其中50%的教师有海外留学或工作经历。学院还聘请了国内外知名学者担任兼职教授,其中有中国科学院院士、**大学化学系讲座教授吴奇先生。 近五年来,学院承担了国家重点基础研究发展计划(973计划)项目、国家安全重大基础研究(国防973计划)项目、国家自然科学基金重点项目和面上项目等100多项,经费8000多万元。 学院目前拥有近20家校外实习基地,如:**市检验检疫局食品检验检疫技术中心、**市**区环境监测站、**市一品轩食品有限公司、**市环境科学技术中心实训基地等。 一、国际交流 学院与美国加州大学河滨分校(University of California-Riverside)工程学院举办“3+1全奖硕博连读项目”,经过选拔,可获得美国顶级工程学院的硕博连读或硕士项目录取机会、全额或部分奖学金机会以及美国公司一年的实习机会。学院同时与美国田纳西大学 (The University of Tennessee)和美国阿拉巴马大学亨茨维尔分校(The University of Alabama in Huntsville)签订了合作协议,可为学院本科生提供短期留学奖学金名额。 学院还与国外一些知名大学建立了良好的合作关系,可派遣优秀的学生进行交流学习,包括:罗格斯大学(美国)、麻省大学(美国)、斯特林大学(英国)、赫瑞瓦特大学(英国)、雷恩第一大学(法国)、维也纳大学(德国)、熊本大学(日本)、檀国大学(韩国)、蔚山大学(韩国)。

现代仪器分析与实验技术复习题

现代仪器分析与实验技术 一.名词解释 标准曲线:是待测物质的浓度或含量与仪器信号的关系曲线,由于是用标准溶液测定绘制的,所以称为标准曲线。 准确度:是指多次测定的平均值与真值(或标准值)相符合的程度,常用相对误差来表示。 超临界流体:某些具有三相点和临界点的纯物质,当它在高于其临界点即高于其临界温度和临界压力时,就变成了既不是气体也不是液体而是一种性质介于气体和液体之间的流体,称为超临界流体。 延迟荧光:分子跃迁至T1态后,因相互碰撞或通过激活作用又回到S1态,经振动弛豫到达S1的最低振动能级再发射荧光。这种荧光称为延迟荧光。 精密度:是指在相同条件下用同一方法对同一试样进行的多次平行测定结果之间的符合程度。 灵敏度:指被测组分在低浓度区,当浓度改变一个单位时所引起的测定信号的改变量,它受校正曲线的斜率比较和仪器设备本身精密度的限制。 检出限:是指能以适当的置信度被检出的组分的最低浓度或最小质量。 线性范围:指定量测定的最低浓度到遵循线性响应关系的最高浓度间的范围。 梯度洗脱:指在一个分析周期中,按一定的程序连续改变流动相中溶剂的组成(如溶剂的极性、离子强度、pH等)和配比,使样品中的各个组分都能在适宜的条件下得到分离。 锐线光源:锐线光源是空心阴极灯中特定元素的激发态,在一定条件下发出的半宽度只有吸收线五分之一的辐射光。 自吸收:指当浓度较大时,处于激发光源中心的原子所发射的特征谱线被外层处于基态的同类原子所吸收,使谱线的强度减弱,这种现象称为自吸收。 原子线:原子外层电子吸收激发能后产生的谱线称为原子线。 离子线:离子外层电子从高能级跃迁到低能级时所发射的谱线。 电离能:使原子电离所需要的最小能量。 共振线:在所有原子发射的谱线中凡是由各高能级跃迁到基态时所长生的谱线。

仪器分析技术最新发展趋势及应用

仪器分析技术最新发展趋势及应用 摘要:本文阐述了现代科学技术发展中仪器分析发展的现状及其基础地位,仪器分析的特点及存在的局限性及最新发展趋势。特别是当今仪器分析技术吸取数学、物理学、计算机科学以及生物学中的新思想、新理念、新方法和新技术,不断完善现有的仪器分析技术,使仪器分析技术正朝着快速、准确、自动、灵敏以及适应特殊分析方向而迅猛发展,这就是当今仪器分析技术发展的总趋势! 关键词:仪器分析分析方法发展趋势 当代科学技术发展的主要特征是高度分化和高度综合,分析化学也不例外。分析化学是四大化学之一,包括两大范畴化学分析和仪器分析。化学分析是指利用化学反应和它的计量关系来确定被测物质的组成和含量的一类分析方法。仪器分析是以物质的物理性质和物理化学性质为基础建立起来的一种分析方法,常常需要使用比较复杂的仪器。仪器分析又分为基础仪器分析和现代仪器分析,现代仪器分析又分为波谱分析、光谱分析、电化学分析、色谱分析、电镜分析、放射化学分析等。 1 仪器分析技术的基础地位 现代仪器分析是一门信息科学,用于陈述事物的运动状态,促进人与环境的相互交流。现代仪器分析也是一门信息技术,涉及信息的生产、处理、流通、也包括信息获取、信息传递、信息存储、信息处理和信息显示等,有效地扩展了人类信息器官的功能。人们通常将信息与物质!能源相提并论,称为人类社会赖以生存发展的三大支柱。世界由物质组成的,没有物质世界便虚无缥缈。能量是一切物质运动的源泉,没有能源,世界便成为静寂的世界。信息则是客观事物与主观认识相结合的产物,没有信息交换,世界便成为没有生气的世界,人类无法生存和发展。 生产和科研的发展,特别是生命科学和环境科学的发展,对分析化学的要求不再局限于“是什么”、“有多少”?而是要求提供更多更全的信息,即从常量到微量分析,从微量到微粒分析,从痕量到超痕量分析,从组成到形态分析,从总体到微区分析,从表现分布到逐层分析,从宏观到微观结构分析,从静态到快速

食品安全检测题库

食品安全检测题库 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、名词解释(20) 1. 比移值:样品经层析后,常用比移值Rf来表示各组分在层析谱中的位置 2.食品添加剂:为改善食品品质和色、香、味以及为防腐或根据加工工艺的需要而加入食品中的化学合成或者天然物质。 3.定性分析:是根据被检物质的化学性质,经适当分离后,与一定试剂产生化学反应,根据反应所呈现的特殊颜色或特定性状的沉淀来判定其存在与否。 4. 总糖:食品中的总糖通常是指具有还原性的糖(葡萄糖、果糖、乳糖、麦芽糖等)和在测定件下能水解为还原性单糖的蔗糖的总量。 5. 食品污染: :食品危害分析和关键控制点。为食品安全生产有利控制手段。 7. GMP:食品的良好操作规范 8. 食品感官评价:是凭借人体自身感觉器官(眼、耳、鼻、口、手等)的感觉(即视觉、听觉、嗅觉、味觉和触觉等)对食品的感官性状(色、香、味和外观形质)进行综合性的鉴别和评价的一种分析、检验方法,并且通过科学、准确的评价方法,使获得的结果具有统计学特性。 9. 分配系数:当一种溶质分布在两个互不相溶的溶剂中时,它在固定相和流动相两相内的浓度之比是个常数,称为分配系数。 10.食品防腐剂:指用于防止食品在加工后的储存、运输、销售过程中由于微生物的繁殖等原因引起的食物腐败变质,延长食品保存期限,提高食品的食用价值而在食品中使用的添加剂。11.灰分:食品经高温灼烧,有机成分挥发逸散,而无机成分(主要是无机盐和氧化物)则残留下来,这些残留物称为灰分。 12. 前处理:即根据被测物质和杂质间性质上的差异,使用不同的分离方法,将被测物质同有干扰的杂质进行分离,然后再进行以后的测定。 13.超临界流体:物质处于其临界温度(TC)和临界压力(TP)以上的单一相态,即超过气、液两相临界温度和临界压力时的非气、非液流体称超临界流体(Supercritical fluid, SCF, SF)。 14.超声提取:是利用超声波(频率>20KHz)具有的机械效应、空化效应及热效应,通过增大介质分子的运动速度,增大介质的穿透力以提取有效成分的技术。 15.加速溶剂萃取技术(Accelerated Solvent Extraction , ASE) 是在较高的温度(50 ℃~200 ℃) 和压力(1000 ~3000psi) 下用溶剂萃取固体或半固体样品的新颖的样品前处理方法。 二、判断对错(10) 1.超临界流体的密度和粘度类似液体,扩散系数接近于气体,因此可以利用这种特性来替代有机溶剂进行萃取。() 2.仪器分析是以物质的化学性质和物理化学性质为基础建立起来的一种分析方法,测定时需要使用比较复杂的仪器,它是分析化学的发展方向。() 3.食品发色剂又名护色剂,是指在食品生产过程中加入能与食品的某些成分发生作用,使食品呈现令人喜爱的色泽的物质。一般只能单独使用,不能复配使用。() 4用离子交换层析分离某一蛋白质时,洗脱剂的pH值高于蛋白质的等电点时,蛋白质带负电,此时应选用阳离子交换剂。()

现代仪器分析复习题

绍兴文理学院《现代仪器分析》复习题 一、填空题 1、按照固定相的物态不同,可将气相色谱法分为_气固色谱_和气液色谱,前者的固定相是固体吸附剂,后者的固定相是涂在固体担体上或毛细管壁上的液体。 2、按固定相外形,可将气相色谱法分为柱色谱(填充柱、空心柱)、平板色谱(薄层色谱和纸色谱) 3、分离非极性物质,用非极性固定液,试样中各组分按沸点次序流出,沸点低,tr小,沸点高,tr大。 4、分离极性物质,用极性固定液,试样中各组分按极性次序分离,极性小,tr小;极性大, tr 大。 5、最为有效地增加柱效的方法是减小填充物的粒径。 6、电子从基态吸收光后跃迁到激发态,称这种吸收谱线为共振线,如果跃迁到第一激发态,就称之为第一共振线 7、色谱分离的基本理论是塔板理论、速率理论。分别从组分在两相间的分配、组分在色谱柱中的运动描述了色谱行为。 8、为使组成复杂的混合物能够更好的分离,气相色谱法常常采用程序升温分析模式,而高效液相色谱法常采用梯度淋洗分析模式。 9、气相色谱仪中气化室的作用是保证样品迅速完全气化。气化室温度一般要比柱温高30-70℃,但不能太高,否则会引起样品分解。 10、在气液色谱中,被分离组分分子与固定液分子的性质越相近,则它们之间的作用力越大,该组分在柱中停留的时间越长,流出色谱柱越慢。 11、按组份在固定相上的分离机理,气相色谱法可以分为吸附色谱、分配色谱、离子交换色谱以及凝胶色谱(尺寸排阻色谱)等几种。 12、气相色谱气化室的作用是将液体或固体试样瞬间气化而不分解。 13、两组分保留值差别的大小,反映了色谱柱分离能力的高低。 14、分子对红外辐射产生吸收要满足的条件是(1) _分子的振动方式必须是红外或心活性的_,(2) _某一振动方式频率与红外线对的某一频率相同(即能产生瞬时偶极矩变化)_。 15、原子的吸收线具有一定的宽度,引起原子吸收线变宽的主要原因是自然宽度,多普勒变宽和压力变宽(劳伦兹变宽)。

现代仪器分析技术在制浆造纸中的应用

现代仪器分析技术在制浆造纸中的应用袁金霞(造纸试点10-1班,学号201005031174) 前言:现代分析技术主要研究各种物质化学组成的定性鉴定和定量测量的方法。现代分析技术正在不断发展,现代仪器的不断进步及计算机的使用,使得现代分析技术正在逐步发展成现代社会不可缺少的一门信息科学。现代分析技术在制浆造纸中应用广泛,制浆造纸行业的发展离不开分析技术的支持,它对于实验研究分析非常重要,包括各种抽出物分析,碳水化合物分析,木素分析和制浆造纸沉积物分析等。 近年来现代分析技术在制浆造纸研究中的应用日益广泛,下面主要介绍几种用于制浆造纸研究的现代分析技术: 一、红外光谱(IR):红外光谱是由于分子振动能级的跃迁(同时伴随转动能级的跃迁)而产生的,因此又称为振动转动光谱。红外光谱的应用大体上可分为两个方面:一是分子结构的基础研究,应用红外光谱测定分子的键长、键角来推断研究分子的基本结构;二是化学组成的分析,根据光谱中吸收峰的位置和形状来推断未知分子的结构,依照吸收峰的强度来测定混合物中各组分的含量。定性分析红外光谱定性分析可分为功能基定性和结构分析两方面。功能基定性分析是根据木素的红外光谱特征吸收谱带测定它有哪些功能基,而结构分析通常是红外光谱与其他分析方法(如质谱、核磁共振、X2射线衍射、元素分析等)相结合确定其结构。用红外光谱作样品分析时基本不需要处理,且不破坏和消耗样品,自身又无环境污染,近年来,红外光谱作为迅速崛起的光谱分析技术在分析测试领域中起到越来越重要的作用。目前,在造纸行业中,红外光谱主要用于对纤维素、半纤维素、木素作定性分析,着重是结构分析,也用于定量分析。红外光谱技术可用来研究纤维素的结晶结构,测定纸浆卡帕值,测定细纤维的取向角值,测混合纤维的构成,探测热磨机械浆的光返黄,测纸张的匀度,测量纸页的水份和纸板的重量,检查纸张结构,确定纸页内的水分分布,进行复印纸及其文字墨粉的无损检查,考察壳聚糖的吸附性能等。另外,红外光谱技术还可用来测量浆中杂质:用红外光谱

食品安全理化检测技术的探讨与分析

食品安全理化检测技术的探讨与分析 发表时间:2019-09-21T16:14:41.877Z 来源:《基层建设》2019年第19期作者:郑晓郡 [导读] 摘要:随着中国经济技术水平的快速提高和人民生活水平的多样化,食品安全逐渐成为人们共同关注的问题。 身份证号码:44058219800301XXXX 摘要:随着中国经济技术水平的快速提高和人民生活水平的多样化,食品安全逐渐成为人们共同关注的问题。近年来,食品安全问题频繁发生,因此需要提高食品安全理化检测技术的水平和有效性。本文从几种常用食品安全理化检测技术的分析入手,首先从四个方面介绍了常用的食品安全理化检测技术,然后比较了这些技术的优缺点。以此供相关人士参考。 关键词:食品安全;理化检测;相关技术;探讨分析 引言 食品安全和物理化学测试基于食品安全的固定指标。食品安全和物理化学检测分为两种方法:免疫化学检测和物理和化学检测。不同的检测方法各有优缺点,因此在应用时需要结合实际情况。理化检测中有一些检测方法灵敏度较高,有效性较好,但所需的成本较高,因此需要斟酌考虑方可进行使用[1]。 一、常用食品安全理化检测技术介绍 (一)色谱分析法的相关应用 色谱分析是物理和化学检测中的检测方法。色谱方法中有各种方法。首先薄层色谱法可以利用微量进行快速的检测,拥有一定的高效性和准确性。但是在这种色谱检测法中,其灵敏度不是很高,导致了其拥有显而易见的劣势,检测结果不够准确。相对而言,气相色谱在此基础上具有较好的灵敏度,弥补了薄层色谱的缺陷。而且它的速度与高效与薄层色谱法不相上下,因此在一定程度上拥有一定的优势[2]。然而,气相色谱法缺乏农药的检测。免疫亲和色谱法的检测过程较为复杂和全面,但是对于结果的要求也是非常准确的,在检测过程中通过对物品的分离和提取,实现了进一步有效的纯化,而高效液相色谱相对简单和快速。 (二)光谱测定法的相关应用 光谱测定法也是理化测定中的一种方法。光谱分析分为两个方面,即原子吸收光谱法和近红外光谱法。光谱测定法对于重金属的检测较为准确和专业。原子吸收光谱法可以有效检测生物中的无机元素,并对其元素内涵进行有效的鉴定。相对而言,近红外光谱法的应用领域比原子吸收光谱法更加广泛,因为近红外光谱法对物质的形态和属性没有任何的需求。在对食物内部的重金属和制假造假食品进行检测时,光谱测定法是一种等级较高的测定方法,其传感度高,并且结果准确,在市场上欢迎度较高。 (三)酶联免疫吸附试验的相关应用 酶联免疫吸附测定是免疫吸附测定中的方法。免疫吸附检测偏向利用化学手段进行食品安全的分析,在许多复杂的食品安全情境中可以起到至关重要的作用,反而对于简单的理化现象无法做到很好的检测。在中国目前的食品安全理化检测技术中,酶联免疫吸附试验是一种广泛使用的技术,可以区分食品中的抗生素和霉素。并对其进行标记,以便食品安全检测的结果更加准确和科学。利用酶联免疫吸附检测技术能够提高食品安全的可靠度和安全性,增加人民幸福感[3]。 (四)胶体金免疫层析的相关应用 胶体金免疫层析法的实质是免疫吸附测定法。光谱检测用于免疫层析,免疫学技术与光谱分析有效结合促进了胶体金免疫层析技术的高效和准确。其突出的优点是可以迅速高效地得出检测结果,在市场中多用来现场检测。其在操作方式上较为简单快捷,反应时间也较为短暂。 二、常用食品安全理化检测技术的对比分析 这四中食品安全理化检测技术都是市场上被经常使用的技术手段,其中在市场上酶联免疫吸附测定技术为一种受欢迎并且准确度高,灵敏度强,结果较为准确的检测方法,其检测方面覆盖了食品安全的各个领域,并且在使用时,需要较为强劲的检测工具配合使用,自身的准确性和科学性得到了重要的保障,从而受到大众的广泛使用,另外,其他三种检测方法也各有优缺点,在食品安全检测中发挥了重要作用。与常用的检测技术相比,这三种方法同样具有更大的技术优势和现代化优势。高效液相色谱法通常为我国大型的企业以及机关单位使用,由于其成本较高,需要的人力物力财力不计其数,因此需要多方面的配合方可进行检测。胶体金免疫层析技术操作简单、方便快捷,在检测中可以快速得到实验结果,因而适合小型企业或者个人实验中使用。随着我国经济和科技的迅速创新发展,更多的食品安全检测技术正在被创新使用,这使得将我国食品安全提高到了一个新的层次。食品安全得以良好保障,离不开理化检测技术的良好发展,也是我国科技人员共同努力共同进步的结果。 三、结束语 综上所述,常用的食品安全理化检测技术分为四个方面,分别是色谱分析法,光谱测定法,美联免疫吸附测定技术以及胶体金免疫层

现代仪器分析测试题及答案

1.以下属于仪器分析方法的是?光学分析法、色谱分析法 2.色谱分析过程中,欲提高分离度,可采取降低柱温 3.仪器分析法的主要特点是:分析速度快,灵敏度高,重现性好,试样用量少,选择性高 4.同一人员在相同条件下,测定结果的精密度称为:重复性 5.不同人员在不同实验室测定结果的精密度称为:再现性 6.分析测量中系统误差和随机误差的综合量度是:准确度 7.分析方法的灵敏度和精密度的综合指标是:检出限 8.分析仪器的主要性能指标是:精密度、准确度、检出限 9.在1840年发生的法国玛丽投毒案中,采用马氏试砷法进行毒物检验。加热式样中含有砷的化合物,则生成的AsH3在管内生成黑亮的单质砷。此分析方法属于:化学分析法 10.在1840年发生的法国玛丽投毒案中,玛丽被怀疑采用砷毒杀自己的丈夫,法医在鉴定砒霜中毒时,第一次没有检测到死者胃粘膜中的砷,原因是:采样方法有误 11.在1993年发生的史瓦哥投毒案中,毒物鉴定的分析方法属于:仪器分析法 12.在1993年发生的史瓦哥投毒案中,试样的纯化方法属于:色谱法 13.光谱分析法与其他仪器分析法的不同点在于光谱分析法研究涉及的是:光辐射与试样间的相互作用与能级跃迁 14.每一种分子都具有特征的能级结构,因此,光辐射与物质作用时,可以获得特征的分子光谱。根据试样的光谱,可以研究试样的组成和结构。 15.太阳光(日光)是复合光,而各种等(如电灯、酒精灯、煤气灯)光是复合光。× 16.受激物质从高能态回到低能态时,如果以光辐射形式释放多余能量,这种现象称为:光的发射 17.原子光谱是一条条彼此分立的线光谱,分子光谱是一定频率范围的电磁辐射组成的带状光谱。√ 18.不同物质,在产生能级跃迁是,吸收的光的频率是相同的。× 19.频率、波长、波数及能量的关系是:频率越高,波长越短,波数越高,能量越高 20.按照产生光谱的物质类型不同,光谱可以分为:原子光谱、分子光谱、固体光谱 21.光谱分析仪通常由四个基本部分组成:信号发生系统、色散系统、检测系统、信息处理系统 22.原子发射光谱是由于原子的外层电子在不同能级间的跃迁而产生的。 23.原子发射光谱属于线光谱 24.原子发射光谱法利用标准光谱比较法定性时,通常采用铁谱 25.无法用原子发射光谱分析的物质是有机物和大部分非金属元素 26.在原子光谱仪器中,能够将光信号转变为电信号的装置是光电倍增管 27.下面哪一项不是原子发射光谱法使用的光源?空心阴极灯 28.处于第一激发态的电子直接跃迁到基态能级时所发射的谱线成为主共振(发射)线 29.根据待测元素的原子在光激发下所辐射的特征光谱研究物质含量的方法称为原子荧光法 30.大米中的镉含量可以使用下面哪些方法进行检测?原子吸收光谱法、原子发射光谱法、原子荧光法 31.原子吸收光谱法中,背景吸收产生的干扰主要表现为火焰中产生的分子吸收及固体微粒的光散射 32.原子吸收光谱法中的物理干扰可用下述哪种方法消除?标准加入法 33.原子吸收测定中,以下叙述和做法正确的是?在维持稳定和适宜的光强条件下,应尽量选用较低的灯电流

仪器分析--实验报告

仪器分析方法在食品分析中的应用综合实验 摘要:本文分别采用了气质联用技术检测食品中的塑化剂,用高效液相色谱检测食品中的防腐剂,原子吸收光谱检测食品中的金属元素。并对检测结果进行了分析。 关键词:气质联用技术,高效液相色谱,原子吸收光谱 前言 现代食品的显著特点是食品的营养化、功能化、方便化,并保证食品质量与安全,这就要求食品加工从原理的选择、加工过程到最终产品及保藏整个链条中对食品的成分及成分的变化有全面的把握和认识。传统的分析手段和分析方法尽管能从宏观上了解和掌握成分及其变化,但已不能完全适应现代食品加工业的要求,现代仪器分析技术已经成为食品分析中不可缺少的重要分析手段。 实验内容 一.气-质联用技术检测食品中塑化剂的实验 (一)方法[1] 对于食品中邻苯二甲酸酯类化合物的检测,GB/T21911-2008《食品中邻苯二甲酸酯的测定》中规定了GC-MS作为检测方法。 1仪器: 气相色谱-质谱联用仪,凝胶渗透色谱分离系统,分析天平,离心机,旋转蒸发器,振动器,涡旋混合器,粉碎机,玻璃器皿。 2试剂: 正己烷,乙酸乙酯,环己烷,石油醚,丙酮,无水硫酸钠,16种邻苯二甲酸酯标准品,标准储备液,标准使用液。 3步骤: (1)试样制备:取同一批次3个完整独立包装样品(固体样品不少于500g、液体样品不少于500mL),置于硬质玻璃器皿中,固体或半固体样品粉 碎混匀,液体样品混合均匀,待用。 (2)试样处理(不含油脂液体试样):量取混合均匀液体试样5.0mL,加入正己烷2.0mL,振荡1min,静置分层,取上层清液进行GC-MS分析。 (3)空白试验:实验使用的试剂都按试样处理的方法进行处理后,进行GC-MS分析。 (4)色谱条件: 色谱柱:HP-5MS石英毛细管柱[30m×0.25mm(内径)×0.25μm]; 进样口温度:250℃; 升温程序:初始柱温60℃,保持1min,以20℃/min升温至220℃, 保持1min,再以5℃/min升温至280℃,保持4min; 载气:氦气,流速1mL/min; 进样方式:不分流进样; 进样量:1μL。 (5)质谱条件: 色谱与质谱接口温度:280℃; 电离方式:电子轰击源; 检测方式:选择离子扫描模式; 电离能量:70eV;

食品安全检测技术及其应用

食品安全检测技术及其应用 【摘要】食品安全是世人关注的热点和敏感问题,关乎着人民群众的人身财产安全。确保食品安全,加快食品安全检测技术的发展势在必行。从检测技术到检测技术应用到检测的各个方面,做好每个环节的检测的检测工作,确保食品安全,使民众食之安全。 【关键词】食品安全;检测技术;添加剂;违禁化学品 食品安全是人类赖以生存和发展的最基本的物质条件,关系到广大人民群众的身体健康和生命安全,关系到经济的健康发展和社会稳定,关系到政府和国家的形象。食品安全已经成为人民生活质量、社会管理水平和国家法制建设的一个重要方面。所以食品安全的检测方法日益受人关注,而作为检测手段的媒介—分析化学仪器的检测应用已然成为这一领域的新的研究热点。近年来,随着仪器分析的迅速发展,一些学科的先进技术不断渗透到食品分析中,形成厂日益增多的分析仪器和分析方法,从而使仪器分析在食品分析中所占比重不断增加,并成为现代食品分析的重要支柱。 一、食品安全检测技术研究进展 常用的检测技术: 1.1色谱技术 色谱技术实质上是一种物理化学分离方法,即当两相作相对运动时,由于不同的物质在两相(固定相和流动相)中具有不同的分配系数(或吸附系数),通过不断分配(即组分在两相之间进行反复多次的溶解、挥发或吸附、脱附过程)从而达到各物质被分离的目的。色谱类型有很多。目前,色谱技术已经发展成熟,具有检测灵敏度高,分离效能高,选择性高,检出限低,样品用量少,方便快捷等优点,一倍广泛应用于食品工业的安全检测中。色谱中常用的方法有气相色谱法,高效液相色谱法,薄层色谱法和免疫亲和色谱法。 1.1.1气相色谱法 气相色谱法是英国科学家1952年创立的一种极有效的分离方法,是色谱技术仪器化成套化的先驱。近年来毛细管气相色谱法以其分离效率高、分析速度快、样品用量少等特点,在食品农药残留等分析检测上独树一帜。随着人们对气相色谱的改进,测定的种类的范围也随之增加和扩大。

现代仪器分析重点总结(期末考试版)

分析仪器的主要性能指标是准确度、检出限、精密度。 根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。 已知一物质在它的最大吸收波长处的摩尔吸收系数κ为 1.4×104L·mol-1·cm-1,现用1cm吸收池测得该物质溶液的吸光度为0.850,计算溶液的浓度。 解:∵A=KCL ∴C=A/(KL)=0.850/(1.4×104×1)=0.607×10-4(mol·L-1 ) 10.K2CrO4的碱性溶液在372nm处有最大吸收,若碱性K2CrO4溶液的浓度c(K2CrO4)=3.00×10-5mol· L-1,吸收池长度为1cm,在此波长下测得透射比是71.6%。计算:(1)该溶液的吸光度;(2)摩尔吸收系数;(3)若吸收池长度为3cm,则透射比多大? 解:(1)A=-lgT=-lg71.6%=0.415 (2)K=A/(CL)=0.415/(3.00×10-5×1)=4.83×103 (L·mol-1·cm-1 ) (3)∵lgT=-A=-KCL=-4.83×103×3.00×10-5×3=-0.4347 ∴T=36.75% 苯胺在λmax为280nm处的κ为1430 L·mol-1·cm-1,现欲制备一苯胺水溶液,使其透射比为30%,吸收池长度为1cm,问制备100mL该溶液需苯胺多少克? 解:设需苯胺X g,则∵A=-lgT= KCL ∴0.523=1430×(X/M×100×10-3) ×1 X=3.4×10-3g 精密度是指使用同一方法,对同一试样进行多次平行测定所得测定结果的一致程度。精密度常用测定结果得标准偏差 s 或相对标准偏差(sr)量度。 二光分析导论 和活度) 四原子吸收光谱法 原子吸收光谱法的分析方法 主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。主共振吸收线就是该元素的灵敏线,也是原子吸收中最主要的分析线。基态原子数与待测元素含量的关系温度增加,则Nq/N0 大,即处于激发态的原子数增加;当温度保持不变时,电子跃迁能级差越小的元素,形成的激发态原子就越多, Nq/N0 则越大 轮廓表示原子吸收线轮廓的特征量 是吸收线的特征频率V o和宽度。 2)极大(峰)值吸收法以半宽比 吸收线的半宽还要小得多的锐线光 源来代替产生连续光谱的激发光 源,测量谱线的峰值吸收。 光源:锐线光源空心阴极灯 火焰类型:富燃焰、贫燃焰、化学 计量火焰 低温原子化技术:氢化物发生法(Sn As Se Sb Ge Pb)和冷原子化法(汞) 测定条件选择 ①狭缝宽度——不引起吸光度减 小的最大狭缝宽度②分析线— —灵敏度高、干扰少 ③灯电流——保证输出稳定和适 当光强的条件下,尽量选用低的工 作电流 ④试样用量——根据实验确定,在 合适的燃烧器高度下,调节毛细管 出口的压力以改变进样速率,达到 最大吸光度值的进样量 特征浓度:Cc(又称百分灵敏度) 是指产生1%净吸收(吸光度为 0.0044)的待测元素浓度。 干扰及消除方法※ 物理干扰、化学干扰、电离干扰、 光谱干扰 1、物理干扰消除:配制与待测溶液 组成相似的标准溶液或者采用标准 加入法,使试液与标准溶液的物理 干扰相一致 2、化学干扰消除:①加释放剂消除: 能与干扰元素生成更稳定、更难挥 发的化合物,而释放待测元素。 ②加保护剂消除:能与待测元素形 成络合物,在元素中更易原子化 3、电离干扰消除:加入消电离剂消 除,大量易电离的其它元素抑制待 测元素的电离 4、光谱干扰消除:非共振线干扰— 减小狭缝消除 背景吸收干扰(空白校正、氘灯校 正和塞曼效应校正) 五紫外-可见吸收光谱法 利用紫外-可见分光光度计测量物 质对紫外-可见光的吸收程度和紫 外-可见吸收光谱来确定物质的组 成、含量,推测物质结构的分析方 法。 朗伯—比尔定律A=kcL 电子跃迁的类型 成键σ电子(单键轨道) 成键π电子(双键或叁键轨道) 未成键n 电子(非键轨道)主要有 四种跃迁所需能量ΔΕ大小顺序 为:n→π*<π→π*≤n→σ*<σ →σ* 吸收带:R吸收带n→π*跃迁产生 K共轭体系中的π→π*B芳香族 化合物的π→π*产生的精细结构 吸收带E芳香族化合物的π→π* 产生的,芳香族化合物特征吸收 影响紫外可见吸收光谱的因素 1. 共轭效应π→π共轭使吸收峰 波长长移,吸收强度增加 2. 助色效应助色团的n电子与发 色团的π电子共轭,使吸收峰波长 长移,吸收强度增加的现象。 3. 超共轭效应烷基的σ电子与共 轭体系中的π电子共轭,使吸收峰 波长长移,吸收强度增加的现象。 4. 溶剂效应由溶剂的极性强弱引 起吸收峰波长发生位移,吸收强度 和形状发生改变的现象。(溶剂极性 增加)长移:π→π*吸收峰向长波 方向移动的现象。红移短移:π→ π*吸收峰向短波方向移动的现象。 紫移 测量条件选择,应注意: 1、入射光波长的选择: 选择被测物质的最大吸收波长作为 入射光波长。这样,灵敏度较高, 偏离朗伯-比耳定律的程度减小。 当有干扰物质存在时,应根据“吸 收最大、干扰最小”的原则选择入 射光波长。 2、吸光度读数范围的选择:为了减 少浓度的相对误差,提高测量的准 确度,一般控制待测液的吸光度在 0.2~0.7,可通过改变称样量、稀释 溶液以及选择不同厚度的吸收池来 控制吸光度。 3参比的溶液选择原则是使溶 液的吸光度能真正反应待测物的浓 度。 ①纯溶剂空白:当试液、试剂、显 色剂均无色时,可用蒸馏水作参比 液,称纯溶剂空白。 ②试剂空白:试液无色,试剂、显 色剂有色,采用不加试液的空白溶 液作参比,称试剂空白。 ③试液空白:试剂和显色剂均无色 时,而试液中其他离子有色时,应 采用不加显色剂的试液溶液作参比 液,称试液空白。 4、溶剂的选择:饱和有机化合物的 选择:低极性、惰性 5、显色反应条件:ph值范围 七分子发光光谱 分子去激类型:无辐射去激;辐射 去激 分子荧光分子磷光 原理分子第一 单重激发 态(S1) 的最低振 动能级到 基态(S0) 的不同振 动能级的 辐射跃迁 分子第一 三重激发 态(T1) 的最低振 动能级到 基态(S0) 的不同振 动能级的 辐射跃迁 特点概率大, 辐射过程 快, 损耗能量 大,波长 磷光大于 荧光,寿 命长 十一电化学分析法 电极分类 按电极电位形成的机理把能够建立 平衡电位的电极分为金属基电极和 膜电极第一类电极:金属和该金 属离子溶液组成的电极体系,电位 由金属离子活度系数决定 第二类电极;金属、金属难溶盐与该 难溶盐的阴离子溶液相平衡构成, 与该溶液中构成难容盐的阴离子活 度的对数呈线性关系常见甘汞电 极、Ag—AgCl电极 第三类电极:零类电极,由石墨、 金铂等惰性导体浸入含有氧化还原 电对的溶液中构成,也成氧化还原 电极。(溶液中氧化还原电对的性质 十六气相色谱法 适用范围:沸点在500度以下;在 操作条件下,热稳定性良好的物质, 原则上均可采取气相色谱法。 固定液的选择:根据相似相容原理 气相色谱检测器类型 浓度型:热导检测器、电子捕获器 质量型:氢火焰离子化检测器、火 焰光度检测器 操作条件的选择:载气及其流速的 选择;柱温的选择;载体和固定液 含量的选择;进样条件的选择 毛细血管和填充柱的区别:1、采用 分流进样方式 2、尾吹系统 十七高效液相色 适用范围:不受样品挥发和热稳即 相对分子质量的限制,只要把样品 制成溶液即可 基本部分:高压输液系统,进样系 统,分离系统,检测系统 正相键合色谱与反向键和色谱的区 别: 正相:流动相极性低而固定相高 反向:流动相极性大于固定相极性

现代仪器分析

现代仪器分析在金属有机化合物研究方面的应用 摘要: 分析仪器是人类认识世界的关键手段,是现代科学技术研究的重要支撑,科 学技术的突飞猛进和现代分析仪器及其相关技术的发展密不可分 [1] 核磁共振仪 核磁共振( Nuclear Magnetic Resonance,NMR)波谱学是一门发展非常迅速的科学。最早于1946 年由哈佛大学的伯塞尔( E . M . Pu r cell )和斯坦福大学的布洛赫( F . Bloc h ) 等人用实验所证实[ 1 ]。两人由此共同分享了1952 年诺贝尔物理学奖[ 2 ]。 核磁共振技术可以提供分子的化学结构和分子动力学的信息,已成为分子结构解析以及物质理化性质表征的常规技术手段[ 3 ], 核磁共振氢谱具有所需样品量少、灵敏、快速和精确等特点,它成为波谱学分析方法的重要组成部分。核磁共振主要是由原子核的自旋运动引起的。目前研究最多的是1H的核磁共振,它也叫做质子磁共振(Proton Magnetic Resonance) ,简称为PMR或1H-NMR 。在有机物分子中,处于不同化学环境的氢原子具有的化学位移δ不同,即在谱图上出现的位置不同,因此核磁共振氢谱图中,吸收峰的数目表明了有几种不同类型的氢原子,吸收峰的面积比或积分曲线的高度比就等于它们的数目比。清楚什么样的氢原子化学环境相同成为利用核磁共振氢谱推知有机物分子结构的关键。 核磁共振技术在有机合成中,不仅可对反应物或产物进行结构解析和构型确定,在研究合成反应中的电荷分布及其定位效应、探讨反应机理等方面也有着广泛应用[ 7]。核磁共振波谱能够精细地表征出各个氢核或碳核的电荷分布状况,通过研究配合物中金属离子与配体的相互作用,从微观层次上阐明配合物的性质与结构的关系,对有机合成反应机理的研究重要是对其产物结构的研究和动力学数据的推测来实现的[ 8] 1 色谱质谱联用仪 色谱是利用混合物中各个物质在色谱固定相和流动相之间不同的分配作用,使不同的组分在两相间反复分配从而实现混合物分离的方法,其在分析化学、有机化学、生物化学的领域有着广泛的应用[21][22][23]。 质谱法是将物质粒子电离成粒子,通过适当的稳定或变化的电磁场将它们按照空间位置、时间先后等方式实现质荷比分离,通过检测其强度来进行定性定量分析的方法[16]。质谱法检测灵敏度高,无需标样,可通过谱库检索来定性,也可根据目标化合物质谱的特征峰来确定分子结构。在众多的分析方法中,质谱法被认为是一种同时具备高特异性和高灵敏度的普适性方法。 色谱-质谱联用充分发挥了色谱的分离作用和质谱高灵敏度的检测功能,可以实现对混合物更准确的定量和定性分析,同时也简化了样品的前处理过程,使样品制备更加简便。 色谱-质谱联用包括气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS),这两种方法互为补充,适用于不同性质化合物的分析。气质联用技术是最早商品化的联用仪器,适用于小分子、易挥发、热稳定、能气化的化合物,其质谱仪器的电离源一般采用电子轰击电离(EI)源。液质联用主要适用于大分子、难挥发、热不稳定、高沸点化合物的分析,主要包括蛋白质、多肽、聚合物等[22]。 气相色谱-质谱联用仪 在气相色谱中,被逐次洗脱出来的组分在色谱图中是以峰的形式来记录。有关组分的信息通过测量色谱图中该组分峰的峰高和峰面积来确定,这些对应着检测到的组分量以及该组分通过色谱柱的时间。一方面气相色谱能够高效的分离混合物但并不善于鉴定各个组分;另一方面质谱监测器善于鉴别单一的组分却难以鉴别混合物。气相色谱-质谱联用法结合了气相色谱和质谱的优点,弥补了各自的缺陷,因而具有灵敏度高、分析速度快、鉴别能力强等特点,可同时完成待测组分的分离和鉴定,特别适用于多组分混合物中未知组分的定性定量分析、化合物的分子结构判别、化合物分子量测定。

现代仪器分析技术在食品中的应用

现代仪器分析技术在食品中的应用 湖南科技学院符国栋 前言: 仪器分析是指借用精密仪器测量物质的某些理化性质以确定其化学组成、含量及化学结构的一类分析方法,尤其适用于微量或痕量组分的测定。近年来食品仪器分方法的发展十分迅速,一些先进技术不断渗透到食品分析领域中,这类技术具有快速、灵敏、准确的特点,在食品分析中所占的比重不断增长,并成为现代食品分析的重要支柱。本文主要探讨现代仪器分析在食品检测中的应用及展望,其中对分光光度法和高效液相色谱法作了较详细的介绍。 关键词:仪器分析/理化性质/食品分析/检测/应用 目前在食品分析检测中基本采用仪器分析的方法代替手工操作 的传统方法,气相色谱仪、高效液相色谱仪、氨基酸自动分析仪、原子吸收分光光度计及可进行光谱扫描的紫外—可见分光光度计、荧光分光光度计等均得到了普遍应用。同时由于计算机技术的引入,使仪器分析的快速、灵敏、准确等特点更加明显,多种技术的结合与联用使仪器分析应用更加广泛,有力推动了食品仪器分析的发展,使得食品分析正处在一个崭新的发展时代。 现代分析仪器的种类十分庞杂,应用的原理不尽相同,而根据仪器的工作原理以及应用范围,可划分为:电化学分析仪器、光学式分析仪器、射线式分析仪器、色谱类分析仪器、离子光学式分析仪器、磁学式分析仪器、热学式分析仪器、电子光学物性测定仪器及其它专

用型和多用型仪器[1]。 1.光谱分析法 紫外—可见分光光度法具有专属性强,灵敏度和准确度高,操作简单、快速、安全、检品用量少等特点,广泛用于食品分析领域。原子吸收光谱分析法为食品分析、食品营养、食品生物化学、食品毒理学等诸多领域的空前发展提供了条件,成为测量痕量和超痕量元素的最有效方法之一。 1975年丹麦的Ruzicka和HansonE首次提出流动注射分析(flow—injection analysis, FIA) 的概念,指出化学分析可以在非平衡的动态条件下进行。FIA 具有适应性广泛,分析效率高,试样和试剂消耗量少,检测精度高等优点,已被广泛应用于很多领域。在与FIA 联用的各种监测器中, 分光光度检测器因其结构简单、价格低廉,易于推广。流动注射分光光度法是通过测定样品在检测池中吸收紫外-可见光的大小来确定样品含量的, 与各种在线分离富集、转化技术相结合(如溶剂萃取、离子交换、膜渗析、多流切换、合并区带、停流技术、动力学技术等),提高了分析方法的灵敏度和选择性。将快速扫描的光电二极管阵列检测器与流动注射和专用微机联用,可形成连续自动多组分同时测定的分光光度法系统,更进一步拓宽了流动注射分析的应用范围。近年来,流动注射分光光度法在食品分析特别是微量元素、蛋白质及氨基酸、维生素、食品添加剂等方面的分析研究取得了一定进展。 测定食品中的元素含量, 可以了解食品的营养价值和食品的污

相关文档
最新文档