哈大电气化铁路牵引供电系统情况介绍

哈大电气化铁路牵引供电系统情况介绍
哈大电气化铁路牵引供电系统情况介绍

哈大电气化铁路牵引供电系统情况介绍

哈大电气化铁路牵引供电系统情况介绍

哈大铁路为中国铁路网中一条重要干线,贯穿哈尔滨、长春、沈阳、大连四大枢纽,始建于1898年,为双线铁路,线路全长946.5公里。在东北乃至全国铁路运输中具有十分重要的地位。国家计委于1990年12月31日批准对哈大铁路进行电气化技术改造。2001年8月18日开通沈阳至哈尔滨段,11月30日开通沈阳至大连段,既全线开通运行。

哈大电气化铁路是我国首次系统引进具有国际先进水平的德国技术、设备和管理模式,其牵引供电系统适应200km/h高速铁路。牵引供电系统新建牵引变电所17座,架设接触网3314条公里,RTU135个,隔离开关900余台,远动控制系统设置1个主控中心和4个分控中心,

设置抢修基地4个,引进接触网动态检测车1辆。开通之初成立了哈尔滨、长春、沈阳、大连4个供电中心,随着铁路改革的深入,维修体制也几经变化,现全线由沈哈两局的沈阳、长春、哈尔滨供电段担负运营管理工作。

哈大电气化工程系统引进规模大,设备技术水平新,建设速度快,自全线开通至今,系统设备性能稳定,总体质量优良,达到了项目引进的预期目的。现全面介绍如下:

一、哈大牵引供电系统特点

(一)供电方式

1、全线采用220/27.5kv单相变压器供电,牵引变压器利用率高,变电所接线简洁,接触网电分相数目少,适应高速、繁忙区段。两路进线电源,设有跨桥连接,两台主变压器互为备用。

2、采用带回流线上下行全并联直接供电方式。上下行正线的接触网在车站通过一个带短路报警互感器的柱上开关进行并联。为了改善接触网的电传输特性,沿正线贯通架设加强线和回流线,每隔1500米加强线和回流线进行一次电连接,可每隔300米上下行的回流线并联一次,以明显降低接触网阻抗值和电压降,从而加大变电所的间距,减少牵引变电所的数量,节省了工程投资,降低了运营成本。

3、牵引变电所在馈线出口同方向上下行供电臂共用1台断路器。

4、采用了以接触网柱上隔离开关替代目前我国电气化铁路双线区段分区所和枢纽内建开闭所的新技术,取消了土建及配套工程,节省了工程投资及运营费用。

(二)牵引变电所

1、采用单相变压器、室外补偿电容装置及室内柜式27.5kv电气设备。

2、变电所内设置了接触网自动检测装置,即短路检测装置和反向电压检测装置。保证设备及作业人员的安全。

3、采用馈线断路器操作失灵保护,断路器箱体和变压器碰壳保护、接触网热保护技术,提高了运营可靠性。

4、17座牵引变电所的结构相同,区别在于变压器的容量、与变压器安装容量相匹配的有关设备,以及接触网的馈线数量。一般变电所馈出3条线路,编组站、区段站根据分场、分束供电要求设置馈线数目。

5、全线采用远动系统,牵引变电所无人值

班。

6、牵引变电所设备全套系统引进,中方施工单位安装,德方专家调试。

7、牵引变电所保护系统全部采用数字化保护,动作准确、可靠。保护设备部件集成化,体积小,占用空间少,故障率低,维修量少。

(三)接触网

1、正线采用德国Re200C系统,使用Ris100银铜接触线,较目前国内采用同材质接触线截面小。站线采用Re100的悬挂方式,使用Ri100纯铜接触线。

2、编组站和区段接触网分段。在站场内,由许多柱上开关组成若干可单独开合的电气分段。这些柱上开关(除机车整备线外)配备了电动操作机构,可由电调值班人员远程控制,停送

电作业和故障判断准确快速。

3、利用弓网关系仿真软件计算跨距配合、吊弦长度、道岔定位等问题,接触网稳定性很好。保证最佳弓网配合关系,提高列车运行安全性。

4、采用新型接触网接地系统。架设上下行全并联完全非绝缘回流线,回流线兼做架空地线,每隔300米上下行回流线并联一次,在区间用过轨单芯铜电缆连接,在车站用导流软横跨承力索连接。

5、在低净空桥处,支持装置采用了德国进口的弹性支撑部件。

6、接触网构件采用了大量的铝合金材料,降低了接触网重量,增加了弹性,便于维修更换。各部构件强度层次分配科学,使设备故障影响最小化。

牵引供电系统知识点201701225

《牵引供电系统》知识点 1、轨道交通的供电制式:直流制、单相工频交流制、单相低频交流制。不同供 电制的牵引供电系统结构,应用范围。 2、电气化铁路负荷等级和对进线电源的要求:一级负荷,牵引变电所有两路独 立进线电源 3、我国电气化铁路的供电制式?单相工频交流制牵引供电系统组成。 单相工频交流供电制式;单相工频交流制牵引供电系统组成:牵引变电所和牵引网组成。牵引网:由馈线、接触网、轨地回流线等组成。 4、牵引网为什么会出现分相?电分相绝缘装置设置在什么地方?有什么作 用? 因为牵引变压器将电力系统的三相电变为两相电,所以会出现分相;将分相绝缘器主要设置在牵引变电所出口处和分区所处;目的:把两相不同的供电区分开,并使机车光滑过渡。 5、牵引供电系统供电方式:直接供电方式,BT供电方式,带回流线的直接供电 方式,AT供电方式。基本电路原理图,优缺点。 直接供电方式:牵引电流通过电力机车后直接从钢轨或大地返回牵引变电所。 结构简单,投资最少,维护费用低。在负荷电流较大的情况下,钢轨电位高; 对弱电系统的电磁干扰较大。 BT供电方式:在接触网和回流线中串接吸流变压器,让牵引电流通过电力机车后从回流线返回牵引变电所。电磁兼容性能好,对周围环境影响小,钢轨电位低。 带回流线的直接供电方式:相对直接供电方式,钢轨电位和对通信线路的干扰有所改善。钢轨电位降低;牵引网阻抗降低,供电距离增长;对弱电系统的电磁干扰减小相对BT方式,结构简单,投资少,维护费用低;牵引网阻抗减小,供电距离增长 AT供电方式:能显著降低电气化铁路对通信线路的干扰,由于长回路电压提

高1倍,因此在同样的牵引功率下网上电流减小,电压损失、功率损失下降,牵引变电所间距变大。 6、牵引供电系统与牵引负荷的特点,分别给电力系统带来哪些电能质量问题? 牵引供电系统的负荷特性,主要取决于电力机车的电气特性、铁路线路条件和运输组织方案等因素。 牵引变电所负荷具有如下特点:负荷波动频繁、负荷大小不均衡、负载率低、牵引变电所供电能力适应最大负荷需要。给电力系统带来了负序和谐波等电能质量问题。7、如何改善各个电能质量问题?有哪些措施? 8、系统短路容量跟哪些因素有关?系统短路容量对各项电能质量指标有哪些 影响? 9、牵引供电系统电压水平的规定:机车/动车组、接触网、变压器额定电压,最高电压和最低电压 10、电压损失和电压降的概念及计算方法。 11、馈线电流的计算方法:负荷过程法(计算机仿真法)、统计法(同型列车法)、概率分布法 12、纯单相变压器、Vv接线变压器、YNd11接线变压器、Scott接线变压器(1)接线原理 (2)根据换相要求确定次边牵引端口的电压相别,从而将原边接入合适的相别(3)原次边电流变换关系 (4)归算到牵引侧的等值电路 (5)在负荷相同的情况下,变压器容量有什么不同? (6)原边负序电流的计算 (7)在负荷相同,接入系统电源相同的情况下,不同接线牵引变压器负序影响有什么不同? 13、三相-两相平衡变压器的特点? 14、牵引网阻抗计算的目的? 确定牵引网压损,校验运行时网压水平;计算短路阻抗、短路电流,确定继电保

电力牵引传动..

电力牵引传动与控制第一章电力牵引传动与控制系统概述 一、系统组成与功用 1.①内燃机车电力传动与控制系统组成 ②电力机车电力传动与控制系统组成 2.机车理想牵引特性曲线 图1.2 牛马特性 理想特性要求:机车在运行时能经常利用其动力装置的额定功率.即:F·V=3.6η·N=const.

3.电传动装置的功用? 图1.3 柴油机功率特性和扭矩特性 ①充分利用和发挥机车动力装置的功率; ②扩大机车牵引力F与速度V的调节范围; ③提高机车过载能力,解决列车起动问题; ④改善机车牵引控制性能。 Why要电传动:柴油机通过机械直接传动不能适应机车起动、过载、恒功等要求 二、系统分类 1.直-直电力传动系统 内燃或电力机车采用直流牵引发电机或直流电网直接向数台直流牵引电动机供电的传动方式。 特点: ①调速性能优良,系统简洁。 ②直流牵引电机造价较高,但可靠性、维护性相对较差。 ③受直流电机换向条件和机车限界、轴重等限制,主发电机单机功率受到限制。一般在2200KW以下。 ④车型:早期DF,DF2,DF3,ND1,ND2等

2.交-直电力传动系统 内燃或电力机车采用交流牵引发电机或单相交流网及变压器,通过整流器向数台直流牵引电动机供电的传动方式。 特点: ①采用三相交流同步发电机,结构简单,可靠性高,重量轻,造价较低。 ②适用于大功率机车。 ③车型:DF4,DF5,DF7,DF11,ND4,ND5,SS3-SS9等。 3.交-直-交电力传动系统 内燃或电力机车采用交流牵引发电机或单相交流电网及变压器,经整流器将交流电变换成直流,再通过逆变器将直流电变换成频率和幅值按列车运行控制要求变化的交流电,向数台交流牵引电动机供电的传动方式。 特点: ①采用交流牵引电机,彻底克服了直-直系统的不足,重量轻,造价低,可靠性及维修性好 ②良好的粘着性能 ③适用于大功率 ④控制系统复杂 ⑤车型:DF4DAC,NJ1; DJ,DJ2,DJJ1,DJ4; HX、CRH系列等 三、发展历史与现状 1.大功率(内然)机车电力传动与液力传动两种主要传动方式的演变与发展 主要趋势:电力传动 2.电力传动形式的发展:直-直→交-直→交-直-交 发展趋势:大功率、电力牵引、交流传动

牵引供电系统简介

牵引供电系统简介: 将电能从电力系统传送给电力机车的电力装置的总称叫电气化铁路的供电系统,又称牵引供电系统,主要由牵引变电所和接触网两大部分组成。牵引变电所将电力系统输电线路电压从110kV(或220kV)降到27.5kV,经馈电线将电能送至接触网;接触网沿铁路上空架设,电力机车升弓后便可从其取得电能,用以牵引列车。牵引变电所所在地的接触网设有分相绝缘装置,两相邻牵引变电所之间设有分区亭,接触网在此也相应设有分相绝缘装置。牵引变电所至分区亭之间的接触网(含馈电线)称供电臂。 牵引供电回路是由牵引变电所——馈电线——接触网——电力机车——钢轨——回流联接——(牵引变电所)接地网组成的闭合回路,其中流通的电流称牵引电流,闭合或断开牵引供电回路会产生强烈的电弧,处理不当会造成严重的后果。通常将接触网、钢轨回路(包括大地)、馈电线和回流线统称为牵引网。 牵引供电设备的检修运行由供电段负责,牵引供电系统的运行调度则由供电调度负责。供电调度通常设在铁路局调度所。 牵引供电系统供电示意图如下所示: 二、牵引变电所、分区所、开闭所 牵引变电所:牵引变电所的任务是将电力系统三相电压降

低,同时以单相方式馈出。降低电压是由牵引变压器来实现的,将三相变为单相是通过变电所的电气接线来达到的。 牵引变压器(主变)是一种特殊电压等级的电力变压器,应满足牵引负荷变化剧烈、外部短路频繁的要求,是牵引变电所的“心脏”。我国牵引变压器采用三相、三相——二相和单相三种类型,因而牵引变电所也分为三相、三相——二相和单相三类。 随着技术水平的提高,我国干线电气化铁路已推广使用集中监视及控制的远动系统,牵引变电所将逐步实现无人值班,直接由供电调度实行遥控运行。 分区所:分区所设置在两个变电所中间,作用有三:提高供电质量、供电分段、越区供电。 ?开闭所:一般设置在大型站场附近,进线由变电所或接触网引入,由开关馈出多个供电线路向多个供电设备供电。作用是增强供电的灵活性,便于供电设备的运行及检修,便于行车组织,缩小供电事故及故障范围。 ? ? 三、接触网 接触网是沿铁路沿线架设的特殊电力线路,电力机车受电弓通过与之滑动摩擦接触而授流,取得电能。所以两者均应保持良好的工作状态。

电气化铁道主要供电方式

接触网的供电方式 我国电气化铁路均采用单边供电方式,即牵引变电所向接触网供电时,每一个供电臂的接触网只从一端的牵引变电所获得电能(从两边获得电能则为双边供电,可提高接触网末端网压,但由于其故障范围大、继电保护装置复杂等原因尚未有采用)。复线区段可通过分区亭将上下行接触网联接,实现“并联供电”,可适当提高末端网压。当牵引变电所发生故障时,相邻变电所通过分区亭实现“越区供电”,此时供电范围扩大,网压降低,通常应减少列车对数或牵引定数,以维持运行。 1、直接供电方式 如前所述,电气化铁路采用工频单相交流电力牵引制,单相交流负荷在接触网周围空间产生交变电磁场,从而对附近通信设施和无线电装置产生一定的电磁干扰。我国早期电气化铁路(如宝成线、阳安线)建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式(简称TR供电方式)。随着电气化铁路向平原和大城市发展,电磁干扰矛盾日显突出,于是在接触网供电方式上采取不同的防护措施,便产生不同的供电方式。目前有所谓的BT、AT和DN供电方式。从以下的介绍中可以看出这些供电方式有一个共同特点,即在接触网支柱田野侧,与接触悬挂同等高度处都挂有一条附加导线。电力牵引时,附加导线中通过

的电流与接触网中通过的牵引电流,理论上讲(或理想中)大小相等、方向相反,从而两者产生的电磁干扰相互抵消。但实际上是做不到的,所以不同的供电方式有不同的防护效果。

2、吸流变压器(BT)供电方式 这种供电方式,在接触网上每隔一段距离装一台吸流变压器(变比为1:1),其原边串入接触网,次边串入回流线(简称NF线,架在接触网支柱田野侧,与接触悬挂等高),每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果。 由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用。 BT供电方式原理结线图 H—回流线;T—接触网;R—钢轨; SS—牵引变电所;BT—吸流 变压器。 牵引网阻抗与机车至牵引变电所的长度不是简单的线性关系。随着机车取流位置的不同,牵引网内的电流分布可有很大不同,例如图中当机车位于供电臂内第一台BT前方时,牵引负荷未通过吸流变压

北交大牵引供电系统作业

北交大17春《牵引供电系统》第二次作业参考答案 (2018 年 10 月 6 日----2018 年 11 月 6 日) 1.电气化铁道牵引变压器的接线方式有哪些?各有何特点? 2.当前高速铁路普遍采用的变压器接线方式是哪一种?为什么? 3.变压器的计算容量,校核容量,最大容量,安装容量有何不同? 4.变压器的过负荷能力对变压器容量有和影响? 5.变压器的备用方式对变压器容量的选择有何影响?当前高速铁路采用的是那种备用方 式? 6、计算题: 沪宁线(单线考虑)某变电所(镇江变电所)供电分区内:列车运行密度N=25对/天,假设每列列车牵引能耗A=1750KVA H所有列车累计运行时间56min,供电分区内有6个车站,该变电所采用三相变压器,固定备用,请确定该变电所的安装容量。 7、牵引网阻抗是什么?牵引网阻抗包含哪些回路,请画出单线铁路等值电路图。 8、牵引网阻抗的影响因素是什么? 9、如何计算牵引网阻抗? 10、计算牵引网阻抗有何意义? 11、如何测量牵引网阻抗? 12、计算:新建合肥至上海(按单线考虑)客专,接触网采用GJ-70+GLCA100/215 已知数据:导线有效电阻R仁0.184欧/公里,当量系数A=0.95 计算半径9.025毫米;等导线有效电阻R仁0.184欧/公里,当量系数A=0.95 承力索GJ-70计算参数: 有效电阻R2=1.93欧/公里,当量系数A=0.95 计算半径5.75毫米;等导线有效电阻R2=0.184 欧/公里,当量系数B=0.1导线高度 H仁6200毫米;结构高度h=1500毫米;驰度f=700毫米 钢轨参数:有效电阻R3=0.18欧/公里;计算半径96.5毫米;当量系数A=0.16 ;等值半径15.4毫米;大地土壤电导率:-=10°/i」cm 试计算牵引网阻抗。 1.常用的有四种接线方式:平衡变压器(阻抗匹配,非阻抗匹配;斯科特(Scoot )接线方式;三相接线方

牵引供电系统2

北交大17春《牵引供电系统》 第二次作业(2018年10月6日----2018年11月6日) 1.电气化铁道牵引变压器的接线方式有哪些?各有何特点? 铁道电气化牵引供电方式有①、AT方式(自耦变供电);②、BT方式(吸流变);③、直供方式。不同的供电方式,需要的变压器是不同的。 ①、在一些老的支线上采用Dy11接线,此种变压器制造简单,运行中会产生 严重的负序分量,容量利用率也低,大约在70%多。后来经过云南变压器厂的改进,虽然提高了容量利用率,但负序问题没有解决;②、为了解决负序问题,就出现了平衡变压器,国外有斯科特和李伯来斯等接线方式。国内有阻抗匹配平衡变压器,后者不仅解决了负序问题,还提高了容量利用率(达100%),高压侧可有中性点引出。但设计和制造复杂,由云南变压器厂制造; ③、目前高铁常用的是220kV比27.5kV的单相变压器。其制造简单、运行可 靠。 2.当前高速铁路普遍采用的变压器接线方式是哪一种?为什么? 现在用的比较多的就是带回流线的直接供电方式和AT方式。一般接触网电压不应低于20kv即可。牵引网阻抗主要和接触线规格有关,另外AT方式的阻抗分长回路阻抗和段中阻抗两项。 3.变压器的计算容量,校核容量,最大容量,安装容量有何不同? 设备容量:该变压器所带的所有用电设备额定容量的和。 计算容量:1、单个用电设备,设备容量与用电负荷存在一个设备效率的差异。 2、针对某一组具体用电设备,每台设备运行时也并不一定运行在额定状态, 必须考虑负载系数的问题;所有的用电设备并非同时运行,这就需要考虑设备的同时系数问题。 3、多个组的用电设备,还存在是否同时运行的因素,因此需要考虑多个组的 同期系数。 4.变压器的过负荷能力对变压器容量有和影响? 如果电机的容量大于变压器容量,实际上的物理反应就是变压器绕组过热,时间长了就导致线圈烧毁。 5.变压器的备用方式对变压器容量的选择有何影响?当前高速铁路采用的是

电气化铁道与城轨交通(地铁、轻轨)供电方式比较分析

山东职业学院 毕业论文 题目:电气化铁道与城轨交通(地铁、 轻轨)供电方式比较分析原所在系:电气工程系 原专业班级:电气自动化技术 转入后班级:电气化铁道技术 姓名:xx 指导老师:xxxx 完成日期:2012 3 29

山东职业学院毕业论文评审表 指导教师:论文成绩: 指导教师评语: 指导教师签名: 年月日复审人:论文复审成绩: 复审人评语: 复审人签名: 年月日

山东职业学院毕业论文答辩情况记录 答 辩 题 目 对学生回答问题的评语 正确 基本 正确 经提示 回答 不 正确 未 回答 答辩委员会(或小组)评语: 答辩成绩: 答辩负责人签名: 年 月 日 系毕业论文领导小组审核意见: 组长签名: 年 月 日 注:毕业论文总成绩中,指导成绩占40%,复审成绩占20%,答辩成绩占40%

目录 第1章概述 (1) 第2章牵引供电系统 (2) 2.1 铁路牵引供电系统的供电方式 (2) 2.1.1 直接供电方式 (2) 2.1.2 吸流变压器(BT)供电方式 (2) 2.1.3 自耦变压器(AT)供电方式 (3) 2.1.4 直供+回流(DN)供电方式 (3) 2.2 城市电网对地铁的供电方式 (4) 2.2.1 集中供电方式 (4) 2.2.2 分散供电方式 (5) 2.2.3 混合供电方式 (5) 第3章牵引网的供电 (6) 3.1 铁路牵引网的供电方式 (6) 3.1.1 单边供电 (6) 3.1.2 上下行并联供电 (6) 3.1.3 双边供电 (7) 3.2 城轨牵引网的供电方式 (7) 3.2.1 第三轨 (7) 3.2.2 第四轨 (7) 3.2.3 架空电缆 (8) 总结 (9) 致谢 (10) 参考文献 (11)

北交大《牵引供电系统》离线作业2

北交大《牵引供电系统》离线作业2 1.电气化铁道牵引变压器的接线方式有哪些?各有何特点? 答:常用的有四种接线方式:平衡变压器(阻抗匹配,非阻抗匹配;斯科特(Scoot)接线方式;三相接线方式;单相接线方式; 特点:平衡变压器与斯科特变压器的利用率较高,对系统的不对称影响最低;单相的容量可以很大,但对系统影响较大,三相变压器利用率接近0.79-0.82,制造工艺成熟,质量稳定,有中性点,但对系统的影响较大。 2.当前高速铁路普遍采用的变压器接线方式是哪一种?为什么? 答:当前高速铁路较多采用单相接线VV方式,大容量单相变压器制造容易,采用220KV 的电源网络,对系统影响可降至最低。 3.变压器的计算容量,校核容量,最大容量,安装容量有何不同? 答:计算容量:根据列车正常运行密度(年货运量),线路区间状况(区间数),列车运行特征(能耗)等计算条件确定的最小容量; 最大容量:根据列车紧密运行密度(年货运量),线路区间状况(区间数),列车运行特征(能耗)等计算条件下,馈线短时最大工作电流时的容量; 校核容量:利用变压器的过负能力,最大容量与过负荷系数的比值,成为校核容量; 安装容量:根据运行备用方式和校核容量,综合计算容量,最大容量,在产品序列中选取确定的变压器最终容量。 4.变压器的过负荷能力对变压器容量有和影响? 答:变压器的过负荷能力越强,(即在运行条件下过负荷的倍数大和时间长),变压器校核容量越小。但工程实践中,变压器负荷率一般在0.75是变压器的工作状态最好,功率因数最高,安全性能最稳定,因此实际的变压器都取较大容量,留有足够备用,虽然增加了工程静态投资,建设成本升高,但可最大限度延长变压器使用寿命,已策安全。 5.变压器的备用方式对变压器容量的选择有何影响?当前高速铁路采用的是

DN供电方式牵引供电系统项目设计方案

DN供电方式牵引供电系统项目设计方案 第2章主接线图设计方案 2.1 供电方案的说明 目前铁路的运力不断加大,电气化铁路的负荷也在不断增加。牵引变电所的设计要求简单实用,所以根据实际的运行要求选择直供加回流的供电方案。我国铁路供电的电压等级主要是110kV高压供电,所以本设计拟采用110kV三相供电。 ,d11。 进线端是两路进线,每路进线选用一台普通三相变压器,其接线方式为Y n 这两台主变压器之间互为备用。主变压器进线是三相110kV ,出线是每相27.5kV(单相供电,其中一相回流)在方案中选择容量合适的主变压器是很重要的,容量过小,容易过负荷;容量过大造成浪费,试运营成本增加。 主变压器的进线是三相进线,两台变压器互为备用。 馈线端是接27.5kV侧直接给接触网供电。低压侧采用单母线分段,四条馈线接辅助母线互为100%备用。在方案确定后紧接着要做的工作就是设计并确定主接线图。主接线图的设计会把这些设计思想反映在接线和设备的选用上。然后根据主接线图进行有关计算,最后选定高压设备[3]。 图2-1 带回流线的直接供电方式示意图

2.2 主接线图方案的设计 在进行主接线图设计之前,我参考了有关牵引变电所设计方案,争取把比较完整,比较先进的主接线设计方案运用在该设计中。对该设计中的主接线图的说明主要如下:该变电所电气主接线设计是依据变电所的最高电压等级和变电所的性质,选出的一种与变电所在系统中的地位和作用相适应的接线方式。该变电所的电气主接线包括110kV高压侧、27.5kV低压侧以及变压器的接线。因各侧所接的系统情况不同,进出线回路数不同,其接线方式也不同。电气主结线的基本结线形式有单母线接线,双母线接线,桥形结线和简单分支接接线。在该主接线图中,低压侧用了单母线分段(图2-2)。 图2-2 单母线分段示意图

牵引供电系统简介.

牵引供电系统简介 (丁为民) 一、系统功能 牵引供电系统的主要功能是:将地方电力系统的电源(交流电气化铁路: AC110 kV或AC220kV ,城市轨道交通:中心变电所AC220kV 或AC110kV →AC35 kV 环网)引入牵引供电系统的牵引变电所,通过牵引变压器变压为适合电力机车运行的电压制式(交流电气化铁路:AC25kV 或AC2×25kV ,城市轨道交通:DC750V 、DC1500V 或DC3000V ),向电力机车提供连续电能。 电力牵引负荷为一级负荷,引入牵引变电所的外部电源应为两回独力可靠的电源,并互为热备用,能够实现自动切换。 交流电气化铁路及城市轨道交通牵引供电系统简图分别如图1.1和图1.2所示。 图1.1 交流电气化铁路牵引供电系统

图1.2 城市轨道交通牵引供电系统 二、牵引网供电方式 1. 交流电气化铁路 交流电气化铁路牵引网供电方式大体上可分为三种:直接供电方式(包括带回流线的直接供电方式)、BT 供电方式和AT 供电方式。 (1)直接供电方式 直接供电方式又可分为不带回流线直接供电方式(图2.1 和带回流线的直接供电方式(图2.2 两种。 图2.1 不带回流线的直接供电方式

图2.2 带回流线的直接供电方式 不带回流线的直接供电方式在我国早期的电气化铁路中采用,机车电流完全通过钢轨和大地流回牵引变电所,牵引网本身不具备防干扰功能。在接地方面,每根支柱需单独接地(设接地极或通过火花间隙),或者通过架空地线实现集中接地(架空地线不与信号扼流圈中性点连接)。 带回流线的直接供电方式,机车电流一部分通过钢轨和大地流回牵引变电所(约70%),其余通过回流线流回牵引变电所(约30%)。由于流经接触网的电流和流经回流线的电流虽然大小不等,单方向相反,且安装高度比较接近,两者对铁路沿线通讯设施的电磁干扰影响趋于抵消,因此牵引网本身具备防干扰功能。在接地方面,接触网支柱通过回流线实现集中接地,回流线每隔一个闭塞分区通过吸上线(铝芯或铜芯电缆,常用VLV-70和2xVLV-150)与信号扼流圈中性点连接(吸上线间距3~4km )。 (2) BT 供电方式 BT (Boost Transformer)供电方式又称吸流变压器供电方式,也是在我国早期电气化铁路中有采用,其主要目的是为了提高牵引网防干扰能力,但随着通讯线路电缆化和光缆化,防干扰矛盾越来越不突出,其生命力也已大大降低,该种供电

北京交通大学《牵引供电系统》20秋在线作业1-001答案

1.一般3~15kV电压互感器采用()结构。 A.单相 B.三相 C.四相 D.五相 答案:B 2.当短路发生在电缆线路或低压网络时,总电阻与总电抗之比值大于()。 A.1/5 B.1/4 C.1/3 D.1/2 答案:C 3.牵引变电所将电力系统输送来的110kV三相交流电变换为()V的单相电。 A.27.5 B.30 C.37.5 D.40 答案:A 4.油浸式电压互感器多用于()kV及以下的电压等级。 A.35 B.110 C.220 D.330 答案:A 5.若发现全锚段接触线平均磨耗超过该型接触线截面积的()时,应当全部更换。

B.15% C.25% D.35% 答案:C 6.我国电气化铁路采用()。 A.工频单相交流制 B.工频三相交流制 C.工频四相交流制 D.工频五相交流制 答案:A 7.低式布置的断路器安装在()的混凝土的基础上。 A.0.5-1 B.1-2 C.2-4 D.4-6 答案:A 8.YNd11接线牵引变压器一般容量为()kVA。 A.10000~63000 B.20000~63000 C.30000~63000 D.40000~63000 答案:A 9.短时发热最高允许温度对硬铝及铝锰合金取()。

B.200℃ C.250℃ D.300℃ 答案:B 10.保护线电位一般在()V以下。 A.10 B.50 C.100 D.500 答案:D 11.浇注式电压互感器多用于()kV及以下的电压等级。 A.35 B.110 C.220 D.330 答案:A 12.当用开关电器断开电流时,如果电路电压不低于10~20V,电流不小于()mA。 A.50~80 B.80~100 C.100~120 D.120~140 答案:B 13.为满足机械强度要求,连接导线的截面不得小于()mm2。

电气化铁道供电比赛试题及答案

电力牵引供变电技术比赛试卷 一、判断题(每小题2分,共30分) 1.我国电气化铁道牵引变电所由国家区域电网供电。(√)2.超高压电网电压为220kv—500kv。(×)3.采用电力牵引的铁路称为电气化铁路。(√)4.我国电气化铁道牵引变电所供电电压的等级为110kv—220kv。(√)5.电力系的电压波动值:就是电压偏离额定值或平均值的电压差。(√)6.电力牵引的交流制就是牵引网供电电流为直流的电力牵引电流制(×)7.由于铁路电力牵引属于二级负荷,所以牵引变电所须由两路高压输电线供电。(×)8.单相结线牵引变电所的优点之一是:牵引变压器的容量利用率(额定输出容量与额定容量之比值)可达100%。(√)9.单相结线牵引变电所的优点之一是:对电力系统的负序影响最小。(×)10.我国电气化铁路采用工频单相25 kV交流制。(√)11.对于三相YN,dll结线牵引变压器当两供电臂负荷电流大小相等时,重负荷绕组的电流大约是轻负荷绕组的电流的3倍。(√)12.三相YN,d11结线牵引变电所的缺点之一是:不能供应牵引变电所自用电和地区三相电力。 (×) 13.斯科特结线牵引变电所的优点之一是:当M座和T座两供电臂负荷电流大小相等、功率因数也相等时,斯科特结线变压器原边三相电流对称,不存在负序电流。(√)14.单边供电:接触网供电分区由两个牵引变电所从两边供应电能。(×)15.最简单的牵引网是由馈电线、接触网、轨道和大地、回流线构成的供电网的总称。(√) 二.填空题(每小题2分) 1.通常把发电、输电、变电、配电、用电装置的完整工作系统称为电力系统。 2.牵引变电系统由牵引变电所、接触网、馈电线、回流线、轨道、分区所、开闭所、 自耦变压器站、分段绝缘器和分相绝缘器等组成。 供电方式一般在重载铁路、高速铁路等负荷大的电气化铁路上采用。 4.分相绝缘器的作用是:串在接触网上,把两相不同的供电区分开,并使机车平滑过渡; 主要用在牵引变电所出口处和分区所处。

《牵引供电系统》习题一.

A 《牵引供电系统》习题一 第一章供电系统的结构、原理与电力机车的相关知识 一、填空题请将第一大题前10○题作为作业上交,其余作为课后练习掌握,不需上传。 1、电力系统是指发电、送电、变电、用电组成的整体。 5、电网按其规模主要分为地区电网和区域电网。 7、电力网简称电网,由输电线路、配电线路、变电所组成。 10、按变电所的规模及作用,可将其分为枢纽变电所、地区变电所、用户变电所三种。 13 桥接线方式、双T接线方式、单母线分段方式三种。 16、牵引供电系统的电流制主要有(直流制)、低频单相交流制、三相交流制、工频单相交流制四种。 B 20、单相牵引变压器结线的方式有纯单相结线、单相 ,V结线、三相V,V 结线三种。 23、斯科特变压器可以把 ○ 90°的两相对称电压,它对电力系统形成的负序较小,且变压器的容量利用率较高。 、一台斯科特变压器包括M座变压器和T 30、牵引网是由 34、牵引变电所的一次供电方式有一边供电、两边供电、环形供电三种。 37、

型电力机车25kV侧的电路主要包括(受电弓)、主断路器、变压器、电压互感器、电流互感器、避雷器等设备。 80 二、名词解释 A仁慈慷慨的 B、环形供电—— 2、直接供电方式—— 四、作图题 1 2、画出复线区段的单边供电方式示意图。 第二章牵引变电所容量计算和选择 ○ 2、牵引变电所容量计算步骤分确定计算容量、确定校核容量、安装容量三步进行。 4 移动备用和固定备用两种。 二、名词解释 B1、牵引变压器的计算容量—— 2、牵引变压器的校核容量—— 3、牵引变压器的安装容量—— 三、简答题 1、简述牵引变压器容量计算和选择的步骤。 ○

牵引供电系统开题报告

一、选题意义 牵引供电系统是铁路的动力来源,供电系统的供电能力直接关系到铁路的整体运输能力。牵引变电所是牵引供电系统的核心设施,其主要功能是降压、分相以及向牵引负荷供电,牵引变电所带负荷能力的大小决定了铁路线的供电能力。 正常供电情况下,接触网供电分区由牵引变电所供应电能,相邻变电所之间毗连的供电臂相互绝缘,牵引变压器向各供电臂供应电能为电力机车提供动力。与一般电力负荷相比,牵引负荷有着自己的特点,如波动频繁、负荷大、短时集中、可靠性要求高、受电时间长以及负载率高。鉴于牵引负荷的诸多特点,实践运行时通常会将此类供电系统留有很大的余量。目前国内推行容量在315KV A以上的大工业类用户采用两部制电价计费,此外电气化铁路自1994年就已开始执行两部制电价。两部制电价的执行促使用户提高设备利用率,改变“大马拉小车”的状况,同时降低最大负荷,提高电网负荷率,减少无功负荷,改善用电功率因数,提高系统的供电能力,使供用双方从降低成本中都获得一定经济效益。对牵引电费中基本电价研究,目前均采用固定容量法计费,在当前两部制电价情况下,由于变压器容量选取过大的原因致使铁路局每年还要为此付出高额的基本电费。通过研究发现:一是,普速线的变压器安装容量较小且线路较为繁忙,基本电费所占比例较小,尤其石太线、丰沙线经常过负荷。因此,目前计费方式较合理;二是,京广高铁、石太客专变压器安装容量较大且运行初期列车密度小,应按变压器需量法方式计费,尤其石太客专要加快推进与供电公司的沟通协商力度,收集相关数据进行计费方式变更的各项准备工作;三是,京津城际变压器容量较小,基本电费所占比例较小,挖潜空间较小,做好进一步数据积累和追踪工作。《销售电价管理办法暂行规定》按照用户向电网申报负荷用电功率收取基本电费,但是超出申报值的部分加倍收费,为保证申报值的合理性,能够充分利用牵引变压器的过负荷能力,提高牵引变压器容量利用率,准确地分析牵引负荷这样随机波动大的牵引供电系统带负荷能力是十分重要的,这对降低铁路的运输成本具有重大意义。 一旦外部电源失压或牵引变电所设备故障引起全所停电时,通常由相邻的牵引变电所向停电的牵引变电所采取越区供电的方式向接触网供电。当采用越区供电时,电力机车的工作运行状况直接影响牵引变电所的供电能力,电力机车重载或行车密度大时会造成牵引变压器出现过负载现象,轻则造成变压器寿命缩短,重则导致变压器烧毁;电力机车轻载或行车密度小时会使牵引变压器容量利用率低,系统供电能力弱。越区供电相应地增加了两相邻牵引变电所的供电负荷,为满足超长距离供电,通常将变压器容量和电缆截面选择过大,除了造成供电设备容量闲置外,还给变压器的制造成本和运行成本造成较大的浪费。为了削弱越区供电对运输能力的影响,减少电力资源的浪费,避免过多地限制列车数量以及降低列车速度,需要在越区供电的情况下研究电力机车对牵引供电系统的影响,分析由于速度状态的改变和负荷的增加而导致的供电能力的变化以及变电所设备、网压、功率因数的变化, 并对能力值进行校验,给出最佳方案。通过本课题的研究,能够明确越区供电情况下电力机车对牵引供电系统供电能力的影响,提前发现可能对运营安全带来的隐患,为发生越区供电后列车的正常开行提供有力的支持,具有十分重要的工程意义。 在牵引供电领域,关于牵引供电系统的供电能力目前主要是在正常供电方式下的分析与研究,很少综合考虑在非正常供电方式下的分析与研究。针对牵引负荷的特性,需要对牵引供电系统的供电能力作综合分析来保证铁路的安全可靠运

电气化铁道主要供电方式

电气化铁道主要供电方 式 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

接触网的供电方式 我国电气化铁路均采用单边供电方式,即牵引变电所向接触网供电时,每一个供电臂的接触网只从一端的牵引变电所获得电能(从两边获得电能则为双边供电,可提高接触网末端网压,但由于其故障范围大、继电保护装置复杂等原因尚未有采用)。复线区段可通过分区亭将上下行接触网联接,实现“并联供电”,可适当提高末端网压。当牵引变电所发生故障时,相邻变电所通过分区亭实现“越区供电”,此时供电范围扩大,网压降低,通常应减少列车对数或牵引定数,以维持运行。 1、直接供电方式 如前所述,电气化铁路采用工频单相交流电力牵引制,单相交流负荷在接触网周围空间产生交变电磁场,从而对附近通信设施和无线电装置产生一定的电磁干扰。我国早期电气化铁路(如宝成线、阳安线)建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式(简称TR供电方式)。随着电气化铁路向平原和大城市发展,电磁干扰

矛盾日显突出,于是在接触网供电方式上采取不同的防护措施,便产生不同的供电方式。目前有所谓的BT、AT和DN供电方式。从以下的介绍中可以看出这些供电方式有一个共同特点,即在接触网支柱田野侧,与接触悬挂同等高度处都挂有一条附加导线。电力牵引时,附加导线中通过的电流与接触网中通过的牵引电流,理论上讲(或理想中)大小相等、方向相反,从而两者产生的电磁干扰相互抵消。但实际上是做不到的,所以不同的供电方式有不同的防护效果。 2、吸流变压器(BT)供电方式 这种供电方式,在接触网上每隔一段距离装一台吸流变压器(变比为1:1),其原边串入接触网,次边串入回流线(简称NF 线,架在接触网支柱田野侧,与接触悬挂等高),每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果。 由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用。

北交大牵引供电系统作业3

北京交通大学17春《牵引供电系统》第三次作业参考答案 2018年11月1日—2018年11月29日 1. 短路有几种类型?用什么危害? 2. 短路计算的目的什么? 3. 短路计算的假设条件是什么? 4. 如何防止发生短路? 5. 哪种类型的短路,故障电流最大?为什么? 6. 交流电气化铁道供电系统短路的有什么特点? 7. 短路计算的步骤和过程是什么? 8. 何为发电机的次暂态电抗,暂态电抗,稳态电抗?哪个值大?计算时取哪个?为什么? 9. 某供电系统如下图所示,发生三相对称短路,请解答如下问题: 元件1:30MVA ,125.0' ')*(=N G X 元件2: 15MVA ,5.10%=K U 元件3: 4%,110KV,300A T N NK X U I === (1) 计算K 点前的系统阻抗标幺值; (2) 若电源为无穷大容量,计算K 点的瞬态短路电流值; (3) 计算0.01秒时的最大短路冲击电流; (4) 计算短路电的容量; 10. 若3个电源全部为无限大电源,计算: (1)K 点三相短路瞬态电流标幺值和短路容量; (2)K 点的转移电抗和三个电源的电流分布系数;

11、试分析下图,做出的正序、负序和零序网络图。 1. 供电系统短路有四种类型;单相接地短路,发生概率较高;两相接地短路,两相短路, 三相对称短路;电气化铁路通常发生单相接地短路的情况较多; 短路的危害: 短路的大电流造成设备受损,短路的电弧高温危及人身与设备安全,短路造成系统震荡,短路会造成无线电及通讯干扰; 2. 短路计算的目的: 选择高压电气设备的容量,动稳定条件,热稳定条件,导体截面 选择中性点运行方式,确定继电保护的整定值 3. 短路计算的假设条件:A : 不计过渡电阻的金属性短路,B :不计系统电容效应,C : 高压网络不计电阻(当电抗值大于三倍电阻值时),以上为主条件,主要附加条件有3项,其中发电机功角一致,不计变压器励磁电流,短路前系统对称运行; 4. A : 从系统设计开始,科学计算,科学论证,采用先进方法进行科学合理的设计出图, 保证优质设计; B : 施工与安装要严格按规程规范操作,精密施工,正确安装,严格监理,严格验收,严格试验; C : 运营管理和检修要规范,科学,符合设备运行与检修规律,培训与培养设备检修与管理的工程师,技术员,和维修试验人员,不断提升专业技能与劳动素质,开发人力资源, 5. 在一般情况下,三相对称短路的短路电流最大,但也有例外:如零序阻抗较小的网络单 相短路电流往往较大,在环网结构中,两相短路电流可能较大, 6. 先根据列车能耗,走形时间,区间带电概率,运行密度(每昼夜对数),列车电流,供 电臂电流等确定变压器计算容量(最小容量);按列车紧密运行条件和馈线重供电臂最大短时平均电流确定变压器的最大容量;按变压器过负荷能力,对变压器容量校核(校核容量);根据备用方式(一般固定备用)在产品序列中选取,即可得到安装容量。 7. 发电机在短路瞬间,磁场变化,磁链守恒,电抗随转子角度发生改变,一般次暂态电抗 最小,暂态电抗较大,稳态电抗最大,为了获得最严重短路电流,一般采用最小的次暂态电抗做为短路计算条件。 9计算题: (1)选取基准值: Sd=100MV A ,Ud=Uav; 计算网络转移电抗*X 根据题目条件:

高速铁路牵引供电系统组成

高速铁路牵引供电系统 电气化铁路的组成 由于电力机车本身不带原动机,需要靠外部电力系统经过牵引供电装置供给其电能,故电气化铁路是由电力机车和牵引供电系统组成的。 牵引供电系统主要由牵引变电所和接触网两部分组成,所以人们又称电力机车、牵引变电所和接触网为电气化铁道的三大元件。 一、电力机车 (一)工作原理 电力机车靠其顶部升起的受电弓和接触网接触获取电能。电力机车顶部都有受电弓,由司机控制其升降。受电弓升起时,紧贴接触网线摩擦滑行,将电能引入机车,经机车主断路器到机车主变压器,主变压器降压后,经供电装置供给牵引电动机,牵引电动机通过传动机构使电力机车运行。 (二)组成部分 电力机车由机械部分(包括车体和转向架)、电气部分和空气管路系统构成。 车体是电力机车的骨架,是由钢板和压型梁组焊成的复杂的空间结构,电力机车大部分机械及电气设备都安装在车体内,它也是机车乘务员的工作场所。 转向架是由牵引电机把电能转变成机械能,便电力机车沿轨道走行的机械装置。它的上部支持着车体,它的下部轮对与铁路轨道接触。 电气部分包括机车主电路、辅助电路和控制电路形成的全部电气设备,在机车上占的比重最大,除安装在转向架中的牵引电机之外,其余均安装在车顶、车内、车下和司机室内。 空气管路系统主要执行机车空气制动功能,由空气压缩机、气阀柜、制动机和管路等组成 (三)分类 干线电力牵引中,按照供电电流制分为:直流制电力机车和交流制电力机车和多流制电力机车。交流机车又分为单相低频电力机车(25Hz或16 2/3Hz)和单相工频(50Hz)电力机车。单相工频电力机车,又可分为交--直传动电力机车和交—直—交传动电力 机车。 二、牵引变电所 牵引变电所的主要任务是将电力系统输送来的110kV三相交流电变换为(或55)kV单相电,然后以单相供电方式经馈电线送至接触网上,电压变化由牵引变压器完

北交大牵引供电系统作业2

北交大17春 《牵引供电系统》第二次作业参考答案 (2018年10月6日----2018年11月6日) 1. 电气化铁道牵引变压器的接线方式有哪些?各有何特点? 2. 当前高速铁路普遍采用的变压器接线方式是哪一种?为什么? 3. 变压器的计算容量,校核容量,最大容量,安装容量有何不同? 4. 变压器的过负荷能力对变压器容量有和影响? 5. 变压器的备用方式对变压器 容量的选择有何影响?当前高速铁路采用的是那种备用方式? 6.计算题: 沪宁线(单线考虑)某变电所(镇江变电所)供电分区内:列车运行密度N=25对/天,假设每列列车牵引能耗A=1750KVAH ,所有列车累计运行时间56min,供电分区内有6个车站,该变电所采用三相变压器,固定备用,请确定该变电所的安装容量。 7、牵引网阻抗是什么?牵引网阻抗包含哪些回路,请画出单线铁路等值电路图。 8、牵引网阻抗的影响因素是什么? 9、如何计算牵引网阻抗? 10、 计算牵引网阻抗有何意义? 11、如何测量牵引网阻抗? 12、计算:新建合肥至上海(按单线考虑)客专,接触网采用 GJ-70+GLCA100/215 已知数据:导线有效电阻R1=0.184欧/公里,当量系数A=0.95 计算半径9.025毫米;等导线有效电阻R1=0.184欧/公里,当量系数A=0.95 承力索GJ-70计算参数: 有效电阻R2=1.93欧/公里,当量系数A=0.95 计算半径5.75毫米;等导线有效电阻R2=0.184欧/公里,当量系数B=0.1 导线高度H1=6200毫米;结构高度h=1500毫米;驰度f=700毫米 钢轨参数:有效电阻R3=0.18欧/公里;计算半径96.5毫米;当量系数A=0.16; 等值半径15.4毫米;大地土壤电导率410/cm α-=Ω? 试计算牵引网阻抗。

电气化铁路牵引供电系统试卷

电气化铁路供电系统 试卷1 一、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,并将其代码填入题干后的括号内。每小题1分,共20分) 1.我国电气化铁道牵引变电所由国家( )电网供电。( ) A 超高压电网 B 区域电网 C 地方电网D 高压电网 2.牵引网包括( ) A 馈电线、轨道和大地、回流线 B 馈电线、接触网、轨道和大地、回流线 C 馈电线、接触网、回流线 D 馈电线、接触网、电力机车、大地 3.通常把( )装置的完整工作系统称为电力系统。( ) A 发电、输电、变电、配电、用电 B 发电、输电、配电、用电 C 发电、输电、配电、 用电 D 发电、输电、用电 4.低频交流制牵引网供电电流频率有:( ) ( ) A 50Hz 或25Hz B 30Hz 或50Hz C 2163 Hz 或25HzD 20Hz 或25Hz 5.单相结线牵引变电所牵引变压器的容量利用率(额定输出容量与额定容量之比值)可达( )。 ( ) A 100% B 75.6% C 50% D 25% 61时, 且副边两负荷臂电流I I αβ =&&,原边三相电流( ) ( ) A 平衡B 无负序电流C 对称D 有零序电流 7.交流牵引网对沿线通信线的静电影响由( )所引起。 ( ) A 牵引网电流的交变磁场的电磁感应 B 牵引网电场的静电感应 C 牵引网电场的高频感应 D 牵引电流的高次谐波 8.牵引网导线的有效电阻0r r ξ=(0r 是直流电阻;ξ是有效系数)。对于工频和牵引网中应用的截面不太大的铝、铜等非磁性导线,有效系数ξ( )。 ( ) A ξ≈1 B ξ≈2 C ξ≈3 D ξ≈4 9.以下不属于减少电分相的方法有( )。 ( )

北京交通大学《牵引供电系统》20秋在线作业2-001答案

1.分相绝缘器每块玻璃钢绝缘件长()m。 A.1.8 B.2.8 C.3.8 D.4.8 答案:A 2.三相YNd11变压器过负荷倍数取()。 A.0.5 B.0.7 C.1.5 D.2.0 答案:C 3.额定热稳定电流的持续时间为()。 A.1s B.2s C.3s D.4s 答案:B 4.限制短路电流的措施通常是在线路上接()。 A.电抗器 B.电阻器 C.电容器 D.电导器 答案:A 5.当短路发生在电缆线路或低压网络时,总电阻与总电抗之比值大于()。

B.1/4 C.1/3 D.1/2 答案:C 6.单相YNd11变压器过负荷倍数取()。 A.0.5 B.0.7 C.1.5 D.1.75 答案:D 7.为满足机械强度要求,连接导线的截面不得小于()mm2。 A.1.5 B.2.0 C.2.5 D.3.0 答案:A 8.使用快速保护和高速断路器时,其开断时间小于()s。 A.0.1 B.0.2 C.0.3 D.0.4 答案:A 9.若电力网电压低于熔断器额定电压,则熔断器熔断时产生过电压可达()倍。

B.3-4.5 C.4.5-6 D.6-8 答案:B 10.220kV及以下电压等级,允许其最高工作电压较额定电压约高()。 A.5% B.10% C.15% D.20% 答案:C 11.运行实践表明,接触网发生断线事故情况较少,影响范围也仅为()个跨距。 A.1~2 B.3~4 C.5~6 D.7~8 答案:B 12.YNd11接线牵引变压器一般容量为()kVA。 A.10000~63000 B.20000~63000 C.30000~63000 D.40000~63000 答案:A 13.我国电气化铁路采用()。

相关文档
最新文档