三相同步发电机的并联运行实验报告(教育教学)

三相同步发电机的并联运行实验报告(教育教学)
三相同步发电机的并联运行实验报告(教育教学)

实验报告四

实验名称:三相同步发电机的并联运行实验

实验目的:1.掌握三相同步发电机投入电网并联运行的条件与操作方法。

2.掌握三相同步发电机并联运行时有功功率与无功功率的调节。

实验项目:1.用准确同步法将三相同步发电机投入电网并联运行。

2.三相同步发电机与电网并联运行时有功功率的调节。

3.三相同步发电机与电网并联运行时无功功率调节。

→测取当输出功率等于零时三相同步发电机的V形曲线。

(一)填写实验设备表

序号名称型号和规格用途

1 电机教学实验台NMEL-II 提供电源,固定电机

2 电机导轨及转速测量M04 测量转速

3 同步电机励磁电源NMEL-19

4 直流电机仪表、电源NMEL-18 提供电源

5 三相同步电机M08

6 三相可调电阻器900ΩNMEL-05 改变输出电流

7 直流并励电动机M03 NMEL-03 提供发电机动力

8 三相可调电阻器90ΩNMEL-04 改变输出电流

9 功率表、功率因数表NMEL-20 测量功率、功率因数

10 交流电压表、电流表MEL-001C 交流电压表并联接在

线路上测量电压,交

流电流表串联接在线

路上测量电流

11

旋转指示灯及开关板 NMEL05

通断电路

(二)三相同步发电机与电网并联运行时有功功率的调节

填写实验数据表格 表4-1

U=220V (Y )

f f0I =I = 0.85 A

序 号 测 量 值

计 算 值 输出电流I (A ) 输出功率P (W )

I

(A ) 2P

(W )

cos ?

A I

B I

C I I P II P

1 0.064 0.051 0.044 9.79 6.93 0.053 16.7

2 1.82 2 0.127 0.111 0.106 19.74 20.6 0.115 40.34 0.92

3 3 0.20

4 0.186 0.182 30.67 37.6 0.191 68.27 0.94 4 0.28 0.261 0.256 40.17 54.78 0.266 94.9

5 0.938 5 0.38

6 0.365 0.361 50.1 79.2 0.371 129.30 0.915 6

0.417

0.398

0.392 52.5

86.88

0.402

139.38

0.909

(三)三相同步发电机与电网并联运行时无功功率的调节

填写实验数据表格

表4-2 n=1500r/min U=220V 2P 0≈W 序 号 三 相 电 流 I (A )

励磁电流f I (A)

A I

B I

C I

I

1 0.381 0.365 0.383 0.376 1.61

2 0.292 0.277 0.294 0.288 1.40

3 0.211 0.200 0.217 0.209 1.22

4 0.16

0.147 0.164 0.157

1.10 5 0.103 0.091 0.106 0.100 1.00 6 0.033 0.021

0.03

0.028

0.85 7

0.101 0.107 0.093 0.100

0.64

8 0.217 0.224 0.21 0.217 0.5

9 0.366 0.371 0.358 0.365 0.27

(四)问题讨论

1.三相同步发电机投入电网并联运行有哪些条件?不满足这些条件将产生什么后果?

答:1.发电机的频率和电网的频率相同。 2.发电机和电网的电压大小相等,相位相同。3.发电机和电网的相序相同。

不满足这些条件将产生:1.频率不同,引起系统功率下降,进而导致系统解列。2.电压不同,引起系统损耗加大。相位不同不但会使有功和无功的冲击外,还会有一个电磁力矩冲击,会导致传动部分冲击。 3.相序不同.将会发生短路,造成人身伤亡和损坏设备事故。

2. 三相同步发电机与电网并联的方法有哪些?

答:1.直接并网,2.有电动机带动至电网电压和频率时并网。3.发电机先做电动机,再转向发电机状态。

3. 实验的体会和建议

答:熟悉了三相同步发电机并网运行的条件与操作方法,知道了如何对三相同步发电机并联运行时有功功率与无功功率的调节,明白了三相同步发电机投入电网并联条件的重要性。

直流伺服电机实验报告

实验六 直流伺服电机实验 一、实验设备及仪器 被测电机铭牌参数: P N =185W ,U N =220V ,I N =1.1A , 使用设备规格(编号): 1.MEL 系列电机系统教学实验台主控制屏(MEL-I 、MEL-IIA 、B ); 2.电机导轨及测功机、转速转矩测量(MEL-13); 3.直流并励电动机M03(作直流伺服电机); 4.220V 直流可调稳压电源(位于实验台主控制屏的下部); 5.三相可调电阻900Ω(MEL-03); 6.三相可调电阻90Ω(MEL-04); 7.直流电压、毫安、安培表(MEL-06); 二、实验目的 1.通过实验测出直流伺服电动机的参数r a 、e κ、T κ。 2.掌握直流伺服电动机的机械特性和调节特性的测量方法。 三、实验项目 1.用伏安法测出直流伺服电动机的电枢绕组电阻r a 。

2.保持U f=U fN=220V,分别测取U a =220V及U a=110V的机械特性n=f(T)。3.保持U f=U fN=220V,分别测取T2=0.8N.m及T2=0的调节特性n=f(Ua)。4.测直流伺服电动机的机电时间常数。 四、实验说明及操作步骤 1.用伏安法测电枢的直流电阻Ra

表中Ra=(R a1+R a2+R a3)/3; R aref=Ra*a ref θ θ + + 235 235 (3)计算基准工作温度时的电枢电阻 由实验测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温。按下式换算到基准工作温度时的电枢绕组电阻值: R aref=Ra a ref θ θ + + 235 235

柴油发电机组的并联运行

柴油发电机组的并联运行 摘要:柴油发电机组和UPS一样也可以并联运行,并且这种技术已在许多却门得到广泛应用。文中介绍柴油发电机组并联运行的技术条件、调控模式及应用实践。 柴油发电机组是由将燃烧柴油产生的热能转换为机械能的柴油发动机,和把机械能转为电能的同步发电机组成的。在电力网还未到达或供电保障性不强的地区,常用柴油发电机组发出性能与市电一样的电能供给用电设备。它也就成为市电电力网的得力助手。 现代,各种信息设备对供电提出了高质量、高可靠的要求。为此,UPS与柴油发电机组,以它们各自的特点相辅相成地构成的不间断供电系统成为最佳选择。在这里,UPS基本上是并联冗余应用的,而柴油发电机组也常是并联冗余运行的。 、 1并联运行的作用 大型的网络监控中心、银行结算中心、空中管制中心等,根据自身的工作性质和特点都对供电系统的性能和可靠性提出了很高的要求;采用两路市电供电、配置两组并联冗余运行的大功率UPS构成双总线系统、同时安装几台"N十l"模式并联冗余运行的柴油发电机组与UPS构成一个高可靠、高质量、智能化的不间断供电体系,已是普遍采用的技术方案。 柴油发电机组的作用是:一且两路市电都中断,UPS目口时将蓄电池的直流电逆变成交流电供给负载工作。然后并联冗余运行的柴油发电机组也部起动起来,通过自动转换开关(ATS)切换到直接给UPS 提供与市电一样的电能,从而使UPS又像平常那样依靠交流电不间断地给设备供电。这时"N+l"模式并联冗余运行的柴油发电机组不仅为UPS提供性能良好的电力,而且提供了高可靠的电能;假如运行中一台机组出现问题退出并联,其他机组会带上全部负载仍正常运行。可见并联冗余运行的机组完全代替了两路市电供电的功能。 通常情况下,并联冗余运行模式的柴油发电机组并不直接连接负载,而是通过UPS供给负载电能。柴油发电机组为增加原有机组的输出功率而采用并联运行的方式要比UPS多一些。它们常被用于市电电力供应保障性不强,一年总有几次停电或拉闸限电地区的工矿企业。由于现代机械制造技术的进步、机电一体化的广泛应用、智能控制技术的普及,现代柴油发电机组不仅制造精良,各项性能指标大为提高,运行的可靠性也大大增强。 通常情况下,只要按规范做好维护保养工作,作为备用发电机,在起动运行后柴油发电机组因故障停机的几率极其微小。在各类工厂新增设备后,原有柴油发电机组已不能满足后备供电需要时,考虑再增加一台同样的机组与其并联使输出功率增加一倍,不失为一种经济实用的选择。 作为扩容应用的并联柴油发电机组一般不考虑冗余而只强调均分负载,它们都是接近满负荷地直接驱动用电设备。 2并联运行的技术条件 从同步发电机的机械构造可以知道;三个一模一样的绕组按照空间360°三等分并且对称的安装在定子的机座上。这三个绕组——称为定子绕组或因为供给负载的电力由这里输出而被称为电枢绕组,它们在空间机械位置上已被确定为彼此之间120°电角的间隔。当同步发电机转子磁场(称为主磁场)的磁力线

同步发电机短路实验

同步发电机突然短路的分析 一、实验目的 1.学会使用MATLAB软件对电力系统进行时域仿真分析,加深对电力系统短路时暂态过程的理解。 2.通过实验,进一步理解有限容量系统和无穷大系统短路时暂态过程的不同 二、实验原理 同步电机是电力系统中的重要元件,由多个有磁耦合关系的绕组构成,同步电机突然短路的暂态过程要比恒定电压源电路复杂很多,所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响。 同步电机短路时,由于定子绕组中周期分量电流突变将对转子产生电枢反应,该反应产生交链励磁绕组的磁链。为了维持励磁绕组在短路瞬间总磁链不变,励磁绕组内将产生直流电流分量,其方向与原有的励磁电流方向相同,它产生的磁通也有一部分要穿过定子绕组,从而使定子绕组的周期分量电流增大。因此在有限容量系统突然发生三相短路时,短路电流的初值将大大超过稳态短路电流,最终衰减为稳态短路电流。 三、实验内容 电力系统时域分析实例(仿真) 范例:同步电机突然短路模型如图所示—使用简化的同步电机(Simplified Synchronous Machine),使用三相并联RLC负载并通过三相电路短路故障发生器元件实现同步电机的三相短路。 图1 同步电机突然短路电路模型

1、从电机元件库选择简化的同步电机(Simplified Synchronous Machine)元件,设置参数如下 2、从测量元件库中选择三相电压—电流测量元件,进行参数设置。电压测 量选项中选择测量相电压(phase-to-ground)用来测量同步发电机突然短路后三相电压的变化。 3.从线路元件库中选择三相短路故障发生器(3-phase-Fault),双击将三 相故障同时选中并设置转换时间。 4.从线路元件库中选择三相并联RLC负载元件,参数设置如下:

直流他励电动机实验报告记录

直流他励电动机实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

电机学实验报告——直流他励电动机实验 姓名:张春 学号:2100401332

实验三直流他励电动机实验 一、实验目的 1.掌握用实验方法测取直流他励电动机的工作特性和机械特性。 2.掌握直流他励电动机的调速方法。 二、实验内容 1.工作特性和固有机械特性 保持和不变,时,测取工作特性、、及 固有机械特性。 2.调速特性 (1)改变电枢电压调速 保持电动机不变,常数,测取。 (2)改变励磁电流调速 保持,常数,时,测取。 3.观察能耗制动过程 三、实验说明及操作步骤 1.他励直流电动机的工作特性和固有机械特性 按图3-4接线,电阻选用挂箱上的阻值为、电流为 的可调电阻,作为直流并励电动机的起动电阻,电阻选用挂箱上的阻值为的可调电阻. 并接上励磁电流表(mA)和电枢电流表(A)。

(1)打开设备开关和设置好各个按钮状态,将电动机励磁回路电阻调至阻值最 小,电枢回路起动电阻调至阻值最大。 (2)调节直流稳压电源上的“电压调节”旋钮,使电动机输入电压为,电动机电枢回路起动电阻调至最小值,增加电动机磁场调节电阻,使电动机转速达额定值。 (3)调出电动机的额定运行点,确定电动机的额定励磁电流。 (4)在保持,不变的条件下,逐次减小电动机的负载,在额定负载到 空载范围内,测取电动机电枢电流,转速和输出转矩,共取组数据,记录于表3-1中。 表中:电动机输入功率P1=U a I a+U f I fn,输出功率P2=0.105nT2 效率 表3-1 工作特性和固有机械特性实验数据 实 验 数 据 1.10 1.0 0.9 0.8 0.4 0.3 0. 2 16 638 169 3 171 17 34 1.18 1.08 0.9 7 0.8 6 0.4 0.2 8 0. 15 计 算 数 260 .96 238 .96 216 .96 194 .96 106 .96 84. 96 62.9 6 19818216514771.50.27.3

三相同步发电机的并联运行实验报告

实验报告四 实验名称:三相同步发电机的并联运行实验 实验目的:1.掌握三相同步发电机投入电网并联运行的条件与操作方法。 2.掌握三相同步发电机并联运行时有功功率与无功功率的 调节。 实验项目:1.用准确同步法将三相同步发电机投入电网并联运行。 2.三相同步发电机与电网并联运行时有功功率的调节。 3.三相同步发电机与电网并联运行时无功功率调节。 →测取当输出功率等于零时三相同步发电机的V形曲线。(一)填写实验设备表

(二)三相同步发电机与电网并联运行时有功功率的调节 填写实验数据表格 表4-1 U=220V (Y ) f f0I =I = 0.85 A

cos (三)三相同步发电机与电网并联运行时无功功率的调节 填写实验数据表格 表4-2 n=1500r/min U=220V 2P 0 W

(四)问题讨论 1.三相同步发电机投入电网并联运行有哪些条件?不满足这些条件将产生什么后果? 答: 1.发电机的频率和电网的频率相同。 2.发电机和电网的电压大小相等,相位相同。 3.发电机和电网的相序相同。

不满足这些条件将产生:1.频率不同,引起系统功率下降,进而导致系统解列。2.电压不同,引起系统损耗加大。相位不同不但会使有功和无功的冲击外,还会有一个电磁力矩冲击,会导致传动部分冲击。 3.相序不同.将会发生短路,造成人身伤亡和损坏设备事故。 2. 三相同步发电机与电网并联的方法有哪些? 答: 1.直接并网,2.有电动机带动至电网电压和频率时并网。3.发电机先做电动机,再转向发电机状态。 3. 实验的体会和建议 答:熟悉了三相同步发电机并网运行的条件与操作方法,知道了如何对三相同步发电机并联运行时有功功率与无功功率的调节,明白了三相同步发电机投入电网并联条件的重要性。

直流伺服电机实验报告

直流电机的特性测试 一、实验要求 在实验台上测试直流电机机械特性、工作特性、调速特性(空载)和动态特性,其中测试机械特性时分别测试电压、电流、转速和扭矩四个参数,根据测试结果拟合转速—转矩特性(机械特性),并以X 轴为电流,拟合电流—电压特性、电流—转速特性、电流—转矩特性,绘制电机输入功率、输出功率和效率曲线,即绘制电机综合特性曲线。然后在空载情况下测试电机的调速特性,即最低稳定转速和额定电压下的最高转速,即调速特性;最后测试不同负载和不同转速阶跃下电机的动态特性。 二、实验原理 1、直流电机的机械特性 直流电机在稳态运行下,有下列方程式: 电枢电动势 e E C n =Φ (1-1) 电磁转矩 e m T C I =Φ (1-2) 电压平衡方程 U E I R =+ (1-3) 联立求解上述方程式,可以得到以下方程: 2e e e m U R n T C C C = -ΦΦ (1-4) 式中 R ——电枢回路总电阻 Φ——励磁磁通 e C ——电动势常数 m C ——转矩常数 U ——电枢电压 e T ——电磁转矩 n ——电机转速

在式(1-4)中,当输入电枢电压U 保持不变时,电机的转速n 随电磁转矩e T 变化而变化的规律,称为直流电机的机械特性。 2、直流电机的工作特性 因为直流电机的励磁恒定,由式(1-2)知,电枢电流正比于电磁转矩。另外,将式(1-2)代入式(1-4)后得到以下方程: e e U R n I C C = -ΦΦ (1-5) 由上式知,当输入电枢电压一定时,转速是随电枢电流的变化而线性变化的。 3、直流电机的调速特性 直流电机的调速方法有三种:调节电枢电压、调节励磁磁通和改变电枢附加 电阻。 本实验采取调节电枢电压的方法来实现直流电机的调速。当电磁转矩一定 时,电机的稳态转速会随电枢电压的变化而线性变化,如式(1-4)中所示。 4、直流电机的动态特性 直流电机的启动存在一个过渡过程,在此过程中,电机的转速、电流及转矩 等物理量随时间变化的规律,叫做直流电机的动态特性。本实验主要测量的是转速随时间的变化规律,如下式所示: s m dn n n T dt =- (1-6) 其中,s n ——稳态转速 m T ——机械时间常数 本实验中,要求测试在不同负载和不同输入电枢电压(阶跃信号)下电机的 动态特性。 5、传感器类型 本实验中,测量电机转速使用的是角位移传感器中的光电编码器;测量电磁 转矩使用的是扭矩传感器。

同步发电机运行与控制实验报告

广西大学电气工程学院 发电机运行实验报告 同步发电机运行与控制 专业班级: 姓名: 学号: 实验地点:

一、实验目的 同步发电机是电力系统最重要又最复杂的电气设备,在电力系统运行中起着十分重要的作用。通过实验,使学生掌握和巩固同步发电机及其运行的基本概念和基本原理,培养学生的实践能力、分析能力和创新能力,加强工程实线训练,提高学生的综合素质。 二、实验装置及接线 实验在电力系统监控实验室进行,每套实验装置以7.5KW直流电动机与同轴的5KW 同步发电机为被控对象,配置常规仪表测量控制屏(常规控制)和计算机监视控制屏(计算机监控)。可实现对发电机组的测量、控制、信号、保护、调节、并列等功能,本次同步发电机运行实验,仅采用常规控制方式。 直流电动机-同步发电机组的参数如下: 直流电动机: 型号Z2-52,凸极机 额定功率7.5kW 额定电压DC220V 额定电流41A 额定转速1500r/min 额定励磁电压DC220V 额定励磁电流0.98A(5、6、7号机组为0.5A) 同步发电机 型号T2-54-55 额定功率5kW 额定电压AC400V(星接) 额定电流9.08A 额定功率因数0.8 空载励磁电流 2.9A 额定励磁电流5A 直流电动机-同步发电机组接线如图一所示。发电机通过空气开关2QS和接触器2KM 可与系统并列,发电机机端装有电压互感器1TV和电流互感器1TA,供测量、同期用,系统侧装有单相电压互感器2TV作同期用,两侧电压通过转换开关6SA接入同期表S (MZ-10)。 发电机励磁电源可以取自380V电网(他励方式),也可以取自机端(自励方式),通

上海交大运动控制直流无刷电机实验报告

直流无刷电机实验报告 一、硬件电路原理简述 1、总体硬件电路图 图总体硬件电路原理图 单片机通过霍尔传感器获得转子的位置,并以此为依据控制PWM波的通断。

2、霍尔元件测量值与PWM波通断的关系 图霍尔元件测量值与PWM波通断的关系 二、软件架构 1、Components与变量定义 图 Components列表 PWMMC是用来产生控制电机的PWM波的。添加PWMMC时会同时加入一个eFlexPWM。

PWM_Out对应的是GPIO B2口,这个口电位为高时,电压才会被加到电机上。 GPIO B3控制着一个继电器,用于防止启动时过大的冲击电流。程序开始后不久就应把B3置高。 Halla、Hallb、Hallc对应于3个霍尔传感器。依次为GPIOC3、C4、C6。 TimerInt是用于测速的。根据2次霍尔元件的中断间的时间间隔来计算转速。 2、电机旋转控制代码 for(;;) { Hall_Sensor = 0b00000000; Halla = Halla_GetVal(); Hallb = Hallb_GetVal(); Hallc = Hallc_GetVal(); if(Halla) Hall_Sensor |= 0b00000100; if(Hallb) Hall_Sensor |= 0b00000010; if(Hallc)

Hall_Sensor |= 0b00000001; switch(Hall_Sensor) { case 0b0000011: PESL(eFPWM1_DEVICE, PWM_OUTPUT_A, PWM_SM1_ENABLE); PESL(eFPWM1_DEVICE, PWM_OUTPUT_B, PWM_SM2_ENABLE); break; case 0b0000001: PESL(eFPWM1_DEVICE, PWM_OUTPUT_A, PWM_SM1_ENABLE); PESL(eFPWM1_DEVICE, PWM_OUTPUT_B, PWM_SM0_ENABLE); break; case 0b0000101: PESL(eFPWM1_DEVICE, PWM_OUTPUT_A, PWM_SM2_ENABLE); PESL(eFPWM1_DEVICE, PWM_OUTPUT_B, PWM_SM0_ENABLE); break;

发电机并联

一、发电机并列运行的条件 1.待并发电机的电压有效值Uf与电网的电压有效值U相等或接近相等,允许相差±5%的额定电压值。待并发电机的电压有效值Uf,与电网的电压有效值U 之间的压差ΔU,若在允许范围内,所引起的无功冲击电流是允许的。否则ΔU 越大,冲击电流越大,这个过程相当于发电机的突然短路。因此,必须调整两者间的电压,使其接近相等后才可并列。 2.待并发电机的周波ff应与电网的周波f相等,但允许相差±0.05~0.1周/秒以内。若两者周波不等,则会产生有功冲击电流,其结果使发电机转速增加或减小,导致发电机轴产生振动。如果周波相差超出允许值而且较大,将导致转子磁极和定子磁极间的相对速度过大,相互之间不易拉住,容易失步。因此,在待并发电机并列时,必须调整周波至允许范围内。通常是将待并发电机的周波略调高于电网的周波,这样发电机容易拉入同步,并列后可立即带上部分负荷。 3.待并发电机电压的相位与电网电压的相位相同,即相角相同。在发电机并列时,如果两个电压的相位不一致,由此而产生的冲击电流可能达到额定电流的20~30倍,所以是非常危险的。冲击电流可分解为有功分量和无功分量,有功电流的冲击不仅要加重汽轮机的负担,还有可能使汽轮机受到很大的机械应力,这样非但不能把待并发电机拉入同步,而且可能使其它并列运行的发电机失去同步。 在采用准同期并列时,发电机的冲击电流很小。所以,一般应将相角差控制在10o以内,此时的冲击电流约为发电机额定电流的0.5倍。 4.待并发电机电压的相序必须与电网电压的相序一致。 5.待并发电机电压的波形应与电网电压的波形一致。 以上条件中第4项关于相序的问题,要求在安装发电机的时候,根据发电机规定的转向,确定好发电机的相序而得到满足。所以在以后的并列过程中,相序问题就不必考虑了。第5项关于电压波形的问题,应在发电机生产制造过程中得以保证。 综上所述,在发电机并列时,主要满足1~3项的条件,否则将会造成严重事故。在并列合闸过程中,发电机与电网的电压、周波、相位角接近但并不相等时,由此而产生的较小冲击电流还是允许的。合闸后,在“自整步作用”下,能够将发电机拉入同步。 二、发电机并列时的操作 电机并列的方法有两种,即:准同期并列法和自同期并列法。目前广泛采用准同期并列法。准同期并列法分为手动、半自动及自动三种。一般采用手动或半自动这两种操作方法。目前,我们采用的的是手动准同期并列法,具体操作程序如下: 1.发电机升压操作正常后,需要根据发电机及电力系统具体运行状况,将待并同期点的同期开关(控制屏5KP的“联络线同期开关”TK/或者是6KP的“发电机同期开关”TK)右转至“投”的位置,使同期母线带电。

发电机的并列运行

发电机的并列运行 ??一、发电机并列运行的条件 ?1.待并发电机的电压有效值Uf与电网的电压有效值U相等或接近相等,允许相差±5%的额定电压值。 列。 ?2./秒以内。 ??? 时, ???3.待并发电机电压的相位与电网电压的相位相同,即相角相同。 ???在发电机并列时,如果两个电压的相位不一致,由此而产生的冲击电流可能达到额定电流的20~30倍,所以是非常危险的。冲击电流可分解为有功分量和无功分量,有功电流的冲击不仅要加重汽轮机的负担,还有可能使汽轮机受到很大的机械应力,这样非但不能把待并发电机拉入同步,而且可能使其它并列运行的发电机失去同步。

在采用准同期并列时,发电机的冲击电流很小。所以,一般应将相角差控制在10o 以内,此时的冲击电流约为发电机额定电流的0.5倍。 ???4.待并发电机电压的相序必须与电网电压的相序一致。 ???5.待并发电机电压的波形应与电网电压的波形一致。 ??? ???? ???1.发电机升压操作正常后,需要根据发电机及电力系统具体运行状况,将待并同期点的同期开关(控制屏5KP的“联络线同期开关”TK/或者是6KP的“发电机同期开关”TK)右转至“投”的位置,使同期母线带电。 ???2.将发电机同期闭锁开关STK置于“闭锁”位置,其1、3接点断开。与此同时,同步检查继电器TJJ进入闭锁状态。

???3.将6KP的“手动准同期开关”1STK左转至“粗调”位置,6KP的组合式三相同期表S就有了电压和周波的指示。此时,通过调整发电机的电压及频率,使之与电网的电压及频率相近或基本一致。 ???4.当发电机周波与电网周波相差在1.0周/秒以内时,将“手动准同期开关”1STK 右转至“细调”位置,则组合式三相同期表S的线圈得电,指针开始缓慢地顺时针 时101) ???5.

三相同步发电机实验解读

1.同步发电机运行实验指导书2.发电机励磁调节装置实验指导书3.静态稳定实验(提纲,供参考) 4.发电机保护实验提示 5. 广西大学电气工程学院

同步发电机运行实验指导书 目录 一、实验目的 二、实验装置及接线 三、实验内容 实验一发电机组的起动和同步电抗Xd测定 实验二发电机同期并网实验 实验三发电机的正常运行 实验四发电机的特殊运行方式 实验五发电机的起励实验 四、实验报告 五、参考资料 六、附录 1.不饱和Xd的求法 2.用简化矢量图求Eq和δ 3.同期表及同期电压矢量分析

一、实验目的 同步发电机是电力系统最重要又最复杂的电气设备,在电力系统运行中起着十分重要的作用。通过实验,使学生掌握和巩固同步发电机及其运行的基本概念和基本原理,培养学生的实践能力、分析能力和创新能力,加强工程实线训练,提高学生的综合素质。 二、实验装置及接线 实验在电力系统监控实验室进行,每套实验装置以4KW直流电动机与同轴的1.5KW同步发电机为被控对象,配置常规仪表测量控制屏(常规控制)和自动控制屏(微机监控)。可实现对发电机组的测量、控制、信号、保护、调节、并列等功能,本次同步发电机运行实验,仅采用常规控制方式。 直流电动机-同步发电机组的参数如下: 直流电动机: 型号Z2-42,凸极机 额定功率4KW 额定电压DC220V 额定电流22A 额定转速1500r/min 额定励磁电压DC220V 额定励磁电流0.81A 同步发电机 型号STC-1.5 额定功率 1.5KW 额定电压AC400V(星接) 额定电流 2.7A 额定功率因数0.8 空载励磁电流1A 额定励磁电流2A 同步发电机接线如图电-01所示。发电机通过接触器1KM、转换开关1QS、

电动机实验报告doc

电动机实验报告 篇一:电机实验报告 黑龙江科技大学 综合性、设计性实验报告 实验项目名称电机维修与测试 所属课程名称电机学 实验日期 XX年5.6—5.13 班级电气11-13班 学号 姓名 成绩 电气与信息工程学院实验室 篇二:电机实验报告 实验报告本 课程名称:电机拖动基础班级:电气11-2 姓名田昊石泰旭孙思伟 指导老师:_史成平 实验一单相变压器实验 实验名称:单相变压器实验 实验目的:1.通过空载和短路实验测定变压器的变比和参数。

2.通过负载实验测取变压器的运行特性。 实验项目:1. 空载实验测取空载特性U0=f(I0), P0=f(U0)。 2. 短路实验测取短路特性Uk=f(Ik), Pk=f(I)。 3. 负载实验保持U1=U1N,cos?2?1的条件下,测取U2=f(I2)。 (一)填写实验设备表 (二)空载实验 1.填写空载实验数据表格 2. 根据上面所得数据计算得到铁损耗PFe、励磁电阻Rm、励磁电抗Xm、电压比k (三)短路实验 1. 填写短路实验数据表格 O (四)负载实验 1. 填写负载实验数据表格 表3 cos?2=1 (五)问题讨论 1. 在实验中各仪表量程的选择依据是什么? 根据实验的单相变压器额定电压、额定电流、额定容量、空载电压,单 相变压器电源电压和频率、线圈匝数、磁路材质及几何尺寸等。 2. 为什么每次实验时都要强调将调压器恢复到

起始零位时方可合上电源开关或断开电源开关? 防止误操作造成人身伤害、防止对变压器及其它仪器仪表等设备过压过 流而损坏。 3. 实验的体会和建议 1.电压和电流的区别:空载试验在低压侧施加额定电压,高压侧开路;短路 试验在高压侧进行,将低压侧短路,在高压侧施加可调的低电压。2.测量范围的不同:空载试验主要测量的是铁芯损耗和空载电流, 而短路试 验主测量的是短路损耗和短路电阻。3.测量目的不同:空载试验主要测量数据反映铁芯情况,短路试验反映的是线圈方面的问题。 4.试验时,要注意电压线圈和电流线圈的同名端,要避免接错线。选择的导 线应该是高压导线,要不漏线头要有绝缘外皮保护。5.通过负载试验可以知道变压器的阻抗越小越好。阻抗起着限制变压器的电 流的作用,在设计时我们要考虑这些。 篇三:直流电动机实验报告 电机 实验报告 课程名称:______电机实验_________指导老师:___

同步发电机准同期并列实验步骤

同步发电机准同期并列实验 一、实验目的 1.加深理解同步发电机准同期并列原理,掌握准同期并列条件; 2.掌握微机准同期控制器及模拟式综合整步表的使用方法; 3.熟悉同步发电机准同期并列过程; 4.观察相关参数。 二、实验项目和方法 (一)机组启动与建压 1.检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置; 2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。调速器面板上数码管显示发电机频率,调速器上“微机正常”灯和“电源正常”灯亮; 3.按调速器上的“微机方式自动/手动”按钮使“微机自动”灯亮; 4.励磁调节器选择它励、恒UF运行方式,合上励磁开关; 5.把实验台上“同期方式”开关置“断开”位置; 6.合上系统电压开关和线路开关QF1,QF3,检查系统电压接近额定值380V; 7.合上原动机开关,按“停机/开机”按钮使“开机”灯亮,调速器将自动启动电动机到额定转速; 8.当机组转速升到95%以上时,微机励磁调节器自动将发电机电压建压到与系统电压相等。 (二)手动准同期 将“同期方式”转换开关置“手动”位置。在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。 观察微机准同期控制器上显示的发电机电压和系统电压,相应操作微机励磁调节器上的增磁或减磁按钮进行调压,直至“压差闭锁”灯熄灭。 观察微机准同期控制器上显示的发电机频率和系统频率,相应操作微机调速器上的增速或减速按钮进行调速,直至“频差闭锁”灯熄灭。 此时表示压差、频差均满足条件,观察整步表上旋转灯位置,当旋转至0o位置前某一合适时刻时,即可合闸。观察并记录合闸时的冲击电流。 具体实验步骤如下: (1)检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置; (2)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。调速器面板上数码管显示发电机频率,调速器上“微机正常”灯和“电源正常”灯亮; (3)按调速器上的“模拟方式”按钮按下,使“模拟方式”灯亮。合上原动机开关,按下“停机/开机”按钮,开机指示灯亮;

同步电机实验报告

三相同步发电机的运行特性 学院: 电气信息学院 专业: 电气工程及其自动化 班级: 2011级 姓名:

一、实验目的 1.掌握三相同步发电机的空载、短路及零功率因素负载特性的实验求取法 2.学会用试验方法求取三相同步发电机对称运行时的稳态参数 二、实验参数 实验在电力系统监控实验室进行,每套实验装置以直流电动机作为原动机,带动同步电动机转动,配置常规仪表进行实验参数进行测量,本次同步发电机运行试验,仅采用常规控制方式。 同步发电机的参数如下 额定功率2kw 额定电压400v 额定电流 3.6A 额定功率因素0.8 接法Y 三、实验原理 工作原理 ◆主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。 ◆载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 ◆切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。

◆交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 ◆感应电势有效值:每相感应电势的有效值为 ◆感应电势频率:感应电势的频率决定于同步电机的转速n 和极对数p ,即 ◆交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 同步转速 ◆同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: ◆要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。运行方式 ◆同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还

同步发电机励磁控制实验..

实验报告 课程名称: 电力系统分析综合实验 指导老师: 成绩:__________________ 实验名称: 同步发电机励磁控制实验 实验类型:________________同组学生姓名:__________ 一、实验目的 1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务; 2.了解自并励励磁方式和它励励磁方式的特点; 3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动; 4.了解微机励磁调节器的基本控制方式; 5.掌握励磁调节器的基本使用方法; 6.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响。 二、原理与说明 同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。 图1 励磁控制系统示意图 实验用的励磁控制系统示意图如图l 所示。可供选择的励磁方式有两种:自并励和它励。当三相全控 专业: 电气工程及其自动化 姓名: 学号: 日期: 地点:教2-105

桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。而当交流励磁电源取自380V市电时,构成它励励磁系统。两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。 微机励磁调节器的控制方式有四种:恒U F (保持机端电压稳定)、恒I L(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。其中,恒α方式是一种开环控制方式,只限于它励方式下使用。 同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。 发电机正常运行时,三相全控桥处于整流状态,控制角α小于90?;当正常停机或事故停机时,调节器使控制角α大于90?,实现逆变灭磁。 三、实验项目和方法 (一) 不同α角(控制角)对应的励磁电压波形观测 (1)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄; (2)励磁系统选择它励励磁方式:操作“励磁方式开关”切到“微机它励”方式,调节器 面板“它励”指示灯亮; (3)励磁调节器选择恒α运行方式:操作调节器面板上的“恒α”按钮选择为恒α方式,面 板上的“恒α”指示灯亮; (4)合上励磁开关,合上原动机开关; (5)在不启动机组的状态下,松开微机励磁调节器的灭磁按钮,操作增磁按钮或减磁按钮 即可逐渐减小或增加控制角α,从而改变三相全控桥的电压输出及其波形。 注意:微机自动励磁调节器上的增减磁按钮键只持续5秒内有效,过了5秒后如还需

直流电机实验报告

直流电机实验报告 学院:电气工程学院 班级:电气1204班 姓名:卞景季 学号: 11291121 组号: 22

一,实验目的: 掌握直流电机工作特性和机械特性的测定。 二,实验内容及原理: 1,直流并励发电机 ① 转速特性:a e e a a a e a I n C R C U n I R E U n C E '0//βφφφ -?=-=+== 其中φe C U n /0=为理想空载转速, 转速特性为φβe a C R /'=的直线(即斜率为β’的直线) ② 转矩特性 φa T e I C T =不计去磁,a T e I C T '=特性曲 线为一过原点的直线。当考虑电枢反应时实际曲线偏离直线 Ia C T ',仍接近于一条直线。 ③ 机械特性 φ φφφa T T e e e a a a I C T C C RT C U n n C E R I E U =-=?=+='// 当U,R.Φ一定时能得出机械特性曲线。 实验内容: 直流电动机M 运行后,将电阻R 1调至零,I f2调至校正值,再调节负载电阻R 2、电枢电压及磁场电阻R f1,使M 的U=U N ,Ia=0.5I N ,I f =I fN 记下此时MG 的I F 值。 2)保持此时的I F 值(即T 2值)和I f =I fN 不变,逐次增加R 1的阻值,降低电枢两端的电压Ua ,使R 1从零调至最大值,每次测取电动机的端电压Ua ,转速n 和电枢电流Ia 。 3)共取数据8-9组,记录于表中 (2)改变励磁电流的调速 1)直流电动机运行后,将M 的电枢串联电阻R 1和磁场调节电阻R f1调至零,将MG 的磁场调节电阻I f2调至校正值,再调节M 的电枢电源调压旋钮和MG 的负载,使电动机M 的U=U N ,Ia =0.5I N 记下此时的I F 值。

电机与拖动基础直流并励电动机实验报告

电机与拖动基础实验报告实验名称: 直流并励电动机实验成员:

一、实验目的 1、掌握用实验方法测取直流并励电动机的工作特性和机械特性。 2、掌握直流并励电动机的调速方法。 二、实验项目 1、了解DD01电源控制屏中的电枢电源、励磁电源、校正过的直流电机、变阻器、多量程直流电压表、电流表及直流电动机的使用方法。 2、用伏安法测直流电动机和直流发电机的电枢绕组的冷态电阻。 3、直流他励电动机的起动、调速及改变转向。 1、工作特性和机械特性 保持U=U N和I f=I fN不变,测取n、T2、η=f(I a)、n=f(T2)。 2、调速特性 (1)改变电枢电压调速 保持U=U N、I f=I fN=常数,T2=常数,测取n=f(U a)。 (2)改变励磁电流调速 保持U=U N,T2=常数,测取n=f(I f)。 (3)观察能耗制动过程 三、实验方法 1、实验设备 2、屏上挂件排列顺序 D31、D42、D51、D31、D44

3、并励电动机的工作特性和机械特性 1)按图2-6接线。校正直流测功机 MG 按他励发电机连接,在此作为直流电动机M 的负载,用于测量电动机的转矩和输出功率。R f1选用D44的1800Ω阻值。R f2 选用D42的900Ω串联900Ω共1800Ω阻值。R 1用D44的180Ω阻值。R 2选用D42的900Ω串联900Ω再加900Ω并联900Ω共2250Ω阻值。 图2-6 直流并励电动机接线图 2)将直流并励电动机M 的磁场调节电阻R f1调至最小值,电枢串联起动电 阻R 1调至最大值,接通控制屏下边右方的电枢电源开关使其起动,其旋转方向应符合转速表正向旋转的要求。 3)M 起动正常后,将其电枢串联电阻R 1调至零,调节电枢电源的电压为220V ,调节校正直流测功机的励磁电流I f2为校正值(50mA 或100 mA ),再调节其负载电阻R 2和电动机的磁场调节电阻R f1,使电动机达到额定值: U =U N ,I =I N ,n =n N 。此时M 的励磁电流I f 即为额定励磁电流I fN 。 4)保持U =U N ,I f =I fN ,I f2为校正值不变的条件下,逐次减小电动机负载。 + 电枢电源I S 励磁电源 I R 2

直流发电机实验报告

实验报告二 实验名称: 直流发电机实验 实验目的: 掌握用实验方法测定直流发电机的运行特性,并根据所测得的运行 特性评定该被试电机的有关性能。 实验项目:1.他励发电机的空载特性:保持N n=n ,使I=0,测取0f U =f(I )。 2.他励发电机的外特性:保持N n=n ,使f fN I =I ,测取U=f(I)。 3.他励发电机的调节特性:保持N n=n ,使N U=U ,测取f I =f(I)。 (一)填写实验设备表

(二)空载特性实验 填写空载特性实验数据表格 表2-1 n=n N=1600r/min (三)外特性实验 填写外特性实验数据表格 表2-2 n=n N=1600r/min I f2=I f2N (四)调整特性实验 填写外特性实验数据表格 表2-3 n=n N=1600r/min,U=U N=200V (五)问题讨论 1. 什么是发电机的运行特性?对于不同的特性曲线,在实验中哪些物理量应保持不变,而哪些物理量应测取? 答:发电机的外部可测量有三个,即端电压U、负载电流I、励磁电流。当发电机正常稳态运行时,3个物理量中1个保持不变,另外2个之间的关系称为发电机的运行特性。所以,衡量直流发电机的性能,通常用其特性曲线来判定。包括空载特性、外特性、效率特性。的大小,端电压将跟着变化。这个变化关系曲线被称为直流发电机的空载特性曲线,该曲线可以看出电机运行点的磁路饱和程

度。流发电机的负载电流,端电压随负载电流变化的关系被称为直流发电机的外特性。 2. 做空载试验时,励磁电流为什么必须单方向调节? 答:发电机空载试验,励磁电流不能为零,因为励磁电流如果是零的话,输出电压将无穷大,会击穿电机的绝缘层,所以励磁只能从小电流向大电流方向单方向调,防止励磁电流调到零。 3. 实验的体会和建议 答:通过此次实验,我掌握了发电机的运行特性。发电机的转速由原动机决定,一般认为转速恒定。除了转速N外,发电机的外部可测量有三个,即端电压U、负载电流I、励磁电流。当发电机正常稳态运行时,3个物理量中1个保持不变,另外2个之间的关系称为发电机的运行特性。不同励磁方式之发电机的运行特性有所不同。

实验九 三相同步发电机的并联运行

实验九三相同步发电机的并联运行 一.实验目的 1.掌握三相同步发电机投入电网并联运行的条件与操作方法。 2.掌握三相同步发电机并联运行时有功功率与无功功率的调节。 二.预习要点 1.三相同步发电机投入电网并联运行有那些条件?不满足这些条件将产生什么后果?如何满足这些条件? 2.三相同步发电机投入电网并联运行时怎样调节有功功率和无功功率?调节过程又是怎样的? 三.实验项目 1.用准确同步法将三相同步发电机投入电网并联运行。 2.三相同步发电机与电网并联运行时有功功率的调节。 3.三相同步发电机与电网并联运行时无功功率调节。 (1)测取当输出功率等于零时三相同步发电机的V形曲线。 (2)测取当输出功率等于0.5倍额定功率时三相同步发电机的V形曲线。 四.实验设备及仪器 1.MEL系列电机教学实验台主控制屏。 2.电机导轨及测功机、转矩转速测量(MEL-13、MEL-14)。 3.三相可变电阻器90Ω(MEL-04)。 4.波形测试及开关板(MEL-05)。 5.旋转指示灯、整步表(MEL-07)。 6.同步电机励磁电源(位于主控制屏右下部)。 7.功率、功率因数表(或在主控制屏上,或在单独的组件MEL-20、MEL-24)。 五.实验方法及步骤 1.用准同步法将三相同步发电机投入电网并联运行。 实验接线如图4-4。

原动机选用直流并励电动机M03(作他励接法)。 mA、A1、V1选用直流电源自带毫安表、电流表、电压表(在主控制屏下部)。 R st选用MEL-04中的两只90Ω电阻相串联(最大值为180Ω)。 R f选用MEL-03中两只900Ω电阻相串联(最大值为1800Ω)。 R选用MEL-04中的90Ω电阻。 开关S1、S2选用MEL-05。 交流电压表、电流表、功率表的选择同实验3.1(异步电动机的工作特性)。 同步电机励磁电源固定在控制屏的右下部。 工作原理:三相同步发电机与电网首联运行必须满足以下三个条件。 (1)发电机的频率和电网频率要相同,即f II=f I; (2)发电机和电网电压大小、相位要相同,即E oII=U I; (3)发电机和电网的相序要相同; 为了检查这些条件是否满足,可用电压表检查电压,用灯光旋转法或整步表法检查相序和频率。

直流伺服电机实验报告

实验六直流伺服电机实验 一、实验设备及仪器 被测电机铭牌参数: P N =185W ,U N =220V ,I N =1.1A ,μN =1600rpm 使用设备规格(编号): 1.MEL 系列电机系统教学实验台主控制屏(MEL-I 、MEL-IIA 、B ); 2.电机导轨及测功机、转速转矩测量(MEL-13); 3.直流并励电动机M03(作直流伺服电机); 4.220V 直流可调稳压电源(位于实验台主控制屏的下部); 5.三相可调电阻900Ω(MEL-03); 6.三相可调电阻90Ω(MEL-04); 7.直流电压、毫安、安培表(MEL-06); 二、实验目的 1.通过实验测出直流伺服电动机的参数r a 、e κ、T κ。

2.掌握直流伺服电动机的机械特性和调节特性的测量方法。 三、实验项目 1.用伏安法测出直流伺服电动机的电枢绕组电阻r a 。 2.保持U f=U fN=220V,分别测取U a =220V及U a=110V的机械特性n=f(T)。3.保持U f=U fN=220V,分别测取T2=0.8N.m及T2=0的调节特性n=f(Ua)。4.测直流伺服电动机的机电时间常数。 四、实验说明及操作步骤 1.用伏安法测电枢的直流电阻Ra

取三次测量的平均值作为实际冷态电阻值Ra=3 13 2a a a R R R ++。 表中Ra=(R a1+R a2+R a3)/3; R aref =Ra*a ref θ++235235 (3)计算基准工作温度时的电枢电阻 由实验测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温。按下式换算到基准工作温度时的电枢绕组电阻值: R aref =Ra a ref θθ++235235 式中R aref ——换算到基准工作温度时电枢绕组电阻。(Ω) R a ——电枢绕组的实际冷态电阻。(Ω) θref ——基准工作温度,对于E 级绝缘为75℃。 θa ——实际冷态时电枢绕组的温度。(℃) 2.测直流伺服电动机的机械特性

相关文档
最新文档