7存储过程和函数课后习题

7存储过程和函数课后习题
7存储过程和函数课后习题

习题

一、选择题

1.如果当前日期为2003/9/17,下面可以返回17的函数是()。

A.DATEPART(8,9,GETDATE())

B.DATEPART(day,GETDATE())

C.DATEPART(date)

D.DATEPART(date,GETDATE())

2.下列()是对存储过程的描述

A.定义了一个有相关列和行的集合

B.当用户修改数据时,一种特殊形式的存储过程被自动执行

C.SQL语句的预编译集合

D.它根据一或多列的值,提供对数据库表的行的快速访问

3.对于下面的存储过程:

CREATE PROCEDURE Myp1 @P Int As select Studentname,Age from Strdents where Age==@p

如果在students表中查找年龄18岁的学生,正确调用存储过程的是()

A.exec Myp1 @p=’18’

B.exec Myp1 @p=18

C.exec Myp1 p=’18’

D.exec Myp1 p=18

4.下面哪一个关键字不是Transac-SQL的函数?()

A.DAY()

B.YEAR()

C.MONTH()

D.SECOND()

5.下面哪一个函数用于判断两个日期相隔的时间差?()

A.DATEADD()

B.DATEDIFF ()

C.DATENAME

D.GETDATE

6.下列函数中,返回值数据类型为int 的是()。

A.LEFT

B.LEN

C.LTRIM

D.SUNSTRING

7.SELECT CHARINDEX ('V',SUBSTRING('SQL SERVER 2008',5,6))得到的结果是()A.4

B.6

C.V

D.S

8.SELECT LEFT(REPLACE('abcdefghicde','cde','xxx'),4) 得到的结果是()A.abcd

B.icde

C.abxx

D.axxx

9.需要知道当前日期的年份,不能实现的是()

A.year(getdate())

B.DATEPART(year,getdate())

C.DATENAME(year,getdate())

D.DATEDIFF(year,getdate())

10.下面有关于存储过程的说法不正确的是

A.存储过程是一种独立的数据库对象,它在服务器上创建和运行

B.使用存储过程可以减少网络流量

C.存储过程每次调用都要进行重新的编译和优化,降低了执行效率

D.存储过程提供了一种安全机制

11.在SQL SERVER服务器上,存储过程是一组预先定义并()的SQL语句。A.保存

B.编译

C.解释

D.编写

二、填空题

1.创建存储过程使用CREATE Procedure 语句,执行调用用EXEC 语句,删除用DROP Procedure 语句。

2.计算字段的求和函数是____ SUM _____,统计项目数的函数是___ COUNT ____。3.LEFT是指取左侧的字符串,与之相反的函数是RIGHT ,UPPER是字符串转化为大写的函数,与只相反的函数是LOWER 。

4.在SQL Server 2008中提供了3种存储过程,它们分别是用户定义存储过程、系统存储过程和扩展存储过程。

5.在Microsoft SQL Server 2008系统中,要求存储过程每次执行都要对过程重编译和优化的参数是RECOMPILE 。

6.需要计算得到今天距离奥运会开幕已经过去多少天了,应该使用的函数是DATEDIFF。

三、应用题

在图书管理数据库中完成下列任务

1.查询所有读者的姓氏,去掉重复的。

解答:

SELECT DISTINCT LEFT(读者姓名,1)FROM 读者。

2.分别从两个字符('you love shanghai'和'i love beijing.')串中截取信息生成字符串'YOU love beijing.'。

解答:

SELECT UPPER(SUBSTRING('you love dandong',1,3))+ LOWER(SUBSTRING('i love beijing.',2,14))

3.凡是超期次数超过15次的读者都有被处罚的危险,所以要经常将这些用户检索出来进行处理。创建该存储过程并执行。

解答:

CREATE PROCEDURE 即将超期_tri

AS SELECT 姓名,工作单位

FROM 读者

WHERE 超期次数>15

GO

EXEC 即将超期_tri

GO

4.管理系统中,经常要根据读者的姓名来查询他都借阅了那些图书,同时因为读者“孙海平”经常来查询自己的借书情况,所以将他设定为默认值,根据要求创建存储过程。创建后,使用该存储过程检索读者“孙海平”和“刘文华”的信息。

解答:

CREATE PROCEDURE 读者姓名_tri

@XM char(8)='孙海平'

AS SELECT 读者姓名,书名

FROM 读者,借阅,图书

WHERE 读者.读者编号=借阅.读者编号and

图书.图书编号= 借阅.图书编号and

读者姓名=@XM

GO

EXEC 读者姓名_tri

GO

EXEC 读者姓名_tri '刘文华'

GO

复变函数课后习题答案(全)69272

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=-- (3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=-- 2.将下列复数化为三角表达式和指数表达式: (1)i(2 )1-+(3)(sin cos) r i θθ + (4)(cos sin) r i θθ -(5)1cos sin (02) i θθθπ -+≤≤

解:(1)2 cos sin 2 2 i i i e π π π =+= (2 )1-+2 3 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22 i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin )i i i θθθθ-+-- 2[cos()sin()](cos sin ) 33)sin()][cos()sin()]44 i i i i ππ θθππ θθ-+-+= -+--+-

实变函数习题解答(1)

第一章习题解答 1、证明 A (B C)=(A B) (A C) 证明:设x∈A (B C),则x∈A或x∈(B C),若x∈A,则x∈A B,且x∈A C,从而x∈(A B) (A C)。若x∈B C,则x∈B且x∈C,于是x∈A B且x∈A C,从而x∈(A B) (A C),因此 A (B C) ? (A B) (A C) (1) 设x∈(A B) (A C),若x∈A,则x∈A (B C),若x∈A,由x∈A B 且x∈A C知x∈B且x∈C,所以x∈B C,所以x∈A (B C),因此 (A B) (A C) ? A (B C) (2) 由(1)、(2)得,A (B C)=(A B) (A C) 。 2、证明 ①A-B=A-(A B)=(A B)-B ②A (B-C)=(A B)-(A C) ③(A-B)-C=A-(B C) ④A-(B-C)=(A-B) (A C) ⑤(A-B) (C-D)=(A C)-(B D) (A-B)=A B A-(A B)=A C(A B)=A (CA CB) =(A CA) (A CB)=φ (A CB)=A-B (A B)-B=(A B) CB=(A CB) (B CB) =(A CB) φ=A-B ②(A B)-(A C)=(A B) C(A C) =(A B) (CA CC)=(A B CA) (A B CC)=φ [A (B CC)]= A (B-C) ③(A-B)-C=(A CB) CC=A C(B C) =A-(B C) ④A-(B-C)=A C(B CC)=A (CB C) =(A CB) (A C)=(A-B) (A C) ⑤(A-B) (C-D)=(A CB) (C CD) =(A C) (CB CD)=(A C) C(B D) =(A C)-(B D)

实变函数论课后答案第三章1

实变函数论课后答案第三章1 第三章第一节习题 1.证明:若E 有界,则m E *<∞. 证明:若n E R ?有界,则存在一个开区间 (){}120,,;n M n E R I x x x M x M ?=-<< . (0M >充分大)使M E I ?. 故()()()111 inf ;2n n n n m n n i m E I E I I M M M ∞∞ * ===??=?≤=--=<+∞????∑∏ . 2.证明任何可数点集的外测度都是零. 证:设{}12,,,n E a a a = 是n R 中的任一可数集.由于单点集的外测度为零, 故{}{}{}()12111 ,,,00n i i i i i m E m a a a m a m a ∞ ∞ ∞ * * * *===??==≤== ???∑∑ . 3.证明对于一维空间1R 中任何外测度大于零的有界集合E 及任意常数μ,只要 0m E μ*≤≤,就有1E E ?,使1m E μ*=. 证明:因为E 有界,设[],E a b ?(,a b 有限), 令()(),f x m E a x b *=?<< , 则()()()()[]()()0,,f a m E m f b m a b E m E ****=?=?=== . 考虑x x x +?与,不妨设a x x x b ≤≤+?≤, 则由[])[]())()[](),,,,,a x x E a x x x x E a x E x x x E +?=+?=+????? . 可知())()[](),,f x x m a x E m x x x E ** +?≤++??? ()[]()(),f x m x x x f x x *≤++?=+?.

实变函数试题库(5)及参考答案

实变函数试题库及参考答案(5) 本科 一、填空题 1.设,A B 为集合,则___(\)A B B A A 2.设n E R ?,如果E 满足0 E E =(其中0 E 表示E 的内部),则E 是 3.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ?且,a G b G ??,则(,)a b 必为G 的 4.设{|2,}A x x n n ==为自然数,则A 的基数a (其中a 表示自然数集N 的基数) 5.设,A B 为可测集,B A ?且mB <+∞,则__(\)mA mB m A B - 6.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是 7.若()E R ?是可数集,则__0mE 8.设 {}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果 .()() ()a e n f x f x x E →∈,则()()n f x f x ?x E ∈(是否成立) 二、选择题 1、设E 是1 R 中的可测集,()x ?是E 上的简单函数,则 ( ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 2.下列集合关系成立的是( ) (A )()()()A B C A B A C = (B )(\)A B A =? (C )(\)B A A =? (D )A B A B ? 3. 若() n E R ?是闭集,则 ( ) (A )0 E E = (B )E E = (C )E E '? (D )E E '= 三、多项选择题(每题至少有两个以上的正确答案) 1.设{[0,1]}E =中的有理点 ,则( ) (A )E 是可数集 (B )E 是闭集 (C )0mE = (D )E 中的每一点均为E 的内点

实变函数第三章习题参考解答

实变函数第三章习题参考解答 1.设f 是E 上的可测函数,证明:R a '∈?,})(|{a x f x E ==是可测集. 解:R a '∈?,因为)(x f 是E 上的可测,所以})(|{a x f x E ==与 })(|{a x f x E ≤=均是可测集.从而 })(|{a x f x E ==})(|{a x f x E ≥==})(|{a x f x E ≤= 可测. 2.设f 是E 上的函数,证明:f 在E 上的可测当且仅当对一切有理数r , })(|{r x f x E >=是可测集. 证:) (?R a '∈?,取单调递减的有理数序列∞=1}{k k r 使得a r k k =+∞ →lim ,则 })(|{})(|{1 k k r x f x E a x f x E >=>=∞ = .由每个k r x f x E >)(|{}的可测性,知 })(|{a x f x E >=可测.从而,)(x f 在E 上的可测. )(?设f 在E 上的可测,即R a '∈?,})(|{a x f x E >=可测.特别地,当r a =时 有理数时,})(|{r x f x E >=可测. 3. 设f 是R '上的可测函数,证明:对于任意的常数α,)(x f α是R '上的可测函数. 为证上述命题,我们先证下面二命题: 命题1.若E 是R '中的非空子集,则R '∈?α,有E m E m *||*αα= 证明:当0=α时,因为}0{=E α,则E m E m *||*αα=.不妨设,0≠α.因为 E I I E m i i i i ?=∞ =∞ =∑1 1 ||inf{* ,i I 为开区间}.0>?ε,存在开区间序列∞=1}{i i I , E I i i ?∞ =1 ,||*||*1αε + <≤∑∞ =E m I E m i i .又因为E I i i ?∞=α1 (注:若),(i i i I βα=,则 ? ??=ααααβααβααα),,(),,(i i i i i I . 所以εααααα+?<==≤ ∑∑∑∞ =∞=∞ =E m I I I E m i i i i i i *||||||||||||*1 1 1 .由ε得任意性,有

实变函数论课后答案第五章1

实变函数论课后答案第五章1 第无章第一节习题 1.试就[0,1]上 的D i r i c h l e 函数()D x 和Riemann 函数()R x 计算[0,1] ()D x dx ? 和 [0,1] ()R x dx ? 解:回忆1 1()0\x Q D x x R Q ∈?=?∈?即()()Q D x x χ= (Q 为1 R 上全体有理数之集合) 回忆: ()E x χ可测E ?为可测集和P129定理2:若E 是n R 中测度有 限的可测集, ()f x 是E 上的非负有界函数,则_ ()()() E E f x dx f x dx f x =???为E 上的可测函数 显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue 可积 由P134Th4(2)知 [0,1] [0,1][0,1][0,1][0,1]()()()10c c Q Q Q Q Q Q Q x dx x dx x dx dx dx χχχ????= + = + ? ? ? ? ? 1([0,1])0([0,1])10010c m Q m Q =??+??=?+?= 回忆Riemann 函数()R x :1:[0,1]R R 11,()0[0,1]n n x m n m R x x x Q ?= ??==??∈-?? 和无大于的公因子1 在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0 .R x a e =于[0,1]上,故()R x 可

测(P104定理3),且 [0,1] ()R x dx ? [0,1]()()Q Q R x dx R x dx -= +? ? 而0()10Q Q R x dx dx mQ ≤≤==??(Q 可数,故*0m Q =)故 [0,1] [0,1][0,1]()()00Q Q R x dx R x dx dx --= = =? ? ? 2.证明定理1(iii)中的第一式 证明:要证的是:若mE <+∞,(),()f x g x 都是E 上的非负有界函数,则 ()()()E E E f x dx f x dx g x dx --≥+??? 下面证明之: 0ε?>,有下积分的定义,有E 的两个划分1D 和2D 使 1 ()()2 D E s f f x dx ε -> - ? ,2 ()()2 D E s g g x dx ε -> - ? 此处1 ()D s f ,2 ()D s g 分别是f 关于1D 和g 关于2D 的小和数,合并12 ,D D 而成E 的一个更细密的划分D ,则当()D s f g +为()()f x g x +关于D 的小和数时 12(()())()D D D D D f x g x dx s f g s f s g s f s g - +≥+≥+≥+? ()()()()22E E E E f x dx g x dx f x dx g x dx εε ε----≥ -+-=+-? ???(用到下确界的性 质和P125引理1) 由ε的任意性,令0ε→,而得(()())()()E E f x g x dx f x dx g x dx - --+≥+??? 3.补作定理5中()E f x dx =+∞?的情形的详细证明 证明 :令 {} |||||m E E x x m =≤,当 ()E f x dx =+∞ ?时, ()lim ()m m E E f x dx f x dx →∞ +∞==?? 0M ?>,存在00()m m M N =∈,当0m m ≥时,

实变函数测试题1-参考答案

本试题参考答案由08统计班15号 李维提供 有问题联系 1、设 212(0,1/),(0,),0,1,2...,n n A n A n n -===n 求出集列{A }的上限集和下限集合。 2、证明:()f x 为[,]a b 上连续函数的充分必要条件是对任意实数c ,集{} ()E x f x c =≥和 {}1()E x f x c =≤都是闭集。 3、设n R E ?是任意可测集,则一定存在可测集 δ G 型集 G ,使得 E G ?,且 ()0=-E G m 4、设,n A B R ?,A B ?可测,且()m A B ?<+∞,若()**m A B m A m B ?=+, 则,A B 皆可测。 5、写出鲁津定理及其逆定理。并证明鲁津定理的逆定理。 6、设)(x f 是E 上的可测函数,G 为开集,F 为闭集,试问])(|[G x f x E ∈与 ])(|[F x f x E ∈是否是可测集,为什么? 7、设在Cantor 集0P 上定义函数()f x =0,而在0P 的余集中长为1 3n 的构成区间上定义为n (1,2,3,=L n ),试证()f x 可积分,并求出积分值。 8、设{}n f 为E 上非负可积函数列,若lim ()0,n E n f x dx →∞=? 则()0n f x ?。 9、设)(x f 是E 上. 有限的可测函数,+∞?ε,存在E 上. 有界的 可测函数)(x g ,使得 ε<>-]0|[|g f mE 。 10、求证 1 2 01 11 ln 1()∞ ==-+∑?p n x dx x x p n , (1)p >-。 解答: 1. 解:()∞=∞ →,0lim n n A ;设()∞∈,0x ,则存在N ,使x N <,因此n N >时,0x n <<, 即n A x 2∈,所以x 属于下标比N 大的一切偶指标集,从而x 属于无限多n A ,得n n A x ∞ →∈lim 又显然()∞?∞ →,0lim n n A ,所以()∞=∞ →,0lim n n A 。

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分 ? +i dz z 30 2。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 ()()()?? +=??????+=+=+1 3 1 0332330 233 13313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 033 2 3 2 33 131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz = ()()()33 1 031 02 33 233133 13313-+=??????+=+=?? +i it idt it dz z i ( ()()()3 3331 02 3 02 302 33 133********i i idt it dt t dz z i +=-++= ++= ∴??? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz = ()()31 031 2 02 3 131i it idt it dz z i =??? ???==?? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = ()()()33 1 031 02323113 131i i i t dt i t dz z i i -+=??????+=+=?? + ()()3 333320 230 213 13113131i i i i dz z dz z dz z i i i i +=-++= += ∴? ? ? ++ 2. 分别沿x y =与2 x y =算出积分 ()?++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=????? ???? ??++=++=+∴ ?? +i i x i x i dx ix x i dz iy x i 213112131111 0231 02 10 2 / 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 043210 2 2131142311211i i x i x i dx x i x i dz iy x i

实变函数第三章复习题及解答

第三章 复习题 一、判断题 1、设()f x 是定义在可测集n E R ?上的实函数,如果对任意实数a ,都有[()]E x f x a >为可测集,则()f x 为E 上的可测函数。(√ ) 2、设()f x 是定义在可测集n E R ?上的实函数,如果对某个实数a ,有[()]E x f x a >不是可测集,则()f x 不是E 上的可测函数。(√ ) 3、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对某个实数a , [()]E x f x a ≥为可测集。(× ) 4、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对任意实数a , [()]E x f x a =为可测集。(× ) 5、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对任意实数a , [()]E x f x a ≤为可测集。(√ ) 6、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对任意实数a 和b (a b <), [()]E x a f x b ≤<为可测集。(× ) 7、设E 是零测集,()f x 是E 上的实函数,则()f x 为E 上的可测函数。(√ ) 8、若可测集E 上的可测函数列{()n f x }在E 上几乎处处收敛于可测函数()f x ,则{()n f x }在E 上“基本上”一致收敛于()f x 。(× ) 9、设()f x 为可测集E 上几乎处处有限的可测函数,则()f x 在E 上“基本上”连续。(√ ) 10、设E 为可测集,若E 上的可测函数列()()n f x f x ?(x E ∈),则{()n f x }的任何子列都在E 上几乎处处收敛于可测函数()f x 。(× ) 11、设E 为可测集,若E 上的可测函数列()()n f x f x →..a e 于E ,则()()n f x f x ?(x E ∈)。(× )

实变函数引论参考答案 曹怀信 第二章

。习题2.1 1.若E 是区间]1,0[]1,0[?中的全体有理点之集,求b E E E E ,,,' . 解 E =?;[0,1][0,1]b E E E '===?。 2.设)}0,0{(1sin ,10:),( ???? ??=≤<=x y x y x E ,求b E E E E ,,,' . 解 E =?;{(,):0,11}.b E E x y x y E E '==-≤≤== 3.下列各式是否一定成立? 若成立,证明之,若不成立,举反例说明. (1) 11n n n n E E ∞ ∞=='??'= ???; (2) )()(B A B A ''=' ; (3) n n n n E E ∞=∞==? ??? ??1 1 ; (4) B A B A =; (5) ???=B A B A )(; (6) .)(? ??=B A B A 解 (1) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则1 ( )n n E ∞=''==Q R , 而1.n n E ∞ ='=?但是,总有11 n n n n E E ∞∞=='??'? ???。 (2) 不一定。如 A =Q , B =R \Q , 则(),A B '=? 而.A B ''=R R =R (3) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则 1 n n E ∞===Q R , 而 1 .n n E ∞ ==Q 但是,总有11 n n n n E E ∞∞ ==??? ???。 (4) 不一定。如(,)A a b =,(,)B b c =,则A B =?,而{}A B b =。 (5) 不一定。如[,]A a b =, [,]B b c =, 则(,)A a b =, (,)B b c =,而 ()(,)A B a c =,(,)\{}A B a c b =. (6) 成立。因为A B A ?, A B B ?, 所以()A B A ?, ()A B B ?。因此, 有()A B A B ?。设x A B ∈, 则存在10δ>,20δ>使得1(,)B x A δ?且2(,)B x B δ?,令12min(,)δδδ=,则(,)B x A B δ?。故有()x A B ∈,即 ()A B A B ?。因此,()A B A B =. 4.试作一点集A ,使得A '≠?,而?='')(A . 解 令1111 {1,,,,,,}234A n =,则{0}A '=,()A ''=?. 5.试作一点集E ,使得b E E ?. 解 取E =Q ,则b E =R 。 6.证明:无聚点的点集至多是可数集. 证明 因为无聚点的点集必然是只有孤立点的点集,所以只要证明:任一只有孤立点的点集A 是最多可数。对任意的x A ∈,都存在0x δ>使得(,){}x B x A x δ=。有理开球(即中心为有理点、半径为正有理数的开球)(,)(,)x x x B P r B x δ?使得(,)x x x B P r ∈,从而 (,){}x x B P r A x =。显然,对于任意的,x y A ∈,当x y ≠时,有(,)(,)x x y y B P r B P r ≠, 从而(,)(,)x x y y P r P r ≠。令()(,)x x f x P r =,则得到单射:n f A + →?Q Q 。由于n + ?Q Q 可

实变函数试题库(4)及参考答案

实变函数试题库及参考答案(4) 本科 一、填空题 1.设,A B 为两个集合,则__c A B A B - . 2.设n E R ?,如果E 满足E E '?(其中E '表示E 的导集),则E 是 3.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i) )(b a ,G (ii),a G b G ?? 4.设A 为无限集.则A 的基数__A a (其中a 表示自然数集N 的基数) 5.设12,E E 为可测集,2mE <+∞,则1212(\)__m E E mE mE -. 6.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ?∈,则由______定理可知得,存在{}()n f x 的子列{}()k n f x ,使得.()() ()k a e n f x f x x E →∈. 7.设()f x 为可测集E (n R ?)上的可测函数,则()f x 在E 上的L 积分值存在且|()|f x 在E 上L 可积.(填“一定”“不一定”) 8.若()f x 是[,]a b 上的绝对连续函数,则()f x 是[,]a b 上的有 二、选择题 1.设(){},001E x x =≤≤,则( ) A 1mE = B 0mE = C E 是2R 中闭集 D E 是2R 中完备集 2.设()f x ,()g x 是E 上的可测函数,则( ) A 、()()E x f x g x ??≥??不一定是可测集 B 、()()E x f x g x ??≠??是可测集 C 、()()E x f x g x ??≤??是不可测集 D 、()() E x f x g x ??=??不一定是可测集 3.下列集合关系成立的是() A 、(\)A B B A B = B 、(\)A B B A = C 、(\)B A A A ? D 、\B A A ? 4. 若() n E R ?是开集,则 ( ) A 、E 的导集E ? B 、E 的开核E =C 、E E =D 、E 的导集E =

(0195)《实变函数论》网上作业题及答案

[0195]《实变函数论》 第一次作业 [单选题]1.开集减去闭集是() A:A.开集 B:B.闭集 C:C.既不是开集也不是闭集 参考答案:A [单选题]2.闭集减去开集是() A:开集 B:闭集 C:既不是开集也不是闭集 参考答案:B [单选题]3.可数多个开集的交是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]4.可数多个闭集的并是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]6.可数集与有限集的并是() A:有界集 B:可数集 C:闭集 参考答案:B

[判断题]5.任意多个开集的并仍是开集。 参考答案:正确 [单选题]8.可数多个有限集的并一定是() A:可数集 B:有限集 C:以上都不对 参考答案:C [单选题]7.设f(x)是定义在[a,b]上的单调函数,则f(x)的间断点集是()A:开集 B:闭集 C:可数集 参考答案:C [单选题]9.设f(x)是定义在R上的连续函数,E=R(f>0),则E是 A:开集 B:闭集 C:有界集 参考答案:A [单选题]10.波雷尔集是() A:开集 B:闭集 C:可测集 参考答案:C [判断题]7.可数多个零测集的并仍是零测集合。 参考答案:正确 [单选题]1.开集减去闭集是()。 A:A.开集 B.闭集 C.既不是开集也不是闭集 参考答案:A [单选题]5.可数多个开集的并是() A:开集 B:闭集

C:可数集 参考答案:A [判断题]8.不可数集合的测度一定大于零。 参考答案:错误 [判断题]6.闭集一定是可测集合。 参考答案:正确 [判断题]10.开集一定是可测集合。 参考答案:正确 [判断题]4.连续函数一定是可测函数。 参考答案:错误 [判断题]3.零测度集合或者是可数集合或者是有限集。 参考答案:正确 [判断题]2.有界集合的测度一定是实数。 参考答案:正确 [判断题]1.可数集合是零测集 参考答案:正确 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 第二次作业 [单选题]4.设E是平面上边长为2的正方形中所有无理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:C [单选题]3.设E是平面上边长为2的正方形中所有有理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:A [单选题].2.[0,1] 中的全体有理数构成的集合的测度是() A:0 B:1

实变函数习题解答

第一章习题解答 1、证明 A Y(B I C)=(A Y B)I(A Y C) 证明:设x∈A Y(B I C),则x∈A或x∈(B I C),若x∈A,则x∈A Y B,且 x∈A Y C,从而x∈(A Y B)I(A I C)。若x∈B I C,则x∈B且x∈C,于是x∈A Y B 且x∈A Y C,从而x∈(A Y B)I(A Y C),因此 A Y(B I C) ? (A Y B)I(A Y C) (1) 设x∈(A Y B) I(A Y C),若x∈A,则x∈A Y(B I C),若x∈A,由x∈A Y B 且x∈A Y C知x∈B且x∈C,所以x∈B I C,所以x∈A Y(B I C),因此 (A Y B)I(A Y C) ? A Y(B I C) (2) 由(1)、(2)得,A Y(B I C)=(A Y B)I(A Y C) 。 2、证明 ①A-B=A-(A I B)=(A Y B)-B ②A I(B-C)=(A I B)-(A I C) ③(A-B)-C=A-(B Y C) ④A-(B-C)=(A-B)Y(A I C) ⑤(A-B)I(C-D)=(A I C)-(B Y D) (A-B)=A I B A-(A I B)=A I C(A I B)=A I(CA Y CB) =(A I CA)Y(A I CB)=φY(A I CB)=A-B (A Y B)-B=(A Y B)I CB=(A I CB)Y(B I CB) =(A I CB)Yφ=A-B ②(A I B)-(A I C)=(A I B)I C(A I C) =(A I B)I(CA Y CC)=(A I B I CA)Y(A I B I CC)=φY[A I(B I CC)]= A I(B-C) ③(A-B)-C=(A I CB)I CC=A I C(B Y C) =A-(B Y C) ④A-(B-C)=A I C(B I CC)=A I(CB Y C) =(A I CB) Y(A I C)=(A-B)Y(A I C) ⑤(A-B)I(C-D)=(A I CB)I(C I CD) =(A I C)I(CB I CD)=(A I C)I C(B Y D)

复变函数与积分变换课后习题答案详解

… 复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) / ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππ2222e cos isin i i 44-??????=-+-= +-=- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+); 3 3 31313;;;.n i i z i ???? -+-- ? ? ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 3 2 2 222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ () ()()()(){ }3 3 2 3 2 1i 31i 311313313388-+??-+? ???== --?-?+?-?- ? ?????? ? ?? ?? ()1 80i 18 = += ∴1i 3Re 1?? -+= ? ??? , 1i 3Im 0??-+= ? ???. ④解: ∵ () ()() ()()2 3 3 23 1313 3133i 1i 38 ??--?-?-+?-?- ?? ??-+? ? = ? ??? ()1 80i 18 = += ∴1i 3Re 1??-+= ? ?? ? , 1i 3Im 0??-+= ? ??? . ⑤解: ∵()()1, 2i 211i, k n k n k k n k ?-=?=∈?=+-???. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i 415-+=+=. 2i 2i -+=-- ②解:33-= 33-=- ③解:()()2i 32i 2i 32i 51365++=++=?=. ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 2 22++== ()1i 11i 222i ++-??= = ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+, 则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数. 若z =x ,x ∈,则z x x ==.

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

(完整版)《实变函数与泛函分析基础》试卷及答案要点

试卷一: 一、单项选择题(3分×5=15分) 1、1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数 (C ){}inf ()n n f x 是可测函数;(D )若()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))(' x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都有

实变函数(程其襄版)第一至四章课后习题答案

第一章集合 早在中学里我们就已经接触过集合的概念,以及集合的并、交、补的运算,因此这章的前两节具有复习性质,不过,无限多个集合的并和交,是以前没有接触过的,它是本书中常常要用到,是学习实变函数论时的一项基本功。 康托尔在19世纪创立了集合论,对无限集合也以大小,多少来分,例如他断言:实数全体比全体有理数多,这是数学向无限王国挺近的重要里程碑,也是实变函数论的出发点。 实变函数论建立在实数理论和集合论的基础上,对于实数的性质,我们假定读者已经学过,所以本书只是介绍集合论方面的基本知识。 §1 集合的表示 集合是数学中所谓原始概念之一,不能用别的概念加以定义,就目前来说,我们只要求掌握一下朴素的说法: 在一定范围内的个体事物的全体,当将它们看作一个整体时,我们把这个整体称作一个集合,其中每一个个体事物叫做该集合的元素。 顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。 例1 4,7 ,8,3四个自然数构成的集合。 例2 全体自然数 例3 0和1之间的实数全体 0,1上的所有实函数全体 例4 [] 例5 A,B,C三个字母构成的集合 例6 平面上的向量全体 全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。 1.集合的表示

一个具体集合A 可以通过例举其元素,,a b c L 来定义,可记{},,A a b c =L 也可以通过该集合中的各个元素必须且只需满足的条件p 来定义,并记为 A={x :x 满足条件p} 如例1可以表示为{4,7,8,3}例3可以表示为{}:(0,1)x x ∈ 设A 是一个集合,x 是A 的元素,我们称x 属于A ,记作x A ∈,x 不是A 的元素,记作x A ?。 为方便表达起见,?表示不含任何元素的空集,例如 {x :sin x >1}=? 习惯上,N 表示自然数集,(本书中的自然数集不包含0),Z 表示整数集,Q 表示有理数集,R 表示实数集. 设()f x 是定义在E 上的函数,记()f E ={ ()f x :x ∈E},称之为f 的值域。若D 是R 中的集合,则 1()f D -={x :x ∈E ,},称之为D 的原像,在不至 混淆时,{x :x ∈E ,()f x 满足条件p}可简写成{x :()f x 满足条件p }. 2.集合的包含关系 若集合A 和B 满足关系:对任意x ∈A,可以得到x ∈B ,则成A 是B 的子集,记为A ?B 或B ?A ,若A B 但A 并不与B 相同,则称A 是B 的真子集. 例7. 若()f x 在R 上定义,且在[a,b]上有上界M ,即任意对 x ∈[a,b]有()f x ≤M.用集合语言表示为:[a,b] ?{x :()f x ≤M}. 用集合语言描述函数性质,是实变函数中的常用方法,请在看下例. 例8. 若()f x 在R 上连续,任意取定0x ∈R,对任意ε>0,存在δ>0.使得对任 意0 0(,)x x x δδ∈-+有0|()()|f x f x -<ε,即 0000((,))((),())f x x f x f x δδεε-+?-+. 3.集合相等 若集合A 和B 满足关系:A ?B 且B ?A,则称A 和B 相等,记为A=B.

相关文档
最新文档