钢管高性能混凝土核心柱正截面承载力叠加计算方法

钢管高性能混凝土核心柱正截面承载力叠加计算方法
钢管高性能混凝土核心柱正截面承载力叠加计算方法

柱子承载力计算

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 三、框架柱承载力计算 (一)正截面偏心受压承载力计算 柱正截面偏心受压承载力计算方法与《混凝土基本原理》中相同(混凝土规范7.3)。如图所示。 即非抗震时: (3-62) (3-63)其中: (3-64)但考虑地震作用后,有两个修正,即: ◆正截面承载力抗震调整系数。

◆保证“强柱弱梁”,对柱端弯矩设计值按梁端弯矩来调整。(混凝土规范11.4.2,抗震规范 6.2.2,6.2.3)即: 一、二、三级框架柱端组合的弯矩设计值为: (3-65)一级框架结构及9度各类框架还应满足: (3-66)其中: ——为节点上下柱端截面顺时针或反时针方向组合的 弯矩设计值之和,如图所示; ——为节点左右梁端截面反时或顺时针方向组合的弯 矩设计值之和的较大者,一级框架节点左右梁端均为负弯矩时,绝对值较小的弯矩应取0; ——为节点左右梁端截面按反时针或顺时针方向采用实配钢筋截面面积和材料标准值,且考虑承载力抗震调整系数 计算的正截面抗震受弯承载力所对应的弯矩值之和的较大者。 其可按有关公式计算。 ——为柱端弯矩增大系数,一级取 1.4,二级取 1.2,三级取 1.1。

求得节点上下柱端的弯矩设计值之和后,一般情况下可按弹性分析所得的节点上下柱端弯矩比进行分配。 对于顶层柱和轴压比小于0.15的柱,可不调整,直接采用内力组合所得的弯矩设计值。 当反弯点不在柱的层高范围内时,柱端截面组合的弯矩设计值可直接乘以上述柱端弯矩增大系数。 一、二、三级框架底层柱下端截面组合的弯矩设计值,应分别乘以增大系数 1.5,1.25,1.15,且底层柱纵筋宜按上下端的不利情况配置。 (二)斜截面受剪承载力计算 1、柱剪力设计值(混凝土规范11.4.4,抗震规范 6.2.5) 为了保证“强剪弱弯”,柱的设计剪力应调整。 一、二、三级的框架柱的剪力设计值按下式调整: (3-67)一级框架和9度各类框架还应满足:

钢管柱脚计算手册DOC

圆形底板刚接柱脚压弯节点技术手册 根据对柱脚的受力分析,铰接柱脚仅传递垂直力和水平力;刚接柱脚包含外露式柱脚、埋入式柱脚和外包式柱脚,除了传递垂直力和水平力外,还要传递弯矩。 软件主要针对圆形底板刚接柱脚压弯节点,计算主要遵循《钢结构连接节点设计手册》(第二版)中的相关条文及规定,并对相关计算过程自行推导。 设计注意事项 刚性固定外露式柱脚主要由底板、加劲肋(加劲板)、锚栓及锚栓支承托座等组成,各部分的板件都应具有足够的强度和刚度,而且相互间应有可靠的连接。 为满足柱脚的嵌固,提高其承载力和变形能力,柱脚底部(柱脚处)在形成塑性铰之前,不容许锚栓和底板发生屈曲,也不容许基础混凝土被压坏。因此设计外露式柱脚时,应注意:(1)为提高柱脚底板的刚度和减小底板的厚度,应采用增设加劲肋和锚栓支承托座等补强措施; (2)设计锚栓时,应使锚栓在底板和柱构件的屈服之后。因此,要求设计上对锚栓应留有15%~20%的富裕量,软件一般按20%考虑。 (3)为提高柱脚的初期回转刚度和抗滑移刚度,对锚栓应施加预拉力,预加拉力的大小宜控制在5~8kN/cm2的范围,作为预加拉力的施工方法,宜采用扭角法。 (4)柱脚底板下部二次浇灌的细石混凝土或水泥砂浆,将给予柱脚初期刚度很大的影响,因此应灌以高强度微膨胀细石混凝土或高强度膨胀水泥砂浆。通常是采用强度等级为C40的细石混凝土或强度等级为M50的膨胀水泥砂浆。 一般构造要求 刚性固定露出式柱脚,一般均应设置加劲肋(加劲板),以加强柱脚的刚度;当荷载大、嵌固要求高时,尚须增设锚栓支承托座等补强措施。 圆形柱脚底板的直径和厚度应按下文要求确定;同时尚应满足构造上的要求。一般底板的厚度不应小于柱子较厚板件的厚度,且不宜小于30mm。 通常情况下,圆形底板的长度和宽度先根据柱子的截面尺寸和锚栓设置的构造要求确定;当荷载大,为减小底板下基础的分布反力和底板的厚度,多采用补强做法,如增设加劲肋(加劲板)和锚栓支承托座等补强措施,以扩展底板的直径。此时底板的尺寸扩展的外伸尺寸(相 对于柱子截面的边端距离),每侧不宜超过底板厚度的倍。

柱子承载力计算

柱子承载力计算 Prepared on 22 November 2020

三、框架柱承载力计算 (一)正截面偏心受压承载力计算 柱正截面偏心受压承载力计算方法与《混凝土基本原理》中相同(混凝土规范)。如图所示。 即非抗震时: (3-62) (3-63)其中: (3-64)但考虑地震作用后,有两个修正,即: ◆正截面承载力抗震调整系数。 ◆保证“强柱弱梁”,对柱端弯矩设计值按梁端弯矩来调整。(混凝土规范11.4.2 一、二、三级框架柱端组合的弯矩设计值为: (3-65)一级框架结构及9度各类框架还应满足: (3-66)其中: ——为节点上下柱端截面顺时针或反时针方向组合的弯矩设计值之和,如图所示;

——为节点左右梁端截面反时或顺时针方向组合的弯矩设计值之和的较大者,一级框架节点左右梁端均为负弯矩时,绝对值较小的弯矩应取0; ——为节点左右梁端截面按反时针或顺时针方向采用实配钢筋截面面积和材料标准值,且考虑承载力抗震调整系数计算的正截面抗震受弯承载力所对应的弯矩值之和的较大者。其可按有关公式计算。 ——为柱端弯矩增大系数,一级取,二级取,三级取。 求得节点上下柱端的弯矩设计值之和后,一般情况下可按弹性分析所得的节点上下柱端弯矩比进行分配。 对于顶层柱和轴压比小于的柱,可不调整,直接采用内力组合所得的弯矩设计值。 当反弯点不在柱的层高范围内时,柱端截面组合的弯矩设计值可直接乘以上述柱端弯矩增大系数。 一、二、三级框架底层柱下端截面组合的弯矩设计值,应分别乘以增大系数,,,且底层柱纵筋宜按上下端的不利情况配置。 (二)斜截面受剪承载力计算 1、柱剪力设计值(混凝土规范11.4.4 为了保证“强剪弱弯”,柱的设计剪力应调整。 一、二、三级的框架柱的剪力设计值按下式调整: (3-67)一级框架和9度各类框架还应满足: (3-68)

钢管立柱计算

30+50+30m连续梁支架(钢管立柱部分)计算书 一、跨西环铁路钢管立柱支架方案介绍 在连续梁主跨跨越西环铁路处设置钢管承重立柱+纵向贝雷桁架梁(两跨24m)+横向分配梁的结构模式,支架搭设完成后门洞通行净空为 5.6m (既有线要求最小通行净空5.6m),整体支架布置详见附图《全跨度碗扣支架及钢管立柱贝雷支架布置立面图》。 1. 立柱基础 中间一排设置长度19m宽度1.2m,高度1m钢筋混凝土条形基础,基础位于西环铁路路基中心;两侧设置①1.20m桩基础,桩顶设置混凝土条形基础 (19m*1.2*1m)系梁,大里程侧每条条形基础下布置4根桩,间距3.7m,单 根桩长12m采用旋挖钻成孔,小里程侧每条条形基础下布置5根桩,间距2.85m,单根桩长8m,因承台基坑开挖后,旋挖钻无法施工,此处桩基采用人工挖孔成孔。条形基础采用C35钢筋混凝土,底层钢筋采用①16 HRB40C钢筋, 间距10cm,侧面及顶面采用①12 HRB400钢筋网,间距15cm,在钢管立柱对应位置处预埋2cm厚1m*1mt冈板。 2. 钢管立柱 钢管立柱采用①630mm 10mm厚度螺旋钢管,钢管之间采用[10号槽钢连接为整体,立柱底端与基础连接处设置2cm厚1m*1mi冈板,立柱顶端设置三拼40a工字钢横梁。 3. 贝雷桁架梁 单幅连续梁布置单层18排加强贝雷桁架梁并采用90cm花窗将两排贝雷片连接为整体,在贝雷桁架梁上横向铺设20a工字钢分配梁,间距60cm,工字钢上纵向铺设[10号槽钢,间距60cm (详见《中钢管立柱处支架横截面布置图》)。

4. 贝雷桁架梁上碗扣支架 在贝雷桁架梁上布置满堂式碗扣支架,①48X 3.5mm碗扣立杆、横杆、斜撑杆、可调节顶托、10cmx 15cm木方做纵向分配梁,直接铺设在支架顶部的可调节顶托上,纵向分配梁上再铺设横向分配梁,连续箱梁底模板采用竹胶模板,后背10cm x 10cm木方,然后直接铺装在10cmx 15cm方木纵向分配梁上进行连接固定。 根据连续箱梁施工技术要求、荷载重量、荷载分布状况、地基承载力情况等技术指标,通过满堂碗扣支架计算确定,贝雷桁架梁上碗扣钢管布置:立杆横纵间距60cm横杆间距60cm支架在桥纵向每300cm间距设置剪刀撑,满足承载力要求,此处不再验算,此处验算钢管立柱支架稳定性。 二、荷载分析 1. 施工人员、机械、材料荷载:R= 2.5KN/nf 2. 混凝土冲击及振捣混凝土时产生的荷载:P2=2.5KN/m2 3. 梁体钢筋混凝土截面自重荷载:跨西环铁路最大截面高度为 2.35m,截面 积为12.52 m2, 24m范围内砼体积300.48方,总重为:7812.48KN。其中: 2 a 翼缘板处:R=10.26KN/m 2 b腹板处:取最高截面(2.35m)处P32=61.1KN/m c 底板处:P33=16.64KN/m 注:混凝土截面自重以最厚处截面,视作等截面计算。 4. 模板、支架自重荷载、贝雷桁架梁上碗扣荷载:P1=2.15KN/m i 5. 贝雷桁架梁自重:单片12m P=(4X275+4X 25+4X 80) x 10=15.2KN 6. 贝雷桁架梁受力验算 a.底板及腹板下方:贝雷桁架梁2跨24m单跨12m视作两等跨连续梁。其上分布均布荷载,翼缘板处荷载由其下方4片贝雷桁架梁承担,腹板及底板处荷载

对钢管混凝土主拱肋承载力计算方法的建议

第26卷第4期 2001年12月 中 南 公 路 工 程 对钢管混凝土主拱肋承载力计算方法的建议α 肖卓贤 (广东江门市建设监理顾问公司,江门市,529000)  江 平 (广东省河源市交通委员会,河源市,517000) 【摘 要】 目前国内钢管混凝土拱桥设计、钢管混凝土拱肋承载力的评定,大多采用容许应力法进行强度验算,本文针对运用此方法计算较高的钢管混凝土结构存在的问题,以及结合国内钢管混凝土理论研究作出分析。 【关键词】 钢管混凝土 拱桥 承载力 计算 建议 钢管混凝土是由混凝土填入薄壁圆形钢管内而形成组合结构材料。随着1990年四川旺苍第一座钢管混凝土拱桥的问世,钢管混凝土拱桥在我国发展迅速,据不完全统计,在短短的几年,全国已建成或在建近40座,单跨跨径越来越大,最大跨径已达420m,形式多种多样,积累了很多成功的经验,钢管混凝土结构在大跨度拱桥具有广泛的应用前景。目前国内钢管混凝土拱桥设计、钢管混凝土拱肋承载力的计算及评定方法,桥梁界没有统一认识,《公路钢筋混凝土及预应力混凝土桥涵设计规范》(简称桥规)也没有明确规定。设计者大多采用传统的应力叠加法求应力,用钢材的容许应力来进行强度验算。即:①按弹模比N E=E g E c,将混凝土面积折算成钢面积,求出钢应力;②再按强度比N E=[?g] [?c],求出混凝土应力。由于E g E c≠[?g] [?c],所以计算结果往往使钢材应力储量较大,混凝土应力超出了允许应力,国内已有几座桥主拱肋强度验算出现类似情况。为了确保结构安全,往往只能降低钢材应力应用指标,对于含钢量较高的钢管混凝土结构,将造成很大的经济浪费,所以研究适用于桥梁设计的钢管混凝土结构承载力计算方法具有重要的意义。鉴于钢管混凝土杆件主要用于轴心及偏心受压结构,以下对这两种受力状态承载力计算方法,结合国内钢管混凝土理论研究公式及桥规有关公式作对比分析。1 轴心受压钢管混凝土承载力 国内对钢管混凝土承载力的研究是以极限平衡理论提出,采用方法为极限平衡法,它不管加载历史和变形过程,直接根据结构处于极限状态时的平衡条件得出极限状态的荷载数值。 a. 理论极限承载力公式: N a=A c F c(1+Η0.5+Η)(1)式中:Η为套箍指标,Η=A s F s A c F c;A c,A s为混凝土和钢截面面积;F c,F s为混凝土和钢材抗压设计强度。 b. 国家建材局颁布《钢管混凝土结构设计与施工规程》(以下简称建规),承载力公式: N b=A s F s+k1A c F c(2)式中:k1为核心混凝土强度提高系数,与含钢率Θ=4t D有关,t为钢管壁厚度。 c. 桥规轴心受压钢筋混凝土承载力公式: N c=0.76(R c A c+R s A s)(3)式中:R c,R s为混凝土及钢抗压设计强度,查桥规取值。 [算例1] 一钢管混凝土轴心受压短柱,钢管为 273×8mm,3号钢,F a=215 N mm2,混凝土为C40,F c=19.5N mm2,试计算其承载力。 解:采用式(1)、(2)、(3)计算,并与容许应力法进行对比: A s=Π 4(2732-2562)=6660mm2 54 α

4.2 轴心受压构件承载力计算

轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍筋 柱;一种是配置纵向钢筋和螺旋筋(图)或 焊接环筋(图4.2.1c)的柱,称为螺旋箍筋柱或 间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近

破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=,相应的纵向钢筋应力值=E s=2×105×mm2=400N/mm2。因此,当纵向钢筋为高强度钢筋时,构件破坏时纵向钢筋可能达不到屈服强度。设计中对于屈服强度超过400N/mm2的钢筋,其抗压强度设计值只能取400N/mm2。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。 2.轴心受压长柱的破坏特征 对于长细比较大的长柱,由于各种偶然因素造成的初始偏心距的影响是不可忽略的,在轴心压力N作用下,由初始偏心距将产生附加弯矩,而这个附加弯矩产生的水平挠度又加大了原来的初始偏心距,这样相互影响的结果,促使了构件截面材料破坏较早到来,导致承截能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏(图4.2.3)。试验表明,柱的长细比愈大,其承截力愈低,对于长细比很大的长柱,还有可能发生“失稳破坏”。 由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件

钢管桩承载力验算

北延桥钢管桩验算 验算部位: 选取全桥最不利荷载处-中支点墩柱一侧5m范围进行验算。 5m范围内钢管桩数量: 顺桥向,按施工单位提供的钢管桩顺桥向支点位置5m,跨中位置6.5m间距可知,此段5m 范围内共计考虑顺桥向1排钢管桩。 横桥向,按施工单位提供图示,横桥向6根钢管桩,入土20m。 按上所述,顺桥向5m、横桥向18m桥宽范围内(桥梁面积90m2),共计6根钢管桩,桩入土20m。 一、施工单位提供的各项荷载值如下: 恒载: 1、底模、侧模采用竹胶板 覆膜竹胶板自重:0.34kn/m2 2、顺桥向木枋(5×10)间距30cm 自重:0.10kn/m2 3、横桥向木枋(12×12)间距60cm 自重:0.30kn/m2 4、支架体系(碗扣式) 自重:1.74kn/m2(腹板处) 自重:1.06kn/m2(底板、翼缘板处) 5、平台满铺木枋(15×15) 自重:1.20kn/m2 6、纵联I36C工字钢(间距1.0m) 自重:0.712kn/m2 7、横梁I36C工字钢(双拼) 43m宽平台每排钢管桩受横联工字钢自重61.23kn 活载: 1、施工机具及人员荷载:2.5kn/m2 2、倾倒混凝土产生的荷载(泵送):4.0kn/m2 3、混凝土振捣产生的荷载:2.0kn/m2

二、钢管桩受载计算 考虑荷载分项系数 恒载 1.0 活载1.0 组合后荷载值F 总=1.0*261+1.0*77=338吨 此处为纵向1排,横向6列,故 单根钢管桩荷载值F=338/6=57吨 三、单根钢管桩抗力 本次计算按试桩后对桩侧修正摩阻系数考虑 选取整个钢管桩范围内最不利钻孔ZK6计算,按桩入土20m ,顶标高0.808m ,底标高-19.192m 。 按《公路桥涵地基与基础设计规范》5.3.3第2条沉桩的承载力计算公式计算桩侧 桩周u=PI()*0.6=1.88m ai 为振动沉桩对各土层桩侧摩阻力的影响系数,按规范取值0.7 各桩侧 l q sik ∑计算如下表(各项qsik 均为考虑试桩后的修正值) : )(2/1][p pk r i sik i a A q a l q ua R +=∑

混凝土柱计算

轴心受压普通箍筋柱的正截面受压承载力计算 一般把钢筋混凝土柱按照箍筋的作用及配置方式的不同分为两种:配有纵向钢筋和 普通箍筋的柱,简称普通箍筋柱;配有纵筋和螺旋式(或焊接环式)箍筋的柱,简 称螺旋箍筋柱。 最常见的轴心受压柱是普通箍筋柱,见右图。纵筋的作用是提高柱的承载力,减小 构件的截面尺寸,防止因偶然偏心产生的破坏,改善破坏时构件的延性和减小混凝土的徐变变形。箍筋能与纵筋形成骨架,并防止纵筋受力后外凸。 1.受力分析和破坏形态 1 )短柱的受力分析和破坏形态: 配有纵筋和箍筋的短柱,在轴心荷载作用下,整个截面的应变基本上是均匀分布的。当荷载较小时,混凝土和钢筋都处于弹性阶段。当荷载较大时,由于混凝土塑性变形的发展,压缩变形增加的速度快于荷载增长速度。同时,在相同荷载增量下,钢筋的压应力比混凝土的压应力增加得快,见左图。随着荷载的继续增加,柱中开始出现微细裂缝,在临近破坏荷载时,柱四周出现明显的纵向裂缝,箍筋间的纵筋发生压屈,向外凸出,混凝土被压碎,柱子即告破坏,见右图。 试验表明,素混凝土棱柱体构件达到最大压应力值时的压应变值约为0.0015 ~0. 002 ,而钢筋混凝土短柱达到应力峰值时的压应变一般在0.0025 ~0.0035 之间。其主要原 因是纵向钢筋起到了调整混凝 土应力的作用,使混凝土的塑性 性质得到了较好的发挥,改善了 受压破坏的脆性性质。 在计算时,以构件的压应变达到 0.002 为控制条件,认为此时混 凝土达到了棱柱体抗压强度 f c,相应的纵筋应力值 ;对于HRB400 级、HRB335 级、HPB235 级和RRB400 级热轧钢筋已达到屈服强度。而对于屈服强度或条件屈服强度大于400N /mm2的钢筋,在计算 f y'时,

柱子承载力计算

柱子承载力计算 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

三、框架柱承载力计算 (一)正截面偏心受压承载力计算 柱正截面偏心受压承载力计算方法与《混凝土基本原理》中相同(混凝土规范)。如图所示。 即非抗震时: (3-62) (3-63)其中: (3-64)但考虑地震作用后,有两个修正,即: ◆正截面承载力抗震调整系数。 ◆保证“强柱弱梁”,对柱端弯矩设计值按梁端弯矩来调整。(混凝土规范11.4.2 一、二、三级框架柱端组合的弯矩设计值为: (3-65)一级框架结构及9度各类框架还应满足: (3-66)其中: ——为节点上下柱端截面顺时针或反时针方向组合的弯矩设计值之和,如图所示;

——为节点左右梁端截面反时或顺时针方向组合的弯矩设计值之和的较大者,一级框架节点左右梁端均为负弯矩时,绝对值较小的弯矩应取0; ——为节点左右梁端截面按反时针或顺时针方向采用实配钢筋截面面积和材料标准值,且考虑承载力抗震调整系数计算的正截面抗震受弯承载力所对应的弯矩值之和的较大者。其可按有关公式计算。 ——为柱端弯矩增大系数,一级取,二级取,三级取。 求得节点上下柱端的弯矩设计值之和后,一般情况下可按弹性分析所得的节点上下柱端弯矩比进行分配。 对于顶层柱和轴压比小于的柱,可不调整,直接采用内力组合所得的弯矩设计值。 当反弯点不在柱的层高范围内时,柱端截面组合的弯矩设计值可直接乘以上述柱端弯矩增大系数。 一、二、三级框架底层柱下端截面组合的弯矩设计值,应分别乘以增大系数,,,且底层柱纵筋宜按上下端的不利情况配置。 (二)斜截面受剪承载力计算 1、柱剪力设计值(混凝土规范11.4.4 为了保证“强剪弱弯”,柱的设计剪力应调整。 一、二、三级的框架柱的剪力设计值按下式调整: (3-67)一级框架和9度各类框架还应满足: (3-68)

关于钢管混凝土结构承载力的分析与探讨

关于钢管混凝土结构承载力的分析与探讨 发表时间:2018-03-07T16:08:42.107Z 来源:《建筑学研究前沿》2017年第29期作者:熊帅[导读] 只有在极少数的情况下,例如柱子承受很大的压力,或压力小而弯矩大时,则在管内配置纵向钢筋和箍筋。华南理工大学 510000 摘要:随着我国经济和建设事业的迅猛发展,近年来,钢管混凝土以其独特的优势在各项建设事业中得到了较为广泛的应用,并且也是发展前景极为广阔的一种结构形式。为了更安全合理地推广应用钢管混凝土结构,本文主要对不同截面形式钢管混凝土结构的承载力进行了分析。 关键词:不同截面;钢管混凝土结构;承载力 1.钢管混凝土结构概述 钢管混凝土结构是将混凝土注入封闭的薄壁钢管内形成的组合结构,通常用于轴心受压或偏心受压的柱,且一般都不再配筋,只有在极少数的情况下,例如柱子承受很大的压力,或压力小而弯矩大时,则在管内配置纵向钢筋和箍筋。 钢管混凝土是在劲性钢筋混凝土结构、螺旋配筋混凝土结构以及钢结构的基础上演变和发展起来的一种新型结构。在性能方面,它利用钢管和混凝土材料在受力过程中的相互制约,不仅弥补了两种材料各自的缺点,而且能充分发挥二者的优点,使整个结构具有良好的受力性能。由于钢管的存在,使核心混凝土处于三向受力的复杂应力状态,不仅使混凝土的强度提高,而且使原本脆性的混凝土由于受钢管的约束成为具有一定塑性性能的材料。 所以在钢管混凝土结构中,承载力是很重要的性质。对于不同截面的钢管混凝土结构,其截面形式的受力特点及承载力是不同的,所以,下面就几种不同截面钢管混凝土结构的承载力进行分析。 2.不同截面形式钢管混凝土结构的承载力分析 2.1常用截面形式 2.1.1圆形截面 圆形钢管混凝土是目前研究最为充分的截面形式且在工程中应用也最为广泛。对于圆形钢管混凝土柱,混凝土受到钢管对其均匀约束作用。圆形钢管混凝土承载力及变形能力均优于其他截面形式钢管混凝土构件。由于圆形钢管对于混凝土约束效果比较好,所以圆形钢管混凝土构件主要用于轴压及小偏心受压构件。对于大偏心受压构件来说,由于受拉侧钢管不能对混凝土约束,因此混凝土三向受压性能不能得到发挥。 2.1.2方形截面 方形钢管混凝土构件在结构中应用也很广泛,但是方形钢管对于混凝土的约束不如圆形钢管的约束效果好,方形钢管混凝土的承载力明显低于圆形钢管混凝土。研究表明,方形钢管对于内部混凝土的约束可以分为两个部分:有效约束区和非有效约束区,二者的界限为一抛物线,有效约束区的混凝土极限抗压强度是高于非有效约束区,非有效约束区的混凝土所受到侧向约束是不均匀的。 2.1.3八边形截面 采用圆形钢管混凝土时,在节点区域将会消耗大量的钢材同时给施工带来很大的困难,影响结构的整体经济效益。对于方形钢管混凝土柱,由于外钢管的四个角部分应力集中比较严重,易出现薄弱区域,特别对于抗震不利。同时当构件截面的钢管的宽厚比很大时,则要考虑钢管局部屈曲。采用八边形钢管混凝土结构不仅可以缓解方形钢管混凝土四角应力集中问题及局部屈曲,同时可以兼顾到圆形钢管的约束效果。八边形钢管对于混凝土的约束也分为有效约束区及非有效约束区,且二者界限也为一抛物线。但是由于八边形钢管其角点为120度相比于方形钢管混凝土角点90度,其尖锐性缓解很多,有效缓解了方形钢管混凝土角点应力集中问题,同时又兼顾了方形钢管混凝土梁柱节点的连接,相比于圆形和方形钢管混凝土结构具有一定的优势。各截面应力图如图1所示。

钢管立柱计算

钢管立柱计算

30+50+30m 连续梁支架(钢管立柱部分)计算书 一、跨西环铁路钢管立柱支架方案介绍 在连续梁主跨跨越西环铁路处设置钢管承重立柱+纵向贝雷桁架梁(两跨24m)+横向分配梁的结构模式,支架搭设完成后门洞通行净空为5.6m(既有线要求最小通行净空5.6m),整体支架布置详见附图《全跨度碗扣支架及钢管立柱贝雷支架布置立面图》。 1.立柱基础 中间一排设置长度19m,宽度1.2m,高度1m钢筋混凝土条形基础,基础位于西环铁路路基中心;两侧设置Φ1.20m桩基础,桩顶设置混凝土条形基础(19m*1.2*1m)系梁,大里程侧每条条形基础下布置4根桩,间距3.7m,单根桩长12m,采用旋挖钻成孔,小里程侧每条条形基础下布置5根桩,间距2.85m,单根桩长8m,因承台基坑开挖后,旋挖钻无法施工,此处桩基采用人工挖孔成孔。条形基础采用C35钢筋混凝土,底层钢筋采用Φ16 HRB400钢筋,间距10cm,侧面及顶面采用Φ12 HRB400钢筋网,间距15cm,在钢管立柱对应位置处预埋2cm厚1m*1m钢板。 2.钢管立柱 钢管立柱采用Φ630mm、10mm厚度螺旋钢管,钢管之间采用[10号槽钢连接为整体,立柱底端与基础连接处设置2cm厚1m*1m钢板,立柱顶端设置三拼40a工字钢横梁。 3.贝雷桁架梁 单幅连续梁布置单层18排加强贝雷桁架梁并采用90cm花窗将两排贝雷片连接为整体,在贝雷桁架梁上横向铺设20a工字钢分配梁,间距60cm,工字钢上纵向铺设[10号槽钢,间距60cm(详见《中钢管立柱处支架横截面布置图》)。 4.贝雷桁架梁上碗扣支架

在贝雷桁架梁上布置满堂式碗扣支架,Φ48×3.5mm碗扣立杆、横杆、斜撑杆、可调节顶托、10cm×15cm木方做纵向分配梁,直接铺设在支架顶部的可调节顶托上,纵向分配梁上再铺设横向分配梁,连续箱梁底模板采用竹胶模板,后背10cm×10cm木方,然后直接铺装在10cm×15cm方木纵向分配梁上进行连接固定。 根据连续箱梁施工技术要求、荷载重量、荷载分布状况、地基承载力情况等技术指标,通过满堂碗扣支架计算确定,贝雷桁架梁上碗扣钢管布置:立杆横纵间距60cm,横杆间距60cm,支架在桥纵向每300cm间距设置剪刀撑,满足承载力要求,此处不再验算,此处验算钢管立柱支架稳定性。 二、荷载分析 1.施工人员、机械、材料荷载:P1= 2.5KN/m2 2.混凝土冲击及振捣混凝土时产生的荷载:P2=2.5KN/m2 3.梁体钢筋混凝土截面自重荷载:跨西环铁路最大截面高度为2.35m, 截面积为12.52㎡,24m范围内砼体积300.48方,总重为:7812.48KN。 其中: a 翼缘板处:P31=10.26KN/m2 b 腹板处:取最高截面(2.35m)处P32=61.1KN/m2 c 底板处:P33=16.64KN/m2 注:混凝土截面自重以最厚处截面,视作等截面计算。 4.模板、支架自重荷载、贝雷桁架梁上碗扣荷载:P1=2.15KN/m2 5.贝雷桁架梁自重:单片12m P=(4×275+4×25+4×80) ×10=15.2KN 6.贝雷桁架梁受力验算 a.底板及腹板下方:贝雷桁架梁2跨24m,单跨12m,视作两等跨连续梁。其上分布均布荷载,翼缘板处荷载由其下方4片贝雷桁架梁承担,腹板及底板处荷载由其下方14片贝雷桁架梁承担,经换算作用在单片贝雷桁

柱子承载力计算

三、框架柱承载力计算 (一)正截面偏心受压承载力计算 柱正截面偏心受压承载力计算方法与《混凝土基本原理》中相同图所示。3规范7.)。如(混凝土即非抗震时: (3-62) (3-63) 其中: (3-64) 但考虑地震作用后,有两个修正,即: 数。调整系抗正截面承载力震◆ ◆保证“强柱弱梁”,对柱端弯矩设计值按梁端弯矩来调整。(混凝土规范11.4.2,抗震规范6.2.2, 6.2.3)即: 一、二、三级框架柱端组合的弯矩设计值为: (3-65) 一级框架结构及9度各类框架还应满足: 专业文档供参考,如有帮助请下载。. )66(3-:其中矩的合弯针方向组截面顺时针或反时下——为节点上柱端示如;图所设计值之和,设弯矩组合的时反时或顺针方向——为节点左右梁端截面值对时,绝弯梁端均为负矩大和的较者,一级框架节点左右计值之;应取0较小的弯矩配实 采用顺时针方向针点左右梁端截面按反时或——为节正算的整系数计调,且考虑承载力抗震积钢筋截面面和材料标准值公关可其按有和的较大者。之力截面抗震受弯承载所对应的弯矩值。式计算1。三级取1.1.取1.4,二级取2,级系弯——为柱端矩增大数,一分弹性可情况下按般之矩柱节得点上下端的弯设计值和后,一求。分比进行配矩端下点的所析得节上柱弯

专业文档供参考,如有帮助请下载。. 对于顶层柱和轴压比小于0.15的柱,可不调整,直接采用内力组合所得的弯矩设计值。 当反弯点不在柱的层高范围内时,柱端截面组合的弯矩设计值可直接乘以上述柱端弯矩增大系数。 一、二、三级框架底层柱下端截面组合的弯矩设计值,应分别乘以增大系数1.5,1.25,1.15,且底层柱纵筋宜按上下端的不利情况配置。 (二)斜截面受剪承载力计算 1、柱剪力设计值(混凝土规范11.4.4,抗震规范6.2.5) 为了保证“强剪弱弯”,柱的设计剪力应调整。 一、二、三级的框架柱的剪力设计值按下式调整: (3-67) 一级框架和9度各类框架还应满足: (3-68) 其中: ——柱端截面组合的剪力设计值; ——考虑地震作用组合,且经调整后的框架柱上、下端弯矩设计值,分别按顺时针和反时针进行计算,取其中较大者; 专业文档供参考,如有帮助请下载。.配按实时顺针方向下端截面反时针或——分别为柱上、面正截整系数的虑承载力抗震调标钢筋面积、材料强度准值,且考者。的较大且取两个方向矩抗震受弯承载力所对应的弯,。取1.11.2,三级级大系数,一级取1.4,二取——柱剪力增,45.112,7.范公式(混凝土规7.5.算截2、柱斜面受剪承载力计0)1,1.4.111.4.9 面截规范斜此-25%,因5受复加载将使梁的剪承载力降低1%反因。8倍作用时的0.载承受剪载力设计值取静:震时非抗 9)(3-6时:抗震 )-70(3时:心受拉)偏拉柱当中出现力(即:抗震时非 )1(3-7时:震抗 专业文档供参考,如有帮助请下载。. (3-72) 其中: 取,M宜取柱上下端考虑地震作比——计算剪跨,可用组合的弯矩设计值的较大者,V取与M 对应的剪力设计值。当框。取,可小内弯点在柱高范围时反框结架构中的 架柱的3。大于3时取取1.于0时,1.0,且压为力当力轴对值设剪—取,N

砖混结构中承重构造柱的设计与计算

砖混结构中承重构造柱的设计与计算 (广东梅州陈赞) 摘要:在砌体结构设计过程中,应根据具体情况区分一般构造柱和承重构造柱。承重构造柱的设计与计算与框架柱基本相同,但有其特点。承重构造柱受力明确,传力路线简捷,其基础的处理要根据构造柱的荷载特点进行设计。 关键词:砖混结构构造柱 1引言 根据《建筑抗震设计规范》(GBJ50011-2001),在抗震设防地区砖混结构的建筑设计中应设置构造柱。设置构造柱可以加强对砌体结构墙体的约束作用,提高墙体的抗剪能力和结构的极限变形能力,改善砌体结构的整体性,从而提高房屋的抗震性能。在设计过程中,一般不考虑构造柱单独承受荷载,而视其承载能力等同于砌体材料。构造柱的截面尺寸和配筋一般也是按照构造要求进行设计。但是在需要设置大空间房间的工程中,构造柱支承着横梁,这时构造柱就起着承重和抗震的双重作用,如图1。这种构造柱的设计及基础处理与一般的构造柱有一定的区别。 图1大开间房间的承重构造柱 2承重构造柱的受力分析 支承横梁的构造柱,如果荷载较小,按砌体强度考虑就能够满足强度要求时,可以视为一般构造柱。其截面及配筋可以按照《建筑抗震设计规范》的有关规定设置即可。但是当支承横梁的构造柱承受的荷载较大,按砌体强度考虑不能够满足强度要求时,此时的构造柱应按照承重构造柱进行设计。 由于构造柱与墙体连接处留有马牙槎,考虑到构造柱与墙体的拉结作用,横梁上的荷载有一部分要扩散到墙体,由墙体来承担。但在实际设计时,由于墙体所承受的这部分荷载较小,为了计算方便,假设横梁上的荷载全部由构造柱来承担,同时假设横(纵)向水平地震力全部由横(纵)墙承受,这样构造柱的传力路线就简单明确了。 3承重构造柱的计算与设计 在砖混结构中,大空间内横梁与构造柱形成的结构与框架相似但与框架又有区别。如果在大空间房间中加上几榀框架,则在结构中显得比较生硬,而且框架部分与砌体结构部分共同工作的协调性较差,不利于结构整体抗震。而横梁与构造柱相结合的结构形式在荷载传递和抗震性能方面与之相比则优越得多。 承重构造柱的计算与框架柱基本相同,但又有不同之处: (1)为了减少顶层的弯矩值,从而减少柱的配筋,顶层梁、柱节点设计为“铰接”,计算简图见图2。

钢管立柱计算

钢管立柱计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

30+50+30m 连续梁支架(钢管立柱部分)计算书 一、跨西环铁路钢管立柱支架方案介绍 在连续梁主跨跨越西环铁路处设置钢管承重立柱+纵向贝雷桁架梁(两跨24m)+横向分配梁的结构模式,支架搭设完成后门洞通行净空为(既有线要求最小通行净空),整体支架布置详见附图《全跨度碗扣支架及钢管立柱贝雷支架布置立面图》。 1.立柱基础 中间一排设置长度19m,宽度,高度1m钢筋混凝土条形基础,基础位于西环铁路路基中心;两侧设置Φ桩基础,桩顶设置混凝土条形基础(19m**1m)系梁,大里程侧每条条形基础下布置4根桩,间距,单根桩长12m,采用旋挖钻成孔,小里程侧每条条形基础下布置5根桩,间距,单根桩长8m,因承台基坑开挖后,旋挖钻无法施工,此处桩基采用人工挖孔成孔。条形基础采用C35钢筋混凝土,底层钢筋采用Φ16 HRB400钢筋,间距10cm,侧面及顶面采用Φ12 HRB400钢筋网,间距15cm,在钢管立柱对应位置处预埋2cm厚1m*1m钢板。 2.钢管立柱 钢管立柱采用Φ630mm、10mm厚度螺旋钢管,钢管之间采用[10号槽钢连接为整体,立柱底端与基础连接处设置2cm厚1m*1m钢板,立柱顶端设置三拼40a工字钢横梁。 3.贝雷桁架梁 单幅连续梁布置单层18排加强贝雷桁架梁并采用90cm花窗将两排贝雷片连接为整体,在贝雷桁架梁上横向铺设20a工字钢分配梁,间距60cm,工字钢上纵向铺设[10号槽钢,间距60cm(详见《中钢管立柱处支架横截面布置图》)。 4.贝雷桁架梁上碗扣支架

钢管立柱计算

30+50+30m 连续梁支架(钢管立柱部分)计算书 一、跨西环铁路钢管立柱支架方案介绍 在连续梁主跨跨越西环铁路处设置钢管承重立柱+纵向贝雷桁架梁(两跨24m)+横向分配梁的结构模式,支架搭设完成后门洞通行净空为(既有线要求最小通行净空),整体支架布置详见附图《全跨度碗扣支架及钢管立柱贝雷支架布置立面图》。 1.立柱基础 中间一排设置长度19m,宽度,高度1m钢筋混凝土条形基础,基础位于西环铁路路基中心;两侧设置Φ桩基础,桩顶设置混凝土条形基础(19m**1m)系梁,大里程侧每条条形基础下布置4根桩,间距,单根桩长12m,采用旋挖钻成孔,小里程侧每条条形基础下布置5根桩,间距,单根桩长8m,因承台基坑开挖后,旋挖钻无法施工,此处桩基采用人工挖孔成孔。条形基础采用C35钢筋混凝土,底层钢筋采用Φ16 HRB400钢筋,间距10cm,侧面及顶面采用Φ12 HRB400钢筋网,间距15cm,在钢管立柱对应位置处预埋2cm厚1m*1m钢板。 2.钢管立柱 钢管立柱采用Φ630mm、10mm厚度螺旋钢管,钢管之间采用[10号槽钢连接为整体,立柱底端与基础连接处设置2cm厚1m*1m钢板,立柱顶端设置三拼40a工字钢横梁。 3.贝雷桁架梁 单幅连续梁布置单层18排加强贝雷桁架梁并采用90cm花窗将两排贝雷片连接为整体,在贝雷桁架梁上横向铺设20a工字钢分配梁,间距60cm,工字钢上纵向铺设[10号槽钢,间距60cm(详见《中钢管立柱处支架横截面布置图》)。

4.贝雷桁架梁上碗扣支架 在贝雷桁架梁上布置满堂式碗扣支架,Φ48×碗扣立杆、横杆、斜撑杆、可调节顶托、10cm×15cm木方做纵向分配梁,直接铺设在支架顶部的可调节顶托上,纵向分配梁上再铺设横向分配梁,连续箱梁底模板采用竹胶模板,后背10cm×10cm木方,然后直接铺装在10cm×15cm方木纵向分配梁上进行连接固定。 根据连续箱梁施工技术要求、荷载重量、荷载分布状况、地基承载力情况等技术指标,通过满堂碗扣支架计算确定,贝雷桁架梁上碗扣钢管布置:立杆横纵间距60cm,横杆间距60cm,支架在桥纵向每300cm间距设置剪刀撑,满足承载力要求,此处不再验算,此处验算钢管立柱支架稳定性。 二、荷载分析 1.施工人员、机械、材料荷载:P1=m2 2.混凝土冲击及振捣混凝土时产生的荷载:P2=m2 3.梁体钢筋混凝土截面自重荷载:跨西环铁路最大截面高度为,截面 积为㎡,24m范围内砼体积方,总重为:。其中: a 翼缘板处:P31=m2 b 腹板处:取最高截面()处P32=m2 c 底板处:P33=m2 注:混凝土截面自重以最厚处截面,视作等截面计算。 4.模板、支架自重荷载、贝雷桁架梁上碗扣荷载:P1=m2 5.贝雷桁架梁自重:单片12m P=(4×275+4×25+4×80) ×10= 6.贝雷桁架梁受力验算 a.底板及腹板下方:贝雷桁架梁2跨24m,单跨12m,视作两等跨连续梁。其上分布均布荷载,翼缘板处荷载由其下方4片贝雷桁架梁承担,腹板及底板处荷载由其下方14片贝雷桁架梁承担,经换算作用在单片贝雷桁

矩形钢管混凝土柱计算

矩形钢管混凝土柱计算 钢结构住宅具有许多建筑设计和施工上的优越性,将成为我国和世界今后住宅结构发展的方向,因此,对它的理论计算和实际应用的多方面的探索越来越受到各方面的关注。我国在这方面的研究起步比较晚,有许多研究方面的空白,尤其是对计算理论公式的推导和研究都相对不足,这样,我们必定要借鉴其它发达国家的研究成果,加快我国的住宅钢结构方面的发展。本文在分析日本矩形钢管混凝土柱的计算公式的基础上,按照相关理论,推导了矩形钢管混凝土柱的计算公式,供结构计算参考。 二、日本结构规范发展简介 钢管混凝土的设计方法由日本建筑学会第一次在管材钢混凝土组合结构计算标准(1967)提出,共包括三种截面类型,分别为:外包,填充,外包加填充。在1980改版后,加入了矩形钢管混凝土的内容。改版后的内容被收入日本建筑学会第四版《钢骨混凝土计算规范(1987)》。在1997年,《钢管混凝土设计和施工指针》出版,其包括了自《钢骨混凝土计算规范(1987)》出版后十年内对钢管混凝土研究的新成果。《指针》给出了受压构件、柱和桁架杆件等允许和极限强度和变形能力的计算方法。该《指针》重点有二,一是在计算圆截面受压构件和柱的强度时考虑了钢管对混凝土的影响(环箍效应);二是给出了长柱极限强度的计算方法。另外,《指针》还给出了钢管混凝土的施工方法和实际案例。2001年,《钢骨混凝土计算规范》第五版出版,包括了高强材料应用的

内容,《钢骨混凝土计算规范》第五版的单位系统从重力单位改为国际标准(SI)单位体系,并且增加了解释的内容。这版《钢骨混凝土计算规范》包含了1997年《钢管混凝土设计和施工指针》的内容和其出版后几年内的研究新成果。在原《指针》的基础上,新版《钢骨混凝土计算规范》在没有损害计算精度的条件下简化了长柱的设计公式。日本钢管混凝土结构设计的基本原理发表于钢管混凝土国际规范和实践比较ASCCS会议报告,1997.9,第99页至第116页。 三、日本《钢骨混凝土计算规范》(2001) (一)矩形钢管混凝土柱允许承载力 1、矩形钢管混凝土柱轴心受压允许承载力 2、矩形钢管混凝土柱受轴力和单向弯矩共同作用下的允许承载力 3、矩形钢管混凝土柱受轴力和双向弯矩作用允许承载力 (二)矩形钢管混凝土柱极限承载力 1、矩形钢管混凝土柱轴心受压极限承载力 2、矩形钢管混凝土柱受轴力和单向弯矩共同作用下的极限承载力 M1 ,M2为柱两端的弯矩,M1的绝对值大于M2的绝对值。当柱单向弯曲时,M1/ M2为正;当柱双向弯曲时,M1/ M2为负。 sMuo纯弯受力状态下钢管部分极限弯曲强度 四、推导矩形钢管混凝土柱计算公式 由于我国对矩形钢管混凝土柱针对计算公式推导的试验研究不足,积累的数据少,在推导矩形钢管混凝土柱的计算公式时,忽略钢管对混凝土的环箍作用,且混凝土由于不配钢筋,仅考虑混凝土承担的压力,不

柱子承载力计算

柱子承载力计算标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

三、框架柱承载力计算 (一)正截面偏心受压承载力计算 柱正截面偏心受压承载力计算方法与《混凝土基本原理》中相同(混凝土规范7.3)。如图所示。 即非抗震时: (3-62) (3-63)其中: (3-64)但考虑地震作用后,有两个修正,即: ◆正截面承载力抗震调整系数。 ◆保证“强柱弱梁”,对柱端弯矩设计值按梁端弯矩来调整。(混凝土规范11.4.2 一、二、三级框架柱端组合的弯矩设计值为: (3-65)一级框架结构及9度各类框架还应满足: (3-66)其中: ——为节点上下柱端截面顺时针或反时针方向组合的弯矩设计值之和,如图所示;

——为节点左右梁端截面反时或顺时针方向组合的弯矩设计值之和的较大者,一级框架节点左右梁端均为负弯矩时,绝对值较小的弯矩应取0; ——为节点左右梁端截面按反时针或顺时针方向采用实配钢筋截面面积和材料标准值,且考虑承载力抗震调整系数计算的正截面抗震受弯承载力所对应的弯矩值之和的较大者。其可按有关公式计算。 ——为柱端弯矩增大系数,一级取1.4,二级取1.2,三级取1.1。 求得节点上下柱端的弯矩设计值之和后,一般情况下可按弹性分析所得的节点上下柱端弯矩比进行分配。 对于顶层柱和轴压比小于0.15的柱,可不调整,直接采用内力组合所得的弯矩设计值。 当反弯点不在柱的层高范围内时,柱端截面组合的弯矩设计值可直接乘以上述柱端弯矩增大系数。 一、二、三级框架底层柱下端截面组合的弯矩设计值,应分别乘以增大系数1.5,1.25,1.15,且底层柱纵筋宜按上下端的不利情况配置。 (二)斜截面受剪承载力计算 1、柱剪力设计值(混凝土规范11.4.4 为了保证“强剪弱弯”,柱的设计剪力应调整。 一、二、三级的框架柱的剪力设计值按下式调整: (3-67)一级框架和9度各类框架还应满足: (3-68)

相关文档
最新文档