励磁计算及选型

励磁计算及选型
励磁计算及选型

所有公式以励磁电流138A。励磁电压40V为例计算

一、励磁变容量的计算

方法1、估算:

S=Ud*Id*2.1

Ud-----------------励磁直流额定电压(例40V)

Id------------------励磁核定电流(例138A)

励磁变容量S=(40*138*2.1)/1000=11.952kw 励磁变容量可以选定15kw。

二、励磁变的详细计算

1.35UL*0.8*cos(10-15)*K=1.8Ud

UL------------励磁变二次额定电压

Cos-----------cos10度到15度cos10=0.985 cos15=0.966

K--------------系数为0.97 或0.98

IL=0.816*Id

IL------------励磁变二次额定电流

S=根号3*UL*IL

通过以上容量向上折算归档

有容量,有一二次额定电压接线组别就可选型。

UL=1.8Ud/(1.35*0.8*cos10*k)=72/(1.35*0.8*0.985*0.97)=72V

IL=0.816*138=112.6A

励磁变压器为容量15kw 400V比72V 接线组别为Y/Y-12

三、可控硅的选型

考虑1.8倍的强励强力时间为10S-20S

138*1.8=248.4A

耐压5-6倍的励磁变二次额定电压

5*UL=5*72=360V

四、截止电阻的选型

3-5倍转子绕组电阻为截止电阻阻值

R=(3-5)Ud/Id=5*40/138=1.5欧姆

电流为二次控制电流的10%=70%*Id*10%=0.7*138*0.1=10A

P=I的平方*R=10*10*1.5=150W

五、分流器为200A转75mv

50mw电站励磁系统参数的计算

50MW电站励磁系统 参数的计算 目录 1 发电机组参数 (2) 2 励磁变压器技术参数计算 (3) 2.1 二次侧额定线电压计算 (3) 2.2 二次侧额定线电流计算 (3) 2.3 额定容量计算 (4) 3 晶闸管整流元件技术参数计算 (4) 3.1 晶闸管元件额定电压的选择 (4) 3.2 晶闸管元件额定电流的选择 (5)

4 快速熔断器参数计算 (6) 5 励磁电缆计算 (6) 6 灭磁及过压保护计算 (7) 6.1 灭磁阀片计算 (7) 6.2 过电压保护计算 (8) 7 直流断路器计算 (9) 8 附录12 1 发电机组参数 A. 额定容量(MVA)58.8 B. 额定功率因数(滞后)0.85 C. 额定电压(kV)10.5 D. 额定频率(Hz)50 E. 相数 3 F. 空载励磁电压(V)62 G. 额定负荷及功率因素下励磁电压(V)164 H. 空载励磁电流(A)592 I. 额定负荷下励磁电流(A)1065 J. 励磁绕组绝缘的最高耐压(直流V)1500

K. 励磁绕组75?C 的电阻(Ω) 0.1307 L. 直轴瞬态开路时间常数T 'do(s) 6.76 M. 直轴瞬态短路时间常数T 'd(s) 1.82 N. 直轴同步电抗(Xd ) 1.059 O. 直轴瞬态电抗(Xd ’) 0.308 2 励磁变压器技术参数计算 2.1 二次侧额定线电压计算 励磁系统保证在机端正序电压下降到额定值的80%时,能够提供励磁系统顶值电压。励磁系统顶值电压为发电机额定容量时励磁电压的2.0倍。 A. 具体计算公式: min 2cos 35.18.0α??= fN u fT U K U 式中: Ku----电压强励倍数(α=10?时),取2.0倍(在80%U GN 下)。 fN U -----发电机额定容量时励磁电压。 B. 针对本文设计发电机组: ? ???= 10cos 35.18.0164 0.22fT U =308V 综合考虑,取fN U =360V 2.2 二次侧额定线电流计算 励磁系统保证当发电机在额定容量58.8MVA 、额定电压和功率因素为0.85的励磁电流的1.1倍时,能够长期连续运行。 A. 具体计算公式:

冷却塔选型计算28843

冷却塔选型须知 1、请注明冷却塔选用的具体型号,或每小时处理的流量。 2 、冷却塔进塔温度和出塔水温。 3、请说明给什么设备降温、现场是否有循环水池,现场安装条件如何。 4、若需要备品备件及其他配件,有无其他要求等请注明。 5、非常条件使用请说明使用环境和具体情况,以便选择适当的冷却塔型号。 6、特殊情况、型号订货时请标明,以双方合同、技术协议约定专门进行设计。 冷却塔详细选型: 1、首先要确定冷却塔进水温度,从而选择标准型冷却塔、中温型冷却塔还是高温型冷却塔。 2、确定使用设备或者可以按照现场情况对噪声的要求,可以选择横流式冷却塔或者逆流式冷却塔。 3、根据冷水机组或者制冷机的冷却水量进行选择冷却塔流量,一般来讲冷却塔流量要大于制冷机的冷却水量。(一般取1.2—1.25倍)。 4、多台并联时尽量选择同一型号冷却塔。 其次,冷却塔选型时要注意: 1、冷却塔的塔体结构材料要稳定、经久耐用、耐腐蚀,组装配合精确。 2、配水均匀、壁流较少、喷溅装置选用合理,不易堵塞。 3、冷却塔淋水填料的型式符合水质、水温要求。 4、风机匹配,能够保证长期正常运行,无振动和异常噪声,而且叶片耐水侵蚀性好并有足够的强度。风机叶片安装角度可调,但要保证角度一致,且电机的电流不超过电机的额定电流。 5、电耗低、造价低,中小型钢骨架玻璃冷却塔还要求质量轻。 6﹑冷却塔应尽量避免布置在热源、废气和烟气发生点、化学品堆放处和煤堆附近。 7、冷却塔之间或塔与其它建筑物之间的距离,除了考虑塔的通风要求,塔与建筑物相互影响外,还应考虑建筑物防火、防爆的安全距离及冷却塔的施工及检修要求。 8、冷却塔的进水管方向可按90°、180°、270°旋转。 9、冷却塔的材料可耐-50℃低温,但对于最冷月平均气温低于-10℃的地区订货时应说明,以便采取防结冰措施。冷却塔造价约增加3%。 10、循环水的浊度不大于50mg/l,短期不大于100mg/l不宜含有油污和机械性杂质,必要时需采取灭藻及水质稳定措施。 11、布水系统是按名义水量设计的,如实际水量与名义水量相差±15%以上,订货时应说明,以便修改设计。 12、冷却塔零部件在存放运输过程中,其上不得压重物,不得曝晒,且注意防火。冷却塔安装、运输、维修过程中不得运用电、气焊等明火,附近不得燃放爆竹焰火。 13、圆塔多塔设计,塔与塔之间净距离应保持不小于0.5倍塔体直径。横流塔及逆流方塔可并列布置。 14、选用水泵应与冷却塔配套,保证流量,扬程等工艺要求。 15、当选择多台冷却塔的时候,尽可能选用同一型号。 此外,衡量冷却塔的效果还通常采用三个指标: (1)冷却塔的进水温度t1和出水温度t2之差Δt。Δt被称为冷却水温差,一般来说,温差越大,则冷却效果越好。对生产而言,Δt越大则生产设备所需的冷却水的流量可以减少。但如果进水温度t1很高时,即使温差Δt很大,冷却后的水温不一定降低到符合要求,因此这样一个指标虽是需要的,但说明的问题是不够全面的。 (2)冷却后水温t2和空气湿球温度ξ的接近程度Δt’。Δt’=t2-ξ(℃)Δt’称为冷却幅高。Δt’值越小,

风机选型常用计算 (1)(DOC)

风机选型常用计算 风机是一种用于压缩和输送气体的机械,从能量观点来看,它是把原动机的机械能量转变为气体能量的一种机械。 风管截面积的计算: 截面积=机器总风量÷3600÷风速 风机分类及用途: 按作用原理分类 透平式风机--通过旋转叶片压缩输送气体的风机。容积式风机—用改变气体容积的方法压缩及输送气体机械。 按气流运动方向分类 离心式风机—气流轴向驶入风机叶轮后,在离心力作用下被压缩,主要沿径向流动。轴流式风机—气流轴向驶入旋转叶片通道,由于叶片与气体相互作用,气体被压缩后近似在园柱型表面上沿轴线方向流动。 混流式风机—气体与主轴成某一角度的方向进入旋转叶道,近似沿锥面流动。横流式风机—气体横贯旋转叶道,而受到叶片作用升高压力。

按生产压力的高低分类(以绝对压力计算) 通风机—排气压力低于112700Pa; 鼓风机—排气压力在112700Pa~343000Pa之间; 压缩机—排气压力高于343000Pa以上; 通风机高低压相应分类如下(在标准状态下) 低压离心通风机:全压P≤1000Pa 中压离心通风机:全压P=1000~5000Pa 高压离心通风机:全压P=5000~30000Pa 低压轴流通风机:全压P≤500Pa 高压轴流通风机:全压P=500~5000Pa 一般通风机全称表示方法 型式和品种组成表示方法 压力:离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、KPa、mH2O、mmH2O等。

流量:单位时间内流过风机的气体容积,又称风量。常用Q来表示,常用单位是;m3/s、m3/min、m3/h(秒、分、小时)。(有时候也用到“质量流量”即单位时间内流过风机的气体质量,这个时候需要考虑风机进口的气体密度,与气体成份,当地大气压,气体温度,进口压力有密切影响,需经换算才能得到习惯的“气体流量”。 转速:风机转子旋转速度。常以n来表示、其单位用r/min(r表示转速,min表示分钟)。 功率:驱动风机所需要的功率。常以N来表示、其单位用Kw。 传动方式及机械效率: A型直联传动D型联轴器联接转动F型联轴器联接转动B型皮带传动

风机风量的计算、风机的选择

风机风量的定义为:风速V与风道截面积F的乘积.大型风机由于能够用风速计准确测出风速,所以风量计算也很简单,直接用公式Q=VF,便可算出风量. 风机数量的确定根据所选房间的换气次数,计算厂房所需总风量,进而计算得风机数量。计算公式:N=V×n/Q 其中:N——风机数量(台); V——场地体积(m3); n——换气次数(次/时); Q——所选风机型号的单台风量(m3/h)。风机型号的选择应该根据厂房实际情况,尽量选取与原窗口尺寸相匹配的风机型号,风机与湿帘尽量保持一定的距离(尽可能分别装在厂房的山墙两侧),实现良好的通风换气效果。排风侧尽量不靠近附近建筑物,以防影响附近住户。如从室内带出的空气中含有污染环境,可以在风口安装喷水装置,吸附近污染物集中回收,不污染环境 引风机所需风量风压如何计算 1、引风机选型,首要的是确定风量; 2、风量的确定要看你做什么用途,不同的用途风量确定方法不一样,请参照专业书籍或者请教专业技术人员; 3、确定了风量之后,逐段计算沿程阻力和局部阻力,将它们相加,乘以裕量系数,得出需要的压力; 4、查阅风机性能数据表,或者请风机厂家查找对应的风机型号即可 风机风量和风压计算功率,工业方面用,设计中,通过风量和风压计算风机的大概功率 功率(KW)=风量(m3/h)*风压(Pa)/(3600*风机效率*机械传动效率*1000)。 风量=(功率*3600*风机效率*机械传动效率*1000)/风压。 风机效率可取至;机械传动效率对于三角带传动取,对于联轴器传动取。 风量如何计算要加入风机功率管道等因素,抽风空间的大小等 比如说:100平方的房间我需要每小时抽风500立方,要怎么求出它的风机的功率,管道等。还有风速和立方怎么算出来的,比如说或米每秒的风速多长时间可以抽100立方或500立方的风以上的两个问题要求有个计算公式,公式中的符号要注明。 一、 1、管道计算 首先确定管道的长度,假设管道直径。计算每米管道的沿程摩擦阻力: R=(λ/D)*(ν^2*γ/2)。 2、计算风机的压力:ρ=RL。 3、确定风量:500立方。 4、计算风机功率:P=500立方*ρ/(3600*风机效率*1000*传动效率)。 5、风量计算:Q=ν*r^2**3600。 6、风速计算:ν=Q/(r^2**3600) 7、管道直径计算:D=√(Q*4)/(3600**ν) 二、 1、风速为s时,计算每小500立方米风需要多长时间。假设管道直径为。 Q=ν*r^2**3600 =*2)^2**3600 =(立方) 500/=(小时)

励磁系统参数计算

########大学毕业论文设计 50MW电站励磁系统参数计算 指导老师:胡先洪 王波、张敬 学生姓名:######## 《电气工程及自动化》2002级

目录 1 发电机组参数 (3) 2 励磁变压器技术参数计算 (3) 2.1 二次侧额定线电压计算 (3) 2.2 二次侧额定线电流计算 (4) 2.3 额定容量计算 (4) 3 晶闸管整流元件技术参数计算 (5) 3.1 晶闸管元件额定电压的选择 (5) 3.2 晶闸管元件额定电流的选择 (5) 4 快速熔断器参数计算 (6) 5 励磁电缆计算 (7) 6 灭磁及过压保护计算 (7) 6.1 灭磁阀片计算 (7) 6.2 过电压保护计算 (9) 7 直流断路器计算 (9) 8 附录12

1 发电机组参数 A. 额定容量(MVA ) 58.8 B. 额定功率因数(滞后) 0.85 C. 额定电压(kV ) 10.5 D. 额定频率(Hz ) 50 E. 相数 3 F. 空载励磁电压(V ) 62 G. 额定负荷及功率因素下励磁电压(V ) 164 H. 空载励磁电流(A ) 592 I. 额定负荷下励磁电流(A ) 1065 J. 励磁绕组绝缘的最高耐压(直流V ) 1500 K. 励磁绕组75?C 的电阻(Ω) 0.1307 L. 直轴瞬态开路时间常数T 'do(s) 6.76 M. 直轴瞬态短路时间常数T 'd(s) 1.82 N. 直轴同步电抗(Xd ) 1.059 O. 直轴瞬态电抗(Xd ’) 0.308 2 励磁变压器技术参数计算 2.1 二次侧额定线电压计算 励磁系统保证在机端正序电压下降到额定值的80%时,能够提供励磁系统顶值电压。励磁系统顶值电压为发电机额定容量时励磁电压的2.0倍。 A. 具体计算公式: min 2 cos 35.18.0α??= fN u fT U K U 式中: Ku----电压强励倍数(α=10?时),取2.0倍(在80%U GN 下)。

冷却塔、冷却水泵及冷冻水泵选型计算方法

冷却塔及冷却水泵选型计算方法: 1冷却塔冷却水量 方法一: 冷却水量=860×Q(kW)×T/5000=559 m3/h T------系数,离心式冷水机组取1.3,吸收式制冷机组取2.5 5000-----每吨水带走的热量 方法二: 冷却水量: G= 3.6 Q/C (tw1-tw2)=559 m3/h Q—冷却塔冷却热量,kW,对电制冷机取制冷负荷1.35倍左右,吸收式取2.5倍左右。C—水的比热(4.19kJ/kg.k) tw1-tw2—冷却塔进出口温差,一般取5℃;压缩式制冷机,取4~5℃;吸收式制冷机,取6~9℃ 冷却塔吨位=559×1.1=614 m3/h 2冷却水泵扬程 冷却水泵所需扬程 H p=(h f+h d)+h m+h s+h o 式中h f,h d——冷却水管路系统总的沿程阻力和局部阻力,mH2O; h m——冷凝器阻力,mH2O;

h s——冷却塔中水的提升高度(从冷却盛水池到喷嘴的高差),mH2O;(开式系统有,闭式系统没哟此项) h o——冷却塔喷嘴喷雾压力,mH2O,约等于5 mH2O。 H p=(h f+h d)+h m+h s+h o=0.02×50+5.8+19.8+5=31.6mH2O 冷却水泵所需扬程=31.6×1.1=34.8 mH2O 冷却水泵流量=262×2×1.1=576 m3/h 3冷冻水泵扬程 冷冻水泵所需扬程 H p=(h f+h d)+h m+h s+h o 式中h f,h d——冷冻水管路系统总的沿程阻力和局部阻力,mH2O ; h m——蒸发器阻力,mH2O ; h s——空调器末端阻力,mH2O ; h o——二通调节阀阻力,mH2O 。 H p=(h f+h d)+h m+h s+h o=0.02×150+5+2.78+4=14.78mH2O 冷却水泵所需扬程=14.78×1.1=16.3 mH2O

励磁系统设计导则

东北电力设计院技术标准 Q/DB 1-D011-2007 交流同步发电机励磁系统设计导则 2007-10-20发布2007-10-30实施中国电力工程顾问集团东北电力设计院发布

目次 前言...................................................................... III 1 范围 (1) 2 规范性文件 (1) 3 总则 (2) 4 同步发电机励磁系统的作用和性能要求 (2) 4.1 同步发电机励磁系统的主要作用 (2) 4.2 励磁系统应具有的性能 (3) 5 同步发电机的励磁种类和对励磁系统的基本要求 (3) 5.1 励磁系统的分类 (3) 5.2 对励磁系统的基本要求 (3) 6 同步发电机励磁调节系统对电流、电压采集的基本要求 (5) 6.1 对电流互感器的要求 (5) 6.2 对电压互感器的要求 (5) 7 目前大中型汽轮发电机的常用励磁方式 (5) 7.1 三机旋转励磁系统的特点 (5) 7.2 自并励静止励磁系统的特点 (7) 7.3 国内大中型汽轮发电机的常用励磁方式的应用情况 (9) 8 自并励方式的优势 (9) 8.1 励磁系统可靠性增强 (9) 8.2 电力系统的稳态、暂态稳定水平提高 (9) 9 大中型汽轮发电机自并励静止励磁系统设计 (10) 9.1 自并励系统的应用条件 (10) 9.2 励磁调节器的选择 (10) 9.3 发电机起励问题 (11) 9.4 可控硅励磁功率柜的选择 (11) 9.5 灭磁及过压保护装置的配置 (12) 9.6 励磁变压器及励磁回路继电保护 (12)

发电机励磁系统的选型技术

发电机励磁系统的选型技术 刘绍华(湖北赤壁市陆水自动化技术研究所) [文摘] 励磁系统是发电机组重要的辅助设备,本文从励磁方式、励磁调节器、通道结构、励磁变压器、起励灭磁等方面阐述励磁的选择问题。微机型励磁调节器已成为同步发电机励磁调节器的主流,本文还介绍了微机型励磁调节器的主要先进技术。?[主题词]励磁系统自并励微机励磁调节器励磁变压器起励灭磁??励磁系统是发电机组重要的辅助设备,其主要任务是向同步发电机的的励磁绕组提供一个可调的直流电流(电压),控制机端电压恒定,满足发电机正常发电的需要,同时控制发电机组间无功功率的合理分配,以满足电力系统安全运行的需要,它对提高了电厂的自动化水平,提高发电机组运行的可靠性,提高电力系统稳定性有着重要的作用,因此,正确选择励磁设备也就致关重要。? 励磁方式的选择??在发电机的各种励磁方式中,自并励方式以其接线简单,可靠性高,造价低,电压响应速度快,灭磁效果好的特点而被广泛应用。?随着电子技术的不断发展,大容量可控硅制造水平的逐步成熟,发电机采用自并励励磁方式已成为一种趋势,对于大型机组业界人士也越来越倾向于采用自并励方式。一般说来,自并励励磁的价格比同容量的直流励磁机还要低,但其调节范围、控制速度、抑制甩负荷时过电压的能力等等性能则是老式励磁无可比拟的。新建的中小型电站,也大多采用自并励方式,取消了常规的直流励磁机,以简化发电机的轴系统,减低厂房高度,减少工程造价,减少噪音,同时提高自动化水平。改造时,由于自并励最为简单经济,通常被优先考虑。?对于在发电机出口或近端短路时自并励的可靠性问题,大型机组已由封闭式母线和快速继电器给予了保证,中小型电站可配以带电流记忆的低电压过电流后备保护来解决。近二十年来,美国、加拿大对新建电站几乎一律采用自并励励磁系统,加拿大还拟将火电厂原交流励磁机励磁系统改为自并励励磁系统。??励磁调节器? 发电机励磁调节器是励磁装置的控制核心,它的发展经历了机电型、电磁型、晶体管分立元件型、模拟运算放大器型以及微机型几个阶段。 目前,我国中小型水电站的励磁大都采用微机调节器,少量采用模拟运算放大器为核心的励磁调节器,老式的分立元件电路已逐步被淘汰。近年来,微机型励磁调节器已成为同步发电机励磁调节器的主流。?模拟运算放大器式励磁调节器,有着调压精度高()、调压范围宽()、直观容易熟悉等特点,对于中小型电站来说,在今后的一段时期内仍然具有吸引力。 模拟式励磁调节器也有一些缺点和不足:功能少;调试麻烦,各主要参数需定期校正,维护工作量大;因元件的分散性影响了脉冲的对称性;因电路的积累误差影响到各工况的线性对称等等。?随着发电机单机容量和电网规模的增大,发电机组及电力系统对励磁控制在快速性、可靠性、多功能性等方面提出了愈来愈高的要求,致使常规模拟式励磁变得过份复杂甚至力不从心。相应地,励磁控制在理论和实践上也在不断更新、发展和完善,我国从年代初开始研制微机式励磁调节器,经过多年的努力,设计、生产和运行方面已积系了丰富的经验,微机式励磁调节器在生产运行中都显示了优良的性能。九十年代以来,微机型励磁调节器在中小型机组也得到了广泛应用得到了迅猛发展和广泛应用。?与模拟式励磁调节器相比较,微机式励磁调节器的优点是:()可以实现模拟式励磁调节器难以实现的与动态响应相结合的控制规律、电力系统稳定器、非线性控制、自适应控制及模糊控制等控制规律;()调节准确、精度高,在线改变参数方便;()可靠性高,无故障工作时间长;()系统功能组态灵活、操作简单、维修和试验智能化,实现电站综合自动化智能化,实现“无人值班少人值守”()通信方便,便于远方控制和实现发电机组的计算机综合协调控制。?交流采样技术是九十年代微机励磁取得的重大技术突破之一,它利用微机强大的计算能力,对交流电量进行直接采样,完成电量测量功能,电量测量是励磁快速性、可靠性、多功能性的重要基础组成部分:一方面,交流采样测量的电量齐全、快速,励磁系统对这方面要求犹为重要,测量电量的反映速度是励磁动态指标的基础,只有测量反映速度快,励磁才能及时强励或强减;测量电量齐全是软件调差、励磁欠励限制、过励限制、控制规律、恒无功功率控制、恒功率因素控制的等功能的基础;另一方面,交流采样技术的测量硬件极为简单(仅电量隔离),运行可靠,由于无需对波形进行变换,这样,彻底取消了常规的非交流采样技术的整流滤波、功率变换等波形变换的复杂电路,以往这些环节正是影响可靠性、调试维护的重点难点所在。影响励磁调节器可靠性、调试维护的重点难点之一还有脉冲移相电路,微机式励磁调节器采用微机软件移相技术,利用软件中断方法进行控制角延时和分相触发方式,软件中断分相、测频,根据频率变化,软件调

(完整版)冷却塔的选型

冷却塔的选型 冷却塔是用水作为循环冷却剂,从一系统中吸收热量排放至大气中,以降低水温的装置;其冷是利用水与空气流动接触后进行冷热交换产生蒸汽,蒸汽挥发带走热量达到蒸发散热、对流传热和辐射传热等原理来散去工业上或制冷空调中产生的余热来降低水温的蒸发散热装置,以保证系统的正常运行,装置一般为桶状,故名为冷却塔。英文名叫做The cooling tower。 最近几年,冷却塔高速发展,产品不断更新。正因如此,才使玻璃钢冷却塔问世。玻璃钢冷却塔开始和闭式,玻璃钢维护结构的冷却塔冷却塔设计气象条件大气压力: P =99.4×103 kPa 干球温度:θ=31.5℃ 湿球温度:τ=28℃(方形和普通型为27℃) 冷却塔设计参数1.标准型:进塔水温37℃,出塔水温32℃ 2.中温型:进塔水温43℃,出塔水温33℃ 3.高温型:进塔水温60℃,出塔水温35℃ 4.普通型:进塔水温37℃,出塔水温32℃ 5.大型塔:进塔水温42℃,出塔水温32℃工业中,使热水冷却的一种设备。水被输送到塔内,使水和空气之间进行热交换,或热、质交换,以达到降低水温的目的。 分类编辑 一、按通风方式分有自然通风冷却塔、机械通风冷却塔、混合通风冷

却塔。 二、按热水和空气的接触方式分有湿式冷却塔、干式冷却塔、干湿式冷却塔。 三、按热水和空气的流动方向分有逆流式冷却塔、横流(交流)式冷却塔、混流式冷却塔。 四、按用途分一般空调用冷却塔、工业用冷却塔、高温型冷却塔。 五、按噪声级别分为普通型冷却塔、低噪型冷却塔、超低噪型冷却塔、超静音型冷却塔。 六、其他如喷流式冷却塔、无风机冷却塔、双曲线冷却塔等。 七、按玻璃钢冷却塔的外形分为圆型玻璃钢冷却塔和方型玻璃钢冷却塔。 适用范围编辑 工业生产或制冷工艺过程中产生的废热,一般要用冷却水来导走。冷却塔的作用是将挟带废热的冷却水在塔内与空气进行热交换,使废热传输给空气并散入大气中。例如:火电厂内,锅炉将水加热成 高温高压蒸汽,推动汽轮机做功使发电机发电,经汽轮机作功后的废汽排入冷凝器,与冷却水进行热交换凝结成水,再用水泵打回锅炉循环使用。这一过程中乏汽的废热传给了冷却水,使水温度升高,挟带废热的冷却水,在冷却塔中将热量传递给空气,从风筒处排入大气环境中。冷却塔应用范围:主要应用于空调冷却系统、冷冻系列、注塑、制革、发泡、发电、汽轮机、铝型材加工、空压机、工业水冷却等领域,应用最多的为空调冷却、冷冻、塑胶化工行业。

励磁系统题库

励磁系统题库 填空题:2选择题:5判断题:6问答题:8

填空题: 1、同步发电机励磁系统的基本任务是(维持发电机电压在给定水平)和(稳定 地分配机组间的无功功率)。 2、可控硅元件导通的条件是①(阳极与阴极之间须加正向电压),②(控制极 上加正向触发电压)。 3、发电机正常停机采用(逆变)方式灭磁,事故时采用(跳灭磁开关)方式灭 磁。调节器具有五种励磁限制:(反时限过励磁电流限制/强励限制)、(过无功限制)、(欠励限制)、(功率柜故障限制)、(伏赫限制/过磁通限制)。 4、在三相全控桥中,共阴极组在(正)半周导通;共阳极组在(负)半周导通。 5、PID调节方式就是(比例积分微分)调节方式。 6、在励磁调节器中,控制发电机电压的通道,称为(自动),控制励磁电流的 通道,称为(手动)。 7、励磁调节器发生 PT 断线,则运行中的通道(退出)运行,即切换,同时该 通道由(发电机电压/自动)调节方式转化为(励磁电流/手动)调节方式。 8、励磁调节器发生过励或低励,调节器就由(发电机电压)调节方式转化为 (无功)调节方式。 9、接触器铁芯上的(短路)环,可防止衔铁振动。 10、一般来说,交流发电机的励磁绕组是转子绕组,而直流发电机的励磁绕 组是(定子)绕组。 11、发电机在旋转的转子磁场中发电,把(机械)能转化为(电能),在发电 机并网前(空载),调节发电机的(励磁电流),作用于调节发电机的机端电压,发电机并网后,调节发电机的(励磁电流),作用于调节发电机的无功负荷(无功电流),有功不变,调节主汽门作用于有功功率(有功电流)的变化,与励磁电流的大小无关。 12、应用电磁理论,导体在磁场中(切割磁力线)产生电动势(电压):ξ=BLV (B:磁场强度,L:导体长度,V:切割速度)。简单的讲就是:导体在磁场中做切割(磁力线)运动,就产生感应电动势,当形成(闭合回路时),就会感生出电流。

冷却塔选型计算

冷却塔选型 1.冷却水流量计算: L=(Q1+Q2)/(Δt*1.163)*1.1 L—冷却水流量(m3/h) Q1—乘以同时使用系数后的总冷负荷,KW Q2—机组中压缩机耗电量,KW Δt—冷却水进出水温差,℃,一般取4.5-5 冷却塔的水流量= 冷却水系统水量×(1.2~1.5); 冷却塔的能力大多数为标准工况下的出力(湿球温度28 ℃,冷水进出温度32o C/37oC),由于地区差异,夏季湿球温度会不同, 应根据厂家样册提供的曲线进行修正.湿球温度可查当地气象参数获得. 冷却塔与周围障碍物的距离应为一个塔高。 冷却塔散冷量冷吨的定义:在空气的湿球温度为27℃,将13L/min(0.78m3/h)的纯水从37℃冷却到32℃,为1冷吨,其散热量为4.515KW。 湿球温度每升高1℃,冷却效率约下降17% 2.冷却塔冷却能力计算: Q=72*L*(h1-h2) Q-冷却能力(Kcal/h) L-冷却塔风量,m3/h h1-冷却塔入口空气焓值 h2-冷却塔出口空气焓值 3.冷却塔若做自控,进出水必须都设电动阀,否则单台对应控制时倒吸或溢水。 4.冷却水泵扬程的确定 扬程为冷却水系统阻力+冷却塔积水盘至布水器的高差+布水器所需压力 5.冷却塔不同类型噪音及处理方法:

. 6.冷却水管径选择

7.冷却水泵扬程: 扬程通常是指水泵所能够扬水的最高度,用H表示。最常用的水泵扬程计算公式是H=(p2-p1)/ρg+(c2-c1)/2g+z2-z1。 其中,H——扬程,m;p1,p2——泵进出口处液体的压力,Pa;c1,c2——流体在泵进出口处的流速,m/s;z1,z2——进出口高度,m;ρ——液体密度,kg/m3;g——重力加速度,m/s2。 通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。 按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程计算公式(mH2O):Hmax=△P1+△P2+0.05L(1+K) △P1为冷水机组蒸发器的水压降。 △P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。 L为该最不利环路的管长 K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.6。 8.冷却塔的选择:

矿井主扇风机选型计算

X X煤矿主通风系统选型 设计说明书 一、XX矿主要通风系统状况说明 根据我矿通风部门提供的原始参数:目前矿井总进风量为2726m3/min,总排风量为2826m3/min,负压为1480Pa,等积孔1.46㎡。16采区现有两条下山,16运输下山担负采区运输、进风,16轨道下山担负运料、行人和回风。我矿现使用的BDKIII-№16号风机2×75Kw,风量范围为25-50m3/S,风压范围为700-2700Pa,已不能满足生产需要。 随着矿井往深部开采及扩层扩界的开展,通风科提供数据 要求:矿井最大风量Q 大:6743m3/min,最大负压H 大 :2509Pa。现 在通风系统已不能满足生产要求,因此需对主通风系统进行技术改造。 二、XX煤矿主通风系统改造方案 根据通风科提供的最大风量6743m3/min,最大负压2509Pa,经选型计算,主通风机需选用FBCDZ-№25号风机2×220Kw。由于新选用风机能力增加,西井风机房低压配电盘、风机启动柜等也需同时改造。本方案中,根据主通风机选用的配套电机功率,选用高压驱动装置。即主通风系统配置主通风机2台,高压配电柜6块,高压变频控制装置2套,变压器1台。

附图:主通风机装置性能曲线图 附件:主通风机选型计算 附件: 主扇风机选型计算 根据通风科提供数据,矿井需用风量为Q:67433/min m ,通风容易时期负压min h :1480Pa ,通风困难时期负压max h :2509Pa,矿井自然风压 z h :±30Pa 。 1、 计算风机必须产生的风量和静压 (1)、通风机必须产生的风量为 f l Q K Q ==67433/min m =112.43/m s (2)根据通风科提供数据,在通风容易时期的静压为1480Pa ,在通风困难时期的静压为2509Pa 。 2、 选择通风机型号及台数 根据计算得到的通风机必须产生的风量,以及通风容易时期和

冷却塔选型

冷却塔选型 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

冷却塔选型 冷却水量的计算: [1]. Q = m s △ t Q 冷却能力 Kcal / h (冷冻机/ 空调机的冷冻能力) m 水流量(质量) Kg / h s 水的比热值 1 Kcal / 1 kg - ℃ △ t 进入冷凝器的水温与离开冷凝器的水温之差 [2]. Q 的计算 Q = 72 q ( I 入口- I 出口 ) Q 冷却能力 Kcal / h q 冷却水塔的风量 CMM I 入口冷却水塔入口空气的焓(enthalpy) I 出口冷却水塔出口空气的焓(enthalpy) [3]. q 冷却水塔的风量 CMM 的计算 q = Q / 72 ( I 入口- I 出口 ) 上述计算系依据基本的热力学理论,按空气线图(psychrometrics)的湿空气性能,搭配基本代数式计算之。 更深入的数学式依Merkel Theory的Enthalpy potential 观念导算出类似更精确的计算方程式: Q = K ×S × ( hw -ha ) Q 冷却水塔的总传热量 K 焓的热传导系数 S 冷却水塔的热传面积 hw 空气与冷却水蒸发的混合湿空气之焓 ha 进入冷却水塔的外气空气之焓 此时,导入冷却水流量(质量),建立 KS / L 的积分(Integration) 遂计算出更为精确的冷却水塔热传方程式。详细的计算你可以从Heat Transfer的热力学内查阅。 冷却水塔的正确选用,是根据外气的湿球温度计算而来,绝非凭经验而来。诸多人士认为冷却水塔的能力一定大于冷冻空调的主机,这是完全错误的导论与说法,实不足为取。这是一种「积非成是,以讹传讹」的谬论。 顺便一提,楼上有一位兄弟提到,湿球温度从27℃→28℃,冷却水塔的能力降低,why?其实这就是基础热力学上湿球温度的应用。 湿球温度愈高,湿球温度的冷却能力愈差。所以,当湿球温度增高时,冷却水塔的能力下降,换言之,冷却水塔的出水量减少了。 从事空调制冷,空气的性能曲线图──Psychrometrics(空气线图)一定得充分认识、了解。Psychrometrics 就像医学上的X 光照片、心电图等等一样,让我门100%掌握空气性能的变化,所有制冷空调的问题均迎刃而解。

风机选型计算

出风口时风速为50m/s,从单位标注上看应该是每秒50米。‘时风速’是指每小时风速为50米吗?还是每秒50米?确认后我来帮你算一下。 补充回答: 1、我们先从三个已知条件中取二个条件来验证第三个条件。 1.1、当出风口为2平方米,流速达到50m/s时,计算流量。 根据流量公式 Q=νS3600 =50×2×3600 =360000(m3/h); 1.2、当出风口为2m2,风量10立方米每分钟时,计算出风口风速。ν=Q/(S3600) =10×60/(2×3600) =0.083(m/s) 1.3、当流速为50m/s,流量为10×60立方每小时,计算出风口面积。D=√[Q4/(ν3.14×3600)] =√[600×4/(50×3.14×3600)] =0.065(m) S=(D/2)^2×3,14 =(0.065/2)^2×3.14 =0,0033(平方米) 2、从1,1计算结果上来看,要满足出风口为2平方米,流速达到50m/s 这个条件,风量需达到360000(m3/h);从1.2计算结果看,当出风口为2平方米,风量10立方米每分钟,风速只有0.083(m/s);从1.3计算结果来看,流速为50m/s,流量为10×60立方每小时,出风口面积只需0.0033平方米。 3、结论:你所列出的条件不能相互成立。 QQ:1102952818 ‘新科’ 追问 风机的全压等于静压加上动压,而动压P=ρv2/2; 可以理解为风机的出口风速与风机的动压有关,或者说有相应的比例

关系,就像上式那样的。 那么提高风机的动压,是否可以提升风机的出口风速,出口风速的提高 能否按照公式v=根号下2P/ρ(就是上面的公式来推导的)来计算风速的大小,风速的提高有没有什么限制 回答 没错,正如你所述。动压的定义是:把气体流动中所需动能转化成压力的一种形式。通俗的讲:动压是带动气体向前运动的压力。 风速的获得,是风量通过管道截积上的时间,同时压力又是保证流量的手段。风速的提高主要受制于管道的沿程摩擦阻力。 追问 那么我想要的风机就是出口风速为50m/s,动压就得有1500,那么静压这个就不太好算了,说是跟通风管道有关,我可以画出通风管路的图,你能帮我算一下静压吗?出风口的面积就是0.2平方米,这样的话流量就得10立方米每秒,36000立方米每小时了,不知道有没有比较合适的风机,还有这样的风机应该选择什么样的类型,还有风机的驱动电机能不能换成内燃机驱动的,能够比较满足工况的情况下需要多大的功率,静压先按2000算,管路比较复杂 回答 根据你提供的参数,你可以选择 型号:4-72-10C 转速:1450(r/min) 功率:55(KW) 风量:40441(m3/h) 压力:3202(Pa)

厨房风机选型和设计计算

厨房风机选型设计及计算方法 一、通风机基础知识 通风机是用于输送气体的机械,从能量的观点来,它是把原动机的机械能转变为气体能量的一种机械。通常把产生的压力小于或等于14700Pa以下者为通风机。按型式可分为:离心通风机、轴流通风机、混流通风机。 二、通风机的主要性能参数: 流量、压力、转速、功率及效率是表示通风机性能的主要参数,称为通风机的性能参数。 A.流量:单位时间内流经通风机的气体容积,称为流量(又称风量)。常 用单位为m3/s(米3/秒)、m3/min(米3/分钟)、m3/h(米3/小时)。 B.压力:通风机的压力是指升压(相对于大气的压力),即气体在通风机 内压力的升高值,或者说是通风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数是指通风机的全压(它等于通风机出口与 进口全压之差)。单拉为Pa(帕斯卡)。 C.转速:通风机转子旋转速度的快慢将直接影响通风机的流量、压力、 效率。单位为每分钟转数即rpm。

D.轴功率:驱动通风机所需要的功率N称为轴功率,或者说是单位时间 内传递给通风机轴有能量,单位为kw(千瓦)。 E.效率:通风机在把原动机的机械能传给气体的过程中,要克服各种损 失,其中只有一部分是有用功。常用效率来反映损失的大小,效率高,即损失小。从不同的角度出发有不同效率。 三、风机与系统的匹配基本原理、常见问题及原因分析 1、系统 空气系统简单地说,包括风机及与其进口或出口或两者都连接的管路。较为复杂的空气系统包括风机、管网、空气控制调节风门、冷却管、加热管、过滤器、扩散器、消声器和导向叶片等。风机是本系内给气体以能量,用以克服其它部件的流动阻力的一个组成部分。 2、系统与风机匹配的基本原理 每个空气系统对气流都有一个流动阻力和附加阻力,如果已精确地确定系统阻力,并提供了理想的进出口工况;当空气系统设定一个流量 QA时,那么选择风机时的压力就必须达到满足系统阻力的要求,当 风机安装在系统时,风机所产生的全压的一部分即静压用于克服管网 系统的阻力,全压的其余部分消耗在气流从管网出口时所具有的动能

风机风量的计算、风机的选择

风机风量如何计算 风机风量得定义为:风速V与风道截面积F得乘积、大型风机由于能够用风速计准确测出风速,所以风量计算也很简单,直接用公式Q=VF,便可算出风量、 风机数量得确定根据所选房间得换气次数,计算厂房所需总风量,进而计算得风机数量。计算公式:N=V×n/Q 其中:N——风机数量(台); V——场地体积(m3); n——换气次数(次/时);Q——所选风机型号得单台风量(m3/h)。风机型号得选择应该根据厂房实际情况,尽量选取与原窗口尺寸相匹配得风机型号,风机与湿帘尽量保持一定得距离(尽可能分别装在厂房得山墙两侧),实现良好得通风换气效果。排风侧尽量不靠近附近建筑物,以防影响附近住户。如从室内带出得空气中含有污染环境,可以在风口安装喷水装置,吸附近污染物集中回收,不污染环境 引风机所需风量风压如何计算 1、引风机选型,首要得就是确定风量; 2、风量得确定要瞧您做什么用途,不同得用途风量确定方法不一样,请参照专业书籍或者请教专业技术人员; 3、确定了风量之后,逐段计算沿程阻力与局部阻力,将它们相加,乘以裕量系数,得出需要得压力; 4、查阅风机性能数据表,或者请风机厂家查找对应得风机型号即可 风机风量与风压计算功率,工业方面用,设计中,通过风量与风压计算风机得大概功率 功率(KW)=风量(m3/h)*风压(Pa)/(3600*风机效率*机械传动效率*1000)。风量=(功率*3600*风机效率*机械传动效率*1000)/风压。 风机效率可取0、719至0、8;机械传动效率对于三角带传动取0、95,对于联轴器传动取0、98。 风量如何计算?要加入风机功率管道等因素,抽风空间得大小等? 比如说:100平方得房间我需要每小时抽风500立方,要怎么求出它得风机得功率,管道等。还有风速与立方怎么算出来得,比如说0、1或0、5米每秒得风速多长时间可以抽100立方或500立方得风?以上得两个问题要求有个计算公式,公式中得符号要注明。 一、 1、管道计算 首先确定管道得长度,假设管道直径。计算每米管道得沿程摩擦阻力:R=(λ/D)*(ν^2*γ/2)。 2、计算风机得压力:ρ=RL。 3、确定风量:500立方。 4、计算风机功率:P=500立方*ρ/(3600*风机效率*1000*传动效率)。 5、风量计算:Q=ν*r^2*3、14*3600。 6、风速计算:ν=Q/(r^2*3、14*3600) 7、管道直径计算:D=√(Q*4)/(3600*3、14*ν) 二、 1、风速为0、5m/s时,计算每小500立方米风需要多长时间。假设管道直径为0、3m。 Q=ν*r^2*3、14*3600 =0、5*(0、3/2)^2*3、14*3600 =127、2(立方) 500/127、2=3、9(小时)

励磁系统设计计算书

600MW汽轮发电机组自并励励磁系统设计计算书 二00八年十二月

目录 一、励磁变压器选择计算 (3) 1、二次侧线电流计算 (3) 2、二次侧额定线电压计算 (3) 3、额定输出容量计算 (4) 4、各工况触发角计算 (4) 5、短路电流试验的核算 (5) 6、空载升压130%试验核算 (5) 7、网侧电压分接头确定 (5) 二、励磁系统短路电流计算 (6) 1、励磁变低压侧短路 (6) 2、整流柜出口短路 (6) 3、灭磁开关出口短路 (7) 4、滑环处短路 (7) 三、硅元件及整流桥技术参数计算 (7) 1、硅元件额定电压的选择 (7) 2、硅元件额定电流的选择 (7) 四、硅元件快熔计算 (9) 1、快熔额定电压的选择 (9) 2、快熔额定电流的选择 (9) 3、快熔熔断特性的校核 (9) 五、冷却系统技术参数计算 (10) 1、硅元件发热量 (10) 2、铜母排发热 (10) 3、整流柜快速熔断器发热 (11) 六、灭磁开关的计算及选择 (11) 1、磁场断路器电压的选择 (11) 2、磁场断路器电流的选择 (12) 3、磁场断路器分断电流及弧电压的选择 (12) 4、磁场断路器短时耐受电流的计算及选择 (12) 5、正常灭磁原理及动作顺序 (13) 6、滑环处短路故障时灭磁原理及动作顺序 (13) 七、灭磁电阻的计算及选择 (13) 1、线性灭磁电阻阻值的计算 (13) 2、线性灭磁电阻选择 (14) 3、灭磁能量的计算 (14) 八、过电压保护装置的计算及选择 (16) 1、过电压保护装置原理接线图 (16) 2、氧化锌非线性的性能及过电压保护原理 (16) 3、发电机转子绝缘对过压保护装置的要求 (17) 4、用户在现场对过压保护装置的检测、试验方法 (18)

风机选型的计算公式 风机流量及流量系数

风机选型的计算公式风机流量及流量系数 [字号:大中小] 2013-06-19 阅读次数:9415 1、标准状态:指风机的进口处空气的压力P=101325Pa,温度t=20℃,相对湿度φ=50%的气体状态。 2、指定状态:指风机特指的进气状况。其中包括当地大气压力或当地的海拔高度,进口气体的压力、进口气体的温度以及进口气体的成份和体积百分比浓度。 3、风机流量及流量系数 流量:是指单位时间内流过风机进口处的气体容积。 用Q表示,通常单位:m3/h或m3/min。 流量系数:φ=Q/(900πD22×U2) 式中:φ:流量系数 Q:流量,m3/h D2:叶轮直径,m U2:叶轮外缘线速度,m/s(u2=πD2n/60) 4、风机全压及全压系数: 风机全压:风机出口截面上的总压与进口截面上的总压之差。用PtF表示,常用单位:Pa 全压系数:ψt=KpPtF/ρU22 式中, ψt:全压系数Kp:压缩性修正系数PtF:风机全压,Pa ρ:风机进口气体密度,Kg/m^3 u2:叶轮外缘线速度,m/s 5、风机动压:风机出口截面上气体的动能所表征的压力,用Pd表示。常用单位:Pa 6、风机静压:风机的全压减去风机的动压,用Pj表示。常用单位:Pa 7、风机全压、静压、动压间的关系: 风机的全压(PtF)=风机的静压(Pj)+风机的动压(Pd) 8、风机进口处气体的密度:气体的密度是指单位容积气体的质量,用ρ表示,常用单位:Kg/m3 9、风机进口处气体的密度计算式:ρ=P/RT 式中:P:进口处绝对压力,Pa R:气体常数,J/Kg·K。与气体的种类及气体的组成成份有关。 T:进口气体的开氏温度,K。与摄氏温度之间的关系:T=273+t 10、标准状态与指定状态主要参数间换算: 流量:ρQ=ρ0Q0 全压:PtF/ρ= PtF0/ρ0 内功率:Ni/ρ= Ni0/ρ0 注:式中带底标"0"的为标准状态下的参数,不带底标的为指定状态下的参数。 11、风机比转速计算式: Ns=5.54 n Q01/2/(KpPtF0)3/4 式中: Ns:风机的比转速,重要的设计参数,相似风机的比转速均相同。 n:风机主轴转

相关文档
最新文档