变形监测报告2016年

变形监测报告2016年
变形监测报告2016年

目录

一工程概况 (1)

二监测依据及内容 (1)

2.1监测的依据 (1)

2.2 监测内容及方法 (2)

2.3 变形监测 (2)

三监测点的布设及监测精度 (3)

3.1监测目的 (3)

3.2布点方式 (3)

3.3监测精度 (4)

四监测设备及技术措施 (4)

4.1钻孔监测点观测 (4)

4.2沉降观测点监测 (5)

五监测报警值和监测频率 (5)

5.1 监测报警值 (5)

5.2 监测频率注意事项 (5)

六监测成果分析 (6)

6.1水平位移监测分析 (6)

6.2沉降观测监测分析 (7)

七监测结论 (7)

水平位移监测 (8)

垂直位移监测 (8)

结论 (8)

一工程概况

重庆市三峡库区地质灾害防治工程丰都县名山、双桂山段及王家渡段防洪护岸综合整治工程位于丰都县老城区,上起于一洞桥,下止于龙洞湾,堤防全长约3km。名山双桂山段(北岸)于2003年3月至2011年12月建设完工,王家库段(南岸)于2002年10月至2005年7月建设完工。该工程完工后,由于受长江三峡工程蓄水水位和泥沙淤积对防洪护岸的影响,受丰都抗旱服务有限公司委托,于2016年1月在原丰都县美丰河堤有限公司布置的监测点、原丰都县名山双桂山库岸综合整治工程有限公司布置的监测点上继续对该工程防洪护岸提防进行变形监测。

根据要求丰都县名山、双桂山段及王家渡段防洪护岸综合整治工程在长江南北两岸总共布设有15个变形监测观测点,名山、双桂山段(北岸)布设了(1-9号)9个观测点,2号观测点由于2016年2月公路建设,测点已遭损坏,王家渡段(南岸)(11-16号)布设了6个观测点,移动监测以每个测斜管底端水平位移为零,即位于稳定地层,测量铅垂线方向移动偏移量。沉降观测以2016年1月测量观测点孔口地表标高基准进行监测。

二监测依据及内容

2.1监测的依据:

(1)丰都县名山、双桂山段及王家渡段防洪护岸综合整治工程有关的图纸及资料

(2)《工程测量规范》GB50026-2007

(3)《水利水电工程施工测量规范》SL52—2012

(4)《水工混凝土结构设计规范》SL191—2008

(5)《水工挡土墙设计规范》SL379—2007

(6)《水利水电工程边坡设计规范》SL386-2007

(7) 《国家三、四等水准测量规范》GB12898-2009

2.2 监测内容及方法

根据《工程测量规范》GB50026-2007变形监测规定,工程现场仪器监测项目的选择应在充分考虑工程水文地质条件、工程安全等级、支护结构的特点及变形控制要求的基础上,考虑到该工程的特点,确定的监测项目见表1。

表1本工程监测项目

2.3变形监测

(1) 钻孔测斜仪的工作原理

当传感器探头相对于地球重心方向产生倾角θ时 ,由于重力 的作用,传感器中灵敏元件相对于铅垂线方向摆动一个角度(α), 通过高灵敏的微电子换能器将此角度转换成信号,经过分析处 理,将测得的数据存入仪器。

(2)监测原理 序号 监测内容 监测点数 1 王家渡段(南岸)钻孔观测点 6 2 名山双桂山(北岸)钻孔观测点 8 3 沉降观测点 14

22y U Ux U +=y

x

U U arctan +=Ly α将测斜管埋入滑坡体内一定的深度视测斜管底端水平位移为零,即位于稳定地层。为了便于数据处理 ,规定测斜管导槽顺滑动方向为 Y 方向且设测管向坡外倾斜为正向; 经X 正向与Y 正向呈逆时针夹角90o。测量时从孔底开始每隔 0.5 m 读数一次,测孔时正反方向各测量一次,将正向测量值V +和180o负向测量值V 一代入下式计算,

即可得到该点的位移 △i = 0.5 ×(V + 一V 一),m m ;钻孔孔口的

合位移量为: 其中Ux 为x 向位移,mm ;Uy 为 Y 向位移 ;α为合位移的方位角 ;Ly 为 Y 向方位角。

三 监测点的布设及监测精度

3.1监测目的

丰都县名山、双桂山段及王家渡段防洪护岸综合整治工程修建后,了解河堤变形情况,确保新城人员、房屋设施等和河堤工程本身的安全。

3.2布点方式

观测点尽可能沿河提能反应监测体变形特征的位置布设,要求相邻观测点的水平距离至少为一个成孔深,钻孔孔底位于稳定地层,尽量要求钻孔保持铅锤的,偏差角应小于2o,终孔直径应大于测斜管外径30mm ,钻孔深度应超位移带进入稳定地层至少5m 深。

3.3测斜管的埋设方法

1、将测斜管装上管底盖,用螺丝或胶固定。

2、将测斜管按顺序逐根放入钻孔中,测斜管与测斜管之间用接

管连接,并用螺丝固定。测斜管在安装中应注意导槽的方向,导槽方向必须与设计要求定准的方向一致。将组装好的测斜管按次序逐节放入钻孔中,直至孔口。3、露在地表上的测斜管应注意做好保护,盖上管盖,防止物体落入。

3.3监测精度

按《工程测量规范》GB50026-2007变形监测等级划分及精度要求(表10.1.3)的规定,本次变形监测按四等监测。

四监测设备及技术措施

4.1钻孔观测点监测

监测设备:TL-3钻孔测斜仪

观测方法:首先将测斜仪探头植入测斜管内,要使导向轮完全导入导向槽内,当探头以一定间距在导管内逐段滑动测量时,装在探头内的传感元件将每次测得的探头与垂线的夹角转换成电讯号,通过电缆传输到读数仪。测斜管监测原理是根据摆锤受重力影响,测定以铅垂线为基准的倾斜弧角变化。设探头上、下两组导轮的距离为L,传感元件测得的探头与铅垂线的夹角为θ,则相应两测段之间的水平挠度量为L·sinθ,逐段测试全孔,则从孔底至孔口的总挠度量为 L·sinθ,多次观测,则孔口总挠度量的变化值即代表孔口的位移。由于导管与岩体结合在一起,由此测得导管的变形,也就是岩体的水平位移。

4.2沉降观测点监测

监测设备:S9i-RTK

观测方法:沉降观测按照国家四等水准要求观测。采用S9i-RTK 架设在监测点上,多次观测求得高程平均值,为本次垂直位移值,第一次垂直位移量累加至当次本次垂直位移量即为该点累计垂直位移量。

监测值精度:垂直位移监测变形点高程中误差≤2mm,容许误差按两倍中误差计≤4mm,本次监测误差3.5mm。

五监测报警值和监测频率

5.1 监测报警值

现场监测严格按下列控制标准进行控制,见表2。

表2 监测控制标准

安全性判别

监测内容

判别标准警戒域(报警值)备注钻孔监测点位移量连续位移量三次大于30mm报警沉降监测点位移量连续累计位移量三次大于10mm报警

在监测期间,如果上述控制标准中有一项超标,应立即通知业主,提出合理化的建议措施,以保证观测区内人员、财务等的安全。

5.2 监测频率注意事项

(1)根据工程特点,监测所有项目均按照规范及本工程观测制度要求执行,

(2)每次观测时探测探头必须放入孔底,提升时严格按每次0.5米。

(3)观测孔内观测连续每月观测一次,相差天数不能超过15天,

主管单位周一至周五每天派人对防洪护岸表面全面进行巡查。

(4)长江洪水季节每天派人巡查,遇暴雨、霜雪天气或多雨季节要按时派人现场巡查,发现问题及时反映研究处理。

(6)如观测区内出现滑坡、裂缝必须及时分析变化情况,是否会造成安全威胁和财产损失,并向主管领导汇报,提出建议。

(7)防洪护岸趋于稳定后连续观测三年以上。当位移量迅速增加或出现其他异常时,应在做好观测本身安全的同时,增加观测频率,并立即将观测结果报告业主。

六变形监测结果分析与评价

6.1位移监测分析

王家渡段(南岸)根据该滑坡深部位移监测成果显示,累积位移一深度曲线主要呈现直线型,根据图(1)和图(2)11号孔的监测结果显示。

图(1)图(2)

(1)各个观测点位移测点向西略有变化,绕度范围在-0.8~0.8mm之间,最大绕度差16mm。

名山、双桂山段(北岸)根据该滑坡深部位移监测成果显示,累

积位移一深度曲线主要呈现S 形 ,图(3)、图(4)是3号监测孔的相关曲线。根据3号孔的监测结果显示。

图(3) 图(4) (1)各个观测点位移测点向南西变化,绕度变化范围在

-31.7~0.7mm 之间。

名山、双桂山段(北岸)、王家渡段(南岸)根据该滑坡孔口水平位移监测成果显示,累积水平位移曲线主要呈抛物线线形,根据图

(5)和1号孔的监测结果显示。

图(5)

(1)孔口水平位移测点向河中心移动,变化范围在0~13.6mm 之间。

(2)在整个监测过程中个观测点虽然出现上下波动现象,但各

点均未出现报警。

6.2沉降观测监测分析

王家渡段(南岸)观测点沉降位移各个监测点的详细变形,参考沉降变化曲线图,从变化图(6)中可以得出沉降位移变化规律基本相同,主要特征有:

图(6)

(1)沉降位移测点最终变化均以向下为主,范围在-4.3mm~0mm 之间。

(2)在整个监测过程中各点变化比较均匀趋于稳定。

名山、双桂山段(北岸)观测点沉降位移各个监测点的详细变形,参考沉降变化曲线图,从变化图(7)中可以得出沉降位移变化规律基本相同,主要特征有:

图(7)

(1)沉降位移测点最终变化均以向下为主,范围在-7.4mm~0mm 之间。

(2)在整个监测过程中河堤有部分轻微裂缝,但不造成经济损失和工程安全隐患。

七监测结论

(1)水平位移监测

在2016年全年观测中,王家渡段(南岸)6个位移监测点的累计深部位移绕度变化较小,各监测点的深部位移成均匀变化,孔口水平位移累计量最大为19mm,水平位移累计量最小为14.2mm。名山、双桂山段(北岸)8个位移监测点的累计深部位移绕度变化较大。随着时间增加,累计深部位移绕度量成S型变化,孔口水平位移累计量最大为16.9mm,水平位移累计量最小为13.4mm。在工程完工后,在工程完工连续观测12个月后,各监测点的位移变化基本趋于稳定。(2)沉降观测监测

由沉降分析可以看出:在2016年观测中,王家渡段(南岸)观测期间该河堤的最大沉降观测点为-4.3mm,最小沉降为-3.2mm,名山、双桂山段(北岸)观测期间该河堤的最大沉降观测点为-7.9mm,最小沉降为-1.1mm,由此表明河提在整个观测期间,观测点的沉降变形值小于监控预警值及监控报警值。

结论:

根据中华人民共和国行业标准《工程测量规范》GB50026-2007规

<

2Q

2u

范要求采用最小二乘测量平差的检验方法:计算出王家渡段(南岸)孔口水平位移复测的平差值与首次观测的平差值为15.6mm,沉降位移复测的平差值与首次观测的平差值为10.2mm,名山、双桂山段(北岸)水平位移复测的平差值与首次观测的平差值为23.5mm,沉降位移复测的平差值与首次观测的平差值为12.3mm,符合规范要求。本次监测各个观测点略有变化,建议后每年每一个月观测一次,连续观测三年。

基坑水平位移监测报告

基坑变形 监测报告 工程名称:

建设项目 一期基坑工程基坑变形监测报告现场监测人员: jjjjjj 二OO九年三月十八日 j

目录 一、工程概况 (4) 二、监测依据 (4) 三、监测项目与点位布置 (4) 5 5 5 6 8 9 17 25 26 5、测斜曲线图 (52) 6、侧向变形累计最大位移点位移~时间关系曲线图 (61) 7、地下水水位测试结果汇总表 (62) 8、总部经济区水位随时间变化图 (73)

9、监测点位平面布置图 (74) 一、工程概况 位于开创大道西南侧、揽月路以西一带,地处科学城中心区东部,西面毗邻初具规模的综合研发孵化中心,总建筑面积约34万平方米。该项目基坑安全等级为二级,按设计及规范要求并结合本项目的具体情况,本项目设置如下监测项目: 5、科学城总部经济区工程基坑支护监测点布置图。 三、监测项目与点位布置 1、基坑支护结构水平位移观测: 按设计要求,共布设31个监测点,编号为W1~W31,详见观基坑监测点布置图。

2、支护结构及土体侧向变形监测: 按设计要求,共布设27个监测点,编号为K1~K27,其中K2、K10、K15和K22为土体侧向变形监测点,详见基坑监测点布置图。 3、地下水位监测: 按设计要求,共布设19个监测点,编号为SW1~SW19,详见基坑监测点布置图。 3、地下水位监测采用钢尺水位计测得地下水位与管顶的距离,根据管顶高程即可计算地下水位的高程。将到开挖过程中地下水位与基坑开挖前地下水位高程进行比较,得到开挖过程中基坑周边地下水位的变化情况。 五、允许值及报警值 根据基坑支护设计要求,并结合工程实践经验,对该工程监测项目提出以下警戒

隧道变形监测方案

富水土质隧道围岩变形监测及其应用 (中铁建某集团山东) 摘要本文以新松树湾隧道为例,通过内空收敛和围岩内部位移的量测,分析了富水土质隧道的围岩变形规律,对类似工程施工有一定的参考价值。 关键词富水土质隧道围岩变形 随着西部大开发的进行,对富水黄土地区的隧道施工参数的测试和研究具有重要的意义。本文以新松树湾隧道为例进行探讨。 1 工程概况 新松树湾隧道为既有松树湾隧道复线的单线铁路隧道,位于甘肃省陇西县境内大营梁,全长1726m,复合衬砌。大营梁为黄土梁峁区,该隧道范围地层为上更新统风积粘质黄土和下、中更新统冲、洪积杂色砂粘土。粘质黄土为淡黄色、棕黄色,厚0—20m,土质较匀,具孔隙及虫孔,局部含白色钙丝及钙质斑点,半干硬至硬塑,II级普通土,II类围岩,σ0=150kPa,具II级自重湿陷性。杂色砂粘土主要表现为强崩解性,一定的膨胀性及含有盐碱成分。II级普通土,II类围岩,σ0=200--250kPa (局部软塑—流塑状,I类松土,I类围岩,σ 0=100--120kPa)。大营梁地带年平均降水量513.3mm,隧道三面汇水,地下水较发育,系大气降水补给。地下水主要有上层滞水和裂隙水,前者一般埋深15—30m之间。多见有泉和渗水出露,水量相对较大,隧道内日渗水量22--18m3/d.地下水对混凝土具弱侵蚀性。经调查,既有松树湾隧道(1960年建成)各地段有不同程度的渗漏水现象。隧道渗水主要通过拱顶、边墙接缝、排水沟孔、墙角部位渗出,水对普通硅酸盐水泥有侵蚀性。因此,新松树湾隧道采用曲墙有仰拱衬砌,除进口端I类围岩模筑衬砌,余均采用复合衬砌。初期支护为1榀/m钢格栅+钢筋网+钢筋锚杆喷锚。在施工中采用新奥法分三台阶开挖。 2 量测项目 根据现场情况,选取了八个量测断面进行内空收敛的测试;还选取了两个断面进行围岩内部位移测试。内空收敛在开挖后马上埋设测点,在12小时内测取初始读数,采用煤炭科学研究院生产的JSS30型数显收敛计量测。观测断面里程分别为1#面——DK1601-8.4,2#面——DK1601+6.4,3#面——DK1601+21.9,4#面——DK1601+36.1,5#面——DK1601+46.5,6#面——DK1601+86.5,7#面——DK1601+122.5,8#面——DK1601+172.7,其中7#、8#面进行围岩内部位移测试(图1),每个断面各有六条内空收敛测线,即1-2、1-3、1-4、1-5、2-3、4-5。围岩内部位移采用煤炭科学研究院生产的杆式多点位移计进行测量,这种位移计使用膨胀木锚头,具有安装简单,可靠等特点,每个钻孔可分别测量埋深1M,2M,4M处的围岩与洞壁之间的相对位移。 Fig.1 Arrangement of the c onvergences and internal displacement of the wall rock 3 内空收敛量测 通过测量结果计算各测线收敛累计值,同时计算出各测线的位移速率。 隧道周边收敛按下式计算: R R U i i - = 收敛速率按下式计算:

桥梁工程变形监测方案

桥梁工程变形监测方案 一、概述 大型桥梁,如斜拉桥、悬索桥自20世纪90年代初期以来在我国如雨后春笋般的发展。这种桥梁的结构特点是跨度大、塔柱高,主跨段具有柔性特性。在这类桥梁的施工测量中,人们已针对动态施工测量作了一些研究并取得了一些经验。在竣工通车运营期间,如何针对它们的柔性结构与动态特性进行监测也是人们十分关心的另一问题。尽管目前有些桥梁已建立了了解结构内部物理量的变化的“桥梁健康系统”,它对于了解桥梁结构内力的变化、分析变形原因无疑有着十分重要的作用。然而,要真正达到桥梁安全监测之目的,了解桥梁的变化情况,还必须及时测定它们几何量的变化及大小。因此,在建立“桥梁健康系统”的同时,研究采用大地测量原理和各种专用的工程测量仪器和方法建立大跨度桥梁的监测系统也是十分必要的。 二、变形监测内容 根据我国最新颁发的“公路技术养护规范”中的有关规定和要求,以及大跨度桥梁塔柱高、跨度大和主跨梁段为柔性梁的特点,桥梁工程变形监观测的主要内容包括: 1) 桥梁墩台沉陷观测、桥面线形与挠度观测、主梁横向水平位移观测、高塔柱摆动观测; 2) 为了进行上述各项目的测量,还必须建立相应的水平位移基准网与沉陷基准网观测。 三、系统布置 1)桥墩沉陷与桥面线形观测点的布置 桥墩(台)沉陷观测点一般布置在与墩(台)顶面对应的桥面上;桥面线形与挠度观测点布置在主梁上。对于大跨度的斜拉段,线形观测点还与斜拉索锚固着力点位置对应;桥面水平位移观测点与桥轴线一侧的桥面沉陷和线形观测点共点。 2)塔柱摆动观测点布置 塔柱摆动观测点布置在主塔上塔柱的顶部、上横梁顶面以上约1.5m的上塔柱侧壁上,每柱设2点。 3)水平位移监测基准点布置 水平位移观测基准网应结合桥梁两岸地形地质条件和其他建筑物分布、水平位移观测点的布置

变形监测实习总结

变形监测测量实习总结 变形监测就是利用专用的仪器和方法对变形体的变形现象进行持续观测、对变形体变形形态进行分析和变形体变形的发展态势进行预测等的各项工作。其任务是确定在各种荷载和外力作用下,变形体的形状、大小、及位置变化的空间状态和时间特征。在精密工程测量中,最具代表性的变形体有大坝、桥梁、高层建筑物、边坡、隧道和地铁等。 变形监测工作的意义主要表现在两个方面:首先是掌握各种工程建筑物的稳定性,为安全运行诊断提供必要的信息,以便及时发现问题并采取措施;其次是科学上的意义,包括根本的理解变形的机理,提高工程设计的理论,进行反馈设计以及建立有效的变形预报模型。 我们本次变形监测共进行了三项内容:位移观测、倾斜观测和沉降观测。 《变形监测》是工程测量专业重要的课程内容之一,按照培养目标和教学大纲的要求,我们进行了为期一周的课程实习。旨在通过本次课程实习来加深对变形监测的的基础理论、测量原理及方法的理解和掌握程度,切实提高我们的实践技能,初步掌握位移监测、倾斜监测和沉降监测的基本方法,熟练使用作业各工序的仪器设备及作业过程等。

对于本次实习,老师和同学们都非常的重视,在第一天的实习动员会上,李老师就本次实习的意义、实习中的注意事项等方面做了明确的阐述,同时,也就本次实习内容和实习步骤做了详细的说明,并给同学们准备了相关的规范和资料,使同学们能够更好的完成本次实习任务。在其后的实习过程中,同学们实习目的明确、积极主动、不怕吃苦、勇于承担重担,在老师的指导下,顺利的完成了大坝位移监测、土木系实训楼倾斜监测和八号实验楼沉降监测等实习内容。通过本次实习,不仅使我们的理论知识得到巩固、操作能力得到加强,同时也使我们运用所学知识的解决实际问题的能力得到了提高。 对于大坝的位移监测,我们首先在面板堆石坝模型的坝体上选择了三个观测点,然后在其旁边的坚固水泥地上定了两个钢钉作为观测点,通过多次量距后,我们选择了假设坐标作为本次观测的已知数据,对坝体上的三个观测点进行了三天的前方交会法位移监测,并采用全圆观测法每次观测各六个测回,期间严格按照规范的相关要求,力求数据的精确、实用。经观测,大坝的位移量极小,非常稳固,可以安心使用。 对于土木系实训大楼的倾斜监测,我们选择了大楼的东南角,并在其南边和东边各1.5倍楼高的地方选择了坚固地面上的钢钉作为观测点,采用的是垂直投影的观测方

建筑物沉降观测和基坑变形监测点布设及报告2

2、监测点的布设 2.0.1基坑顶部竖向位移 监测点布设在基坑边坡顶部的,应沿基坑周边布置,基坑周边中部、阳角处应布置监测点。监测点间距不宜大于20m,每边监测点数目不应少于3个。监测点宜设置在基坑边坡坡顶上。 监测点布设在在围护墙上的,应沿围护墙的周边布置,围护墙周边中部、阳角处应布置监测点。监测点间距不宜大于20m,每边监测点数目不应少于3个。监测点宜设置在冠梁上。 2.0.2基坑顶部水平位移 监测点的布设同2.1 基坑顶部竖向位移,宜为共用点。 2.0.3坑外土体深层水平位移 深层水平位移监测孔宜布置在基坑边坡、围护墙周边的中心处及代表性的部位,数量和间距视具体情况而定,但每边至少应设1个监测孔。 2.0.4 地下水位 水位监测点应沿基坑周边、被保护对象(如建筑物、地下管线等)周边或在两者之间布置,监测点间距宜为20~50m。相邻建(构)筑物、重要的地下管线或管线密集处应布置水位监测点;如有止水帷幕,宜布置在止水帷幕的外侧约2m处。 2.0.5 锚(杆)索拉力 锚(杆)索的拉力监测点应选择在受力较大且有代表性的位置,基坑每边跨中部位和地质条件复杂的区域宜布置监测点。每层锚杆的拉力监测点数量应为该层锚杆总数的1~3%,并不应少于3根。每层监测点在竖向上的位置宜保持一致。每根杆体上的测试点应设置在锚头附近位置。 2.0.6支护桩桩身力

支护桩桩身力监测点应布置在受力、变形较大且有代表性的部位,监测点数量和横向间距视具体情况而定,但每边至少应设1处监测点。竖直方向监测点应布置在弯矩较大处,监测点间距宜为3~5m。 2.0.7支撑力 支撑力监测点的布置应符合下列要求: 1、监测点宜设置在支撑力较大或在整个支撑系统中起关键作用的杆件上; 2、每道支撑的力监测点不应少于3个,各道支撑的监测点位置宜在竖向保持一致; 3、钢支撑的监测截面根据测试仪器宜布置在支撑长度的1/3部位或支撑的端头。钢筋混凝土支撑的监测截面宜布置在支撑长度的1/3部位; 4、每个监测点截面传感器的设置数量及布置应满足不同传感器测试要求。2.0.8 围护墙侧向土压力 围护墙侧向土压力监测点的布置应符合下列要求: 1、监测点应布置在受力、土质条件变化较大或有代表性的部位; 2、平面布置上基坑每边不宜少于2个测点。在竖向布置上,测点间距宜为2~5m,测点下部宜密; 3、当按土层分布情况布设时,每层应至少布设1个测点,且布置在各层土的中部; 4、土压力盒应紧贴围护墙布置,宜预设在围护墙的迎土面一侧。 2.0.9土体分层竖向位移 土体分层竖向位移监测孔应布置在有代表性的部位,数量视具体情况确定,并形成监测剖面。同一监测孔的测点宜沿竖向布置在各层土,数量与深度应根据具体情况确定,在厚度较大的土层中应适当加密。 2.0.10立柱竖向位移 立柱的竖向位移监测点宜布置在基坑中部、多根支撑交汇处、施工栈桥下、

运营期间的地铁隧道结构变形安全监测技术研究

运营期间的地铁隧道结构变形安全监测技术研究 发表时间:2017-05-14T13:31:08.110Z 来源:《建筑学研究前沿》2017年1月下作者:王鹏 [导读] 随着我国现代化建设的飞速发展,城市基础设施地铁越来越多,是城市客运交通的大动脉以及城市生命线。 广州市吉华勘测股份有限公司 510260 摘要:随着我国现代化建设的飞速发展,城市基础设施地铁越来越多,是城市客运交通的大动脉以及城市生命线,其投资大、难度高、施工期长、环境复杂等。同时地铁沿线高强度的物业开发、市政工程建设对地铁结构和运营安全带来一定的隐患,城市轨道交通结构的安全保护工作日益严峻,一但出现城市轨道交通安全事件,将严重影响城市轨道交通的正常运营。因此,在外界施工影响下,对运营期间的地铁实施必要的变形安全监测至关重要。 关键词:地铁,测量机器人,自动化监测。 1 地铁监测的意义和目的 地铁结构本身由于地基的变形及内部应力、外部荷载的变化而产生结构变形和沉降。而地铁旁边的施工正是引起外部荷载变化的主要原因,地铁结构变形和沉降超过允许值,将会对地铁的运营安全造成影响。通过监测可动态收集地铁结构变形信息,掌握结构变形情况,保障运营安全。 地铁监测的主要目的如下:1)通过对测量数据的分析、掌握隧道和围岩稳定性的变化规律,修改和确认设计及施工参数;2)通过监控量测了解施工方法的科学性和合理性,以便及时调整施工方法,保证施工安全及隧道的安全;3)了解隧道结构的变形情况,实现信息化施工,将监测结果反馈设计,为改进设计施工提供信息指导,提供可靠施工工艺,为以后类似的施工提供技术储备。 2.监测实施 因地铁隧道的特殊性,对于地铁运营期的监测,需采用自动化监测手段,即采用测量机器人和自动监测系统软件建立隧道结构变形自动监测系统。在外部施工期间自动测量地铁隧道结构顶板、侧墙及道床在三维—X、Y、Z方向(其中:X、Y为水平方向,Z为垂直方向)的变形值。 2.1监测点与基准点布置 参考工程设计、实际情况及有关规定,确定地铁受外界项目施工影响的范围,监测断面可按5~20m间距布设,每断面布设一般情况下六个监测点。在隧道两端不受建设项目施工影响的隧道远处各设置3个基准点。 2.2自动监测系统 自动监测系统主要由监测设备、参考系、变形体和控制设备构成。监测设备由测量机器人、自动化监测系统软件和监测控制房组成;控制设备由工控机及远程控制电脑组成。 1)自动化监测网络系统的硬件部分包括高精度自动全站仪、目标棱镜、信号通信设备与供电装置、计算机及网络设备等部分组成(如图1)。 图1数据采集系统图 2)系统软件包括动态基准实时测量软件和变形点监测软件两大部分。动态基准实时测量软件功能上主要有以下特点:根据距离及棱镜布设情况自动进行大小视场的切换;依据布设的网形站与站之间的观测关系,对测站点的观测方向可分组设置,可适合任意控制网形,不局限于导线网;采用局域网技术进行数据的通信,并具有网络断开的自动判断功能;为满足各种测量等级和运营环境的需要,具有各项测量限差、时间延迟、重试次数、坐标修正的设置功能;考虑到地铁内局部范围内气象一致性,在平差计算中,采用加尺度参数解算,避免了气象参数的测定,提高控制网测量的精度。 3)变形点监测软件包括各分控机上的监测软件和主控机上的数据库管理软件两部分。分控机上的监测软件用来控制测量机器人按要求的观测时间、测量限差、观测的点组进行测量,并将测量的结果写入主控机上的管理数据库中。 2.3自动监测系统工作流程 首先建立计算机和测量机器人的通信,然后对测量机器人进行初始化,此外进行测站及控制限差的设置,所有设置完毕后进行学习测量,设置点组和定时器,根据点位的重要性以及监测频率将相同的观测点纳入同一点组,最后进行自动观测。一周期观测完毕后软件便对原始观测数据进行差分处理,得到各变形点的三维坐标、变形量及变形曲线图,设置软件还可以将数据通过手机网络发送至指定的邮箱。 3地铁隧道自动化监测的技术难点 地铁隧道是狭长形的空间环境,同时列车一般以平均5分钟左右的间隔在隧道中高速运行。地铁环境的这些特点及保证地铁正常运营等因素的制约,使得自动变形监测系统在地铁变形监测中的应用,遇到比其它工程中更多的技术问题,因此自动变形监测手段有着常规测量无法比拟的优越性。自动监测系统系统可以在无人值守的情况下,全天24小时连续地自动监测,实时进行数据处理、数据分析、报表输

基坑监测总结报告

目录 一、工程概况 二、监测目的 三、监测内容 四、监测依据 五、监测方法 六、监控报警 七、信息反馈八、 九、监测项目数据汇总表及时程变化曲线 十、监测结论及建议 附: 一、基坑监测平面布置图 二、基坑监测项目数据汇总表 三、监测项目时程变化曲线 监测总结报告一、工程概况

1、工程名称:正弘空港花园项目6#地块基坑变形监测项目。 2、工程地点:郑州航空港区郑港四街与郑港三路交叉口。 3、基坑工程周边环境 3.1、四周较为空旷 为保证基坑开挖期间基坑侧壁的安全和基础施工的正常进行,按照相关规范要求需采用基坑变形监测措施,确保基坑在施工期间能够掌握及时的数据变化量,有效的信息化施工,有异常变化前期能够及时预报并立即采取补救措施。 根据甲方提供的《基坑支护、降水设计总说明》做以参考,基坑开挖深度平均为-10.3米《JGJ120-99和GB50202-2002》的规定,基坑的安生等级为二级.结合基坑支护设计,考虑基坑开挖中对周边建筑物会产生一定影响,因此在基坑开挖中必须对基坑的安全实施基坑侧壁的位移和沉降变化等安全检测。 二、监测目的 为动态设计和信息化施工及时提供反馈信息,测定基坑及周边建筑物从当前状态起至变形稳定期间的绝对变化量,对基坑进行健康监测,对意外变形做出及时预报,确保施工和使用中的安仝。 根据中华人民共和国行业标准《建筑变形测量援程》JGJ8-2007及《建筑基坑工程监测技术规范》(GB50497-2009)的相关

规定和要求:测点的布置应以能全面反映建筑物地基变形特征,并结合地质情况及建筑结构特点确定。结合本工程实际,在对工程地基勘察报告及支护降水设计方案分析参考。对建筑结构体系的稳定性、可靠性、安全性进行预测预报,为确保基坑及周围环境的安全。 三、监测内容 1、主楼基坑围护顶部竖向位移及水平位移监测(暂定38点)以现场实际布设为准; 2、基坑巡视;’ 四、监测依据 (1)参考基坑支护设计图纸以及《岩土工程勘察报告》 l、《建筑变形测量规程》(JGJ 8-2007); 2、《建筑基坑支护技术规程》(JGJ 120-99); 3、《建筑基坑工程监测技术规范》( GB50497-2009); 4、《建筑地基基础设计规范》(GB 5007-2002); 5、《建筑地基基础工程施工质量验收规范》( GB 50202-2002) 五、监测方法 沉降监测分为控制网和标示点监测两部分。控制观测内容包括水准基点设置和水准基点间的高程闭合观测;标志点监测包括周期性

地铁隧道结构变形监测数据管理系统的设计与实现

地铁隧道结构变形监测数据管理系统的设计与实现 摘要:探讨开发地铁隧道结构变形监测系统的必要性与紧迫性。以VisualBasic编程语言和ACCESS数据库为工具, 应用先进的数据库管理技术设计开发地铁隧道结构变形监测数据管理系统。系统程序采用模块化结构,具有直接与外业观测电子手簿连接下传原始观测资料、预处理和数据库管理等功能,实现了测量内外业的一体化。系统结构合理、易于维护、利于后继开发,提高监测数据处理的效率、可靠性以及监测数据反馈的及时性,值得类似工程的借鉴。关键词:地铁隧道;变形监测;管理系统 随着经济的发展,越来越多的城市开始兴建地铁工程。地铁隧道建造在地质复杂、道路狭窄、地下管线密集、交通繁忙的闹市中心,其安全问题不容忽视。无论在施工期还是在运营期都要对其结构进行变形监测,以确保主体结构和周边环境安全。地铁隧道结构变形监测内容需根据地铁

隧道结构设计、国家相关规范和类似工程的变形监测以及当前地铁所处阶段来确定,由规范[1]与文献[2]知,运营期的地铁隧道结构变形监测内容主要包括区间隧道沉降、隧道与地下车站沉降差异、区间隧道水平位移、隧道相对于地下车站水平位移和断面收敛变形等监测。它是一项长期性的工作,其特点是监测项目多、线路长、测点多、测期频和数据量大,给监测数据处理、分析和资料管理带来了繁琐的工作,该项工作目前仍以手工为主,效率较低,不能及时快速地反馈监测信息。因此,有必要开发一套高效、使用方便的变形监测数据管理系统,实现对监测数据的科学管理及快速分析处理。现阶段国内出现了较多的用于地铁施工期的监测信息管理系统[3-4],这些系统虽然功能比较齐全、运行效率较高,能够很好地满足地铁施工期监测需要,但它主要应用于信息化施工,与运营期地铁隧道结构变形监测无论是在内容还是在目的上都有着很大的区别和局限性。而现在国外研究的多为自动化监测系统[5-6],也不适用于目前国内自动化程度较低的地铁隧道监测。此外,能够用于运营期并符合当前国内地铁隧道结构监测实际的监测数据管理系统还较为少见。因此,随着国内建成地铁的逐渐增多,开发用于运营期地铁的变形监测数据管理系统变得越来越迫切。为此,根据运营期地铁隧道结构变形监测内容[1-2]和特点,以isualBasic作为开发工具[7],应用先进的数据库管理技术[8],以目前较为流行的

边坡变形监测方案

边坡变形监测方案 XXXX标 边坡变形监测专项方案 编制: 审核: 批准: XXXXX公司 2016年12月01日 XXX标 边坡变形监测方案 一、工程概况: 我公司承建的XXX标段,桩号范围3+400~6+950。主要建设内容包括:XXXXX.。本工程等级为II等;河道堤防级别为3级,施工临时工程为5级。防洪标准:防洪标准为50年一遇。供水标准:农业灌溉供水设计保证率为95%。 二、监测内容: 本标段边坡监测主要是指路堤边坡监测,监测内容为人工巡视、裂缝观测、坡面观测观测。 1、人工巡视和裂缝观测:人工巡视是一项经常性的工作,我标将安排专职安全员坚持每天进行巡视,对图纸较差处、渗水严重处、边坡较陡处进行重点巡视、检查。当坡体表面发现裂缝时安全员立即采取措施和报告监测组。

边坡变形监测方案 2、坡面观测:边坡坡面的变形观测是指在平台上设置坡面变形观测点,利用GPS进行测量。通过数据处理分析,分析坡面几何外观的变化情况,绘制坡面各点在施工过程中的水平位移变化情况,从而了解边坡滑动范围和滑动情况,提供预警信息,它是一种简单,直接的宏观监测方法。 二、监测方案的实施 1、基准控制点和监测点的布设 1.1基准网的建立 选择通视良好、无扰动、稳固可靠、远离形变护坡高度3倍比较稳定的地方埋设工作基点,其中工作基点采用有强制归心装置的观测墩,照准标志采用强制对中装置的觇牌,埋设在加固坎上,地质较为稳定,本标段工作基点选择桩号点。 变形点布置在边坡变形较大并能严格控制变形的边坡边沿位置。在边坡顶上每100m布置变形监测点,编号分别为左1-32,右1-32。以及对南岸6+581,南岸4+390、北岸5+160、4+000-4+100段附件的建筑物等进行加密监测。 1、顶部用沉降钉垂直植入混凝土中,孔深不小于50mm,基准点与各点位埋设完毕等候5天后,水泥凝固稳定后方可开始进行观测。 2、监测精度及频率要求 根据设计图纸及国家相关规范要求,边坡的变形观测如下: 水平位移监测网主要技术要求为:2.1 边坡变形监测方案

沉降观测报告(模板)

沉降观测报告模板 一.工程概况: 简述工程规模,结构形式,地基,高度,建筑面积,抗震烈度,抗震设防等级,设计的沉降观测要求,观测点建立时间,观测周期,观测等级等。 二. 沉降观测采用的规范及标准 1.《建筑变形测量规程》JGJ/T8-97; 2.《国家一、二等水准测量规范》GB/12897-2006; 3《建筑地基基础设计规范》(GB 50007-2002) 4.《建筑工程资料管理规程》 5《工程测量规范》GB/50026-2007 6《建筑变形测量规程》GB/8-2007 7.本工程《技术设计书》; 三. 沉降观测依据及要求 依据工程设计图纸要求及沉降观测施工规范、规程做观测详细说明。 四. 观测目的及要求: 沉降观测的主要目的:是监测建筑物(构筑物)在施工期间以及后续各个阶段的沉降状态和工作情况,并为建设单位、设计单位和施工单位提供准确可靠的建筑物动态沉降数据,以便在发生不正常现象时,使各方能及时分析原因,采取措施,防止事故发生,

确保工程质量安全。 建筑沉降观测能测定建筑及地基的沉降量、沉降差及沉降速率,并根据需要计算基础倾斜、局部倾斜等数据。 五. 基准点和沉降观测点的设置 1基准点是沉降观测起始数据的基本控制点,为保证观测值的高可靠性,在施工区附近(变形区外)埋设沉降观测水准基点,所埋基准点根据《建筑变形测量规范》JGJ/T8-2007中的规定进行建立。基准点的个数,可根据工程规模的大小合理布设。本建筑共埋设4个基准点,高程系统采用假定高程BM1=m,也可采用施工区域内国家高程系统,高程值为甲方提供绝对高程值。基准点的建立必须用高精度水准仪引测,经过闭合、平差计算而来,并定期检验基准点的稳定性。至提交报告时基准点稳定可靠,符合规范要求。 2依据《建筑变形测量规范》JGJ/T 8-2007中的规定,沉降观测点的布置以能全面反映建筑物地基变形特征并结合地质情况及建筑物结构特点进行,变形观测点均设在建筑主要受力位置。点位设置的高度应有利于观测,且不影响施工的原则,并有利于长期保存。变形观测点均设在建筑主要受力点上。每个建筑物或构筑物在施工平面图上,都合理设置沉降观测点

隧道变形监测方案-新

隧道变形监测方案 1、目的 为明确隧道内变形观测的作业内容,规范技术细节及作业程序,总结隧道结构变形规律,为隧道结构维修养护提供依据,指导津滨轻轨隧道变形观测工作进行,从而保证行车安全,特制订本预案。 2、适用范围 2.1适用于津滨轻轨隧道变形观测的相关工作; 2.2线桥室从事变形观测的相关工作人员须依据本方案开展各项变形观测工作。 3、职责分工 隧道变形工作由线桥室主任及安技主管进行监督指导,桥梁维修主管负责变形观测工作的全面管理与协调,桥梁检测工程师协同隧道工程师、桥梁维修工程师负责隧道变形观测的相关技术工作,并由桥隧检测工区负责具体实施。 4、参考依据 《建筑变形测量规程》 《地下铁道、轨道交通工程测量规范》 《地下铁道工程施工及验收规范》 5、变形观测工作内容 5.1隧道沉降观测 监测隧道结构的沉降,主要是监测隧道结构的底板沉降,实质上是对道床的监测,主要包括区间隧道的沉降监测以及隧道与地下车站交接处的沉降差异监测。运营测量采用的坐标系统、高程系统、图式等与原施工测量相同。 5.1.1监测基准网 监测基准网是隧道沉降监测的参考系,由水准基点和工作基点构成,网形布设成附合水准路线或沿上、下行线隧道布设成结点水准路线形式,采用国家二等水准测量的观测标准进行。水准基点采用隧道线路两端远离测区的国家II等水准点,在沿线车站内和联络通道处布设工作基点,每个车站布设4个工作基点,联络通道处布设2个工作基点,水准基点与车站内、联络通道处工作基点共同构成监测基准网,如图1所示。基准网的高程值由国家水准点引入,每季度校核一

次,分析工作基点的稳定性;然后,再通过车站内两侧的工作基点,采用附合水准路线对每段隧道结构进行沉降观测。 图1 监测基准网示意图 5.1.2沉降监测点 津滨轻轨地下结构由明挖段和盾构组成,明挖段沉降监测点按施工浇筑段每段设4个点,分别布设在左右两侧墙上。具体布置见图2。 图2 明挖段沉降监测点布置示意图 为方便以后长期的位移监测工作,隧道内沉降监测点布设在隧道中线的道床上,隧道直线段每隔30m设一个测点,曲线处根据曲线半径大小设置测点间距,半径为400m曲线处每隔12m设一个测点,半径为800m曲线处每隔18m设一个测点,半径为2000m曲线处每隔30m设一个测点。具体布置见图3。

桥梁工程变形监测.doc

§13—4 桥梁工程变形监测 一、概述 大型桥梁,如斜拉桥、悬索桥自20世纪90年代初期以来在我国如雨后春笋般的发展。这种桥梁的结构特点是跨度大、塔柱高,主跨段具有柔性特性。在这类桥梁的施工测量中,人们已针对动态施工测量作了一些研究并取得了一些经验。在竣工通车运营期间,如何针对它们的柔性结构与动态特性进行监测也是人们十分关心的另一问题。尽管目前有些桥梁已建立了了解结构内部物理量的变化的“桥梁健康系统”,它对于了解桥梁结构内力的变化、分析变形原因无疑有着十分重要的作用。然而,要真正达到桥梁安全监测之目的,了解桥梁的变化情况,还必须及时测定它们几何量的变化及大小。因此,在建立“桥梁健康系统”的同时,研究采用大地测量原理和各种专用的工程测量仪器和方法建立大跨度桥梁的监测系统也是十分必要的。 二、变形监测内容 根据我国最新颁发的“公路技术养护规范”中的有关规定和要求,以及大跨度桥梁塔柱高、跨度大和主跨梁段为柔性梁的特点,桥梁工程变形监观测的主要内容包括: 1) 桥梁墩台沉陷观测、桥面线形与挠度观测、主梁横向水平位移观测、高塔柱摆动观测; 2) 为了进行上述各项目的测量,还必须建立相应的水平位移基准网与沉陷基准网观测。 三、系统布置 1)桥墩沉陷与桥面线形观测点的布置 桥墩(台)沉陷观测点一般布置在与墩(台)顶面对应的桥面上;桥面线形与挠度观测点布置在主梁上。对于大跨度的斜拉段,线形观测点还与斜拉索锚固着力点位置对应;桥面水平位移观测点与桥轴线一侧的桥面沉陷和线形观测点共点。 2)塔柱摆动观测点布置 塔柱摆动观测点布置在主塔上塔柱的顶部、上横梁顶面以上约1.5m的上塔柱侧壁上,每柱设2点。 3)水平位移监测基准点布置 水平位移观测基准网应结合桥梁两岸地形地质条件和其他建筑物分布、水平位移

边坡变形监测方案

滑 坡 变 形 监 测 案 测绘科学与技术学院 测绘工程1004 东波1010020414

2013年5月23日 目录 1工程概况 (2) 2监测目的与意义 (2) 3监测项目和测点的数量 (3) 3.1技术依据 (3) 3.2坐标系统 (3) 3.3技术法 (3) 3.4位移监测基准点布设和观测技术要求 (3) 3.5变形观测点的布设和观测技术要求 (4) 3.6监测控制网分三部分:5 3.7位移监测监测点的保护 (7) 4监测项目的检测期和频率 (7) 5监测仪器设备及选型 (8) 6监测人员的配置 (8) 7监测项目控制基准 (9) 8监测项目资料的整理与分析 (9) 9监测报告送达的对象和时限 (9) 10监测注意事项 (9)

1工程概况 项目地处市临潼区芷阳湖位置,东靠骊山主峰、西依西临高速、北邻迎 宾大道,届丁芷阳湖旅游区的黄金地带,地理位置相当优越。项目所在区 域,环境优美气候适宜,是临潼区著名旅游开发区。纵横的交通网络体系, 914路、915路、307路、306路公交车在此经过,并设立了站点,交通 十分便利、发达。临潼新家园、科技大学、工程大学等相伴左右,生活资 源十分丰富。滑坡总体坡度40 0?60°,纵长约150 m,横宽约60m ,相 对高差约40m,预计量约为36万m3,推测滑动向为85 °,为小型土质滑坡。滑坡前部为芷阳湖景区,如若发生滑坡将受到重威胁。另外滑坡体破坏导致大量水土流失,不利丁水土保持工程的开展;给当地地质环境和社会环境造成很大的影响。对此,市区高度重视,并对该滑坡实施应急治理。 根据该滑坡应急治理工程《施工图设计报告》,需要对该滑坡进行变形监 测。 2监测目的与意义 1、通过测量滑坡的垂直位移量与位移速度,确认芷阳湖景区是否安全 2、通过对滑坡变形及环境条件的监测,掌握施工期滑坡体变形动态,利用 监测结果作为判断滑坡稳定状态。 3、实时验证设计案和施工治理效果,为地质灾害预测和环境治理提供必要的 依据。 4、超前预报,确保监测期间工作人员,当地居民生命财产安全 3监测项目和测点的数量 3.1技术依据

隧道施工期间的变形监测

TRANSPOWORLD 2011No.9 (May) 206B RIDGE&TUNNEL 桥梁隧道 隧 道监测作为新奥法的重要内容之一,在隧道施工中 起着非常重要的作用。某隧道(DK2+450~DK4+036)地处龙岩闹市区,具有埋深浅、地表建筑密集、地下管线众多、围岩破碎、施工对地表建筑及地下管线影响大等诸多施工不利因素。在施工期间对地表位移、建筑变形及爆破震动等进行监测,监测成果除了为评价施工对建筑的影响服务外,监测成果还可反馈施工,为施工方案及爆破设计参数等的优化提供重要依据,测试成果对确保施工安全、加快施工进度、降低施工成本具有重要意义。 监控测量的目的 在施工期间对隧道进行监控测量,可掌握围岩和支护的动态信息并及时反馈,指导施工作业;通过对围岩和支护的变位、应力测量,修改支护系统设计,提供二次支护的最佳时间;在位移——时间曲线中如出现以下反常现象,表明围岩和支护呈不稳定状态,应加强监视。 隧道洞内外观测 隧道开挖工作面的观测 在每个开挖面进行,特别是在 软弱破碎围岩条件下,开挖后由隧道工程师和地质工程师立即进行地质调查,观察后绘制开挖工作面略图(地质素 描),填写工作面状态记录表及围岩级别判定卡。 开挖后未被支护围岩的观测,如节理裂隙发育程度及其方向;开挖工作面的稳定状态,顶板有无坍塌;涌水情况:位置、水量、水压等;底板是否有隆起现象。 对开挖后已支护的围岩的观测,如对已施工区段的观察每天至少进行一次,观察内容包括有无锚杆被拉断或垫板脱离围岩现象;喷射混凝土有无裂隙和剥离或剪切破坏;钢拱架有无被压变形情况;锚杆注浆和喷射混凝土施工质量是否符合规定的要求;观察围岩破坏形态并分析。 洞外观察 洞外观察包括洞口地表情况、地表沉陷、边坡及仰坡的稳定以及地表水渗透等的观察,观察结果记录在工程施工日志及相关表格中。 隧道位移及变形量测 地表下沉量测 根据图纸要求洞口段应在施工过程中可能产生地表塌陷之处设置观测 点,如图1所示。地表下沉观测点按普通水准基点埋设,并在预计破裂面以外3~4倍洞径处设至少两个水准基点,以便互相校核,基点应和附近原始水准点多次联测,确定原始高程,作为各观测点高程测量的基准,从而计算出各观测 点的下沉量。地表下沉桩的布置宽度应根据围岩级别、隧道埋置深度和隧道开挖宽度而定。地表下沉量测频率和拱顶下沉及净空水平收敛的量测频率相同。地表 下沉量测应在开挖工作面前方H+h(隧道埋置深度+隧道高度)处开始,直到衬砌结构封闭、下沉 基本停止时为止。 周边位移量测 C R D 法洞内监控点布置见图2所示,而双侧壁导坑法洞内控制点布置见图3所示。量测坑道断面的收敛情况,包括量测拱顶下沉、净空水平收敛,以及底板鼓起(必要时)。拱顶是隧洞周边上的一个特殊点,挠度最大,其位移情况,具有较强的代表性和显示“闯口”作用等。 拱顶下沉和水平收敛量测断面的间距,Ⅲ级及以上围岩不大于40m;Ⅳ级围岩不大于25m;V级围岩应小于 隧道施工期间的变形监测 文/王 刚

变形监测实验报告完整版

编号:TQC/K485变形监测实验报告完整版 Daily description of the work content, achievements, and shortcomings, and finally put forward reasonable suggestions or new direction of efforts, so that the overall process does not deviate from the direction, continue to move towards the established goal. 【适用信息传递/研究经验/相互监督/自我提升等场景】 编写:________________________ 审核:________________________ 时间:________________________ 部门:________________________

变形监测实验报告完整版 下载说明:本报告资料适合用于日常描述工作内容,取得的成绩,以及不足,最后提出合理化的建议或者新的努力方向,使整体流程的进度信息实现快速共享,并使整体过程不偏离方向,继续朝既定的目标前行。可直接应用日常文档制作,也可以根据实际需要对其进行修改。 1、实验要求: 应用全站仪对科技楼楼顶避雷针进行变形观测 2.实验过程: 首先认真理解前方交会原理,然后利用GPS做静态控制得出控制点坐标,将全站仪架在其中一个控制点A上,另一个控制点B架上反射棱镜,将全站仪望远镜瞄准反射棱镜定向,然后置零,转动照准部对准避雷针顶端C,记录角度,然后盘右观测,一站观测两个测回,得出夹角α将全

地铁隧道结构变形监测信息管理系统的开发

地铁隧道结构变形监测信息管理系统的开发 地铁隧道结构变形监测的特殊性、周期性和长期性,使其信息量非常庞大。信息管理是地铁隧道结构变形监测中一项重要的工作,现有的管理方式效率很低。为了高效、准确地管理监测信息,及时分析预报地铁隧道结构的稳定状况,本文结合南京地铁运营期隧道结构变形监测实例,开发了一套具有变形监测资料存储、预处理、管理分析、可视化分析、预测预报及限值预警等功能的信息管理系统,保证了准确及时快速的数据处理和信息反馈,具有良好的运用和推广前景。 关键词地铁隧道变形监测信息管理系统1 引言随着经济的发展,越来越多的城市开始兴建地铁工程。地铁隧道建造在地质复杂、道路狭窄、地下管线密集、交通繁忙的闹市中心,其安全问题不容忽视。无论在施工期还是在运营期都要对其结构进行变形监测,以确保主体结构和周边环境安全。地铁隧道是一狭长的线状地下建构筑物,监测点数量比较大,其周期性和长期性,使数据量非常庞大。面对这些繁杂而又庞大的数据能否管理利用好,关系到监测隧道结构变形和预测预报结构变形工作能否实现和实现的质量。为此,如何有效地管理原始信息,并进行相应的处理显得尤为重要。目前多数监测信息的管理和应用存在不直观、不及时、自动化程度较低等缺点[1,2],根据地铁隧道结构自身特点研制一套高效率的、使用方便的监测信息管理系统是必要的,它与变形监测一样具有重要的实用意义和科学意义。 2 系统设计思想以地铁隧道结构变形监测信息为管理对象,根据地铁

隧道结构变形监测的实际情况,综合运用监测数据处理分析技术、数据库技术和信息管理技术,实现对地铁隧道结构变形信息的存储、预处理、管理分析、可视化分析监测信息、预测预报及限值预警,为结构分析提供数据资源,以及时反馈地铁隧道结构安全状况,使安全监测管理人员更为方便和高效的管理监测信息,为确保地铁隧道结构的安全运行提供有效的决策支持。地铁隧道结构变形监测数据管理系统主要应满足如下要求: 1.1 提高地铁隧道结构变形监测数据处理分析与管理的科学化和自动化水平,满足辅助决策需求 1.2 构建地铁隧道结构变形监测信息管理基础平台 1.3 为后期自动化监测的开展及安全监测专家系统的建立提供基础。 3 系统功能地铁隧道结构变形监测信息管理系统包括文档管理、数据预处理、数据库管理、监测数据分析、信息预警预报和系统管理六大模块,内容不仅涵盖了相关技术规范的所有要求,而且具有地铁隧道自身的特点,全面、标准、专业,有良好的应用前景。 3.1 文档管理模块 3.1.1 变形监测资料地铁隧道结构变形监测根据地铁隧道结构设计、国家相关规范和类似工程的变形监测以及当前地铁所处阶段来确定,主要内容包括[3]:垂直位移监测(区间隧道沉降监测和隧道与地下车站沉降差异监测);水平位移监测(区间隧道水平位移监测和隧道相对地下车站水平位移监测);隧道断面收敛变形监测等。对于不同的地铁隧道结构变形监测项目内容,所用监测方法和仪器也不相同。通常,对于隧道垂直位移和水平位移监测,可通过大地测量或者自动化测量的方法利用精密水准仪、精密全站仪或智能全站仪进

变形监测技术在桥梁监测中的应用

测绘第35卷第1期2012年2月 13 变形监测技术在桥梁监测中的应用 董学智1 李胜1 李爱民2 (1.四川省第三测绘工程院,四川 成都 610500 ;2.广州博瑞测绘技术有限公司,广东 广州 510430) [摘要] 变形监测是工程测量的重要研究内容,它可以分析和评价建筑物或工程设施的安全状态,研究变形规 律及预报变形,是一种重要的测量监测手段。本文通过对某高速公路的桥梁沉降监测和承台水平位移监测,探 究了在桥梁监测中变形监测的实施方法及数据分析与处理模式,分析了桥梁变形的规律,为桥梁养护提供准确 的监测意见及报告。 [关键词] 变形监测;桥梁监测;数据处理 [中图分类号] P258 [文献标识码] A [文章编号] 1674-5019(2012)01-0013-03 Deformation Monitoring on the Application of Bridge Monitor DONG Xue-zhi1 LI Sheng1 LI Ai-min2 Abstract: Deformation monitoring is an important content of project surveying. It can analysis and evaluate the safe status of buildings or engineering facilities, and find the deformation law for the forecast, which is an important measurement for monitoring. This article through monitoring the subsidence and horizontal displacement of bridges along the other Expressway, to explore the method of deformation monitoring, data analysis with special model, analysis the deformation law of bridges, for bridge maintenance based on the accurate monitoring reports. Key words: Deformation monitoring; Bridge monitor; Data processing 1 引言 近年来,随着我国桥梁建设事业的迅猛发展,桥梁结构和形势日趋复杂,规模也越来越大,桥梁的施工正朝着超大化的方向发展,对其进行变形监测也就显得尤为重要。 变形监测是对被监测的对象或物体进行测量,以确定其空间位置及内部形态随时间的变化特征。其主要意义是分析和评价建筑物的安全状态、验证设计参数、反馈设计施工质量、研究正常的变形规律和预报变形[1]。桥梁的变形监测是对桥梁整体性能的监测,其基于工程测量的原理、技术和精密测量仪器,对桥梁在垂直方向和水平方向的位移变形进行定期或实时监测,并通过绘制相应的位移变形影响线或影响面来监测桥梁各部位位移的变形状态,预测其变形规律,为桥梁的维修、养护和管理决策提供依据和指导。 本应用研究通过对广深高速公路的桥梁沉降和水平位移监测,探讨变形监测理论在实际工程问题中的应用,通过合适的数据处理方法,分析和总结桥梁变形的规律,为桥梁的养护、管理和决策提供依据和指导。 2 桥梁变形监测实施原理 变形监测的主要目的是确切地反映建筑物、构筑物的实际变形程度或变形趋势,并以此作为确定作业方法和检验成果质量的基本要求。在桥梁变形监测中,主要包括桥梁沉降监测及承台水平位移监测。地面沉降是一种普遍而又日趋显著的地质现象,是区域性地面高程下降的一种环境地质变化[2],反映在桥梁监测中主要是桥梁沉降监测。同时,还需要考虑承台在水平方向上的位移,以此来整体把握桥梁的变形方向及程度。 根据不同的测量要求和规范,桥梁变形测量的等级及精度要求也各不相同。在实际的工程监测中,需要根据不同的规范要求实施监测。 2.1 桥面沉降监测 桥面沉降监测主要是监测桥梁在垂直方向上的变形。在沉降观测中,需要始终遵循“五定原则”,即基准点、工作基点、观测点点位要稳定;所用仪器、设备要稳定;观测人员要稳定;观测环境条件要一致;观测路线、镜位、程序和方法要固定[3]。 桥面沉降监测的主要内容包括:沉降观测点布设及网的测量、沉降监测、跨河桥沉降观测等。沉降观测网一般采用闭合水准路线或附合水准路线,用高精度数字水准以进行观测。而对于跨河桥沉降观测,由于桥墩在河中时,观测采用闭合水准测量。

相关文档
最新文档