固定板管式换热器设计说明书

固定板管式换热器设计说明书
固定板管式换热器设计说明书

固定板管式换热器

系别:

班级:

姓名:

学号:

一、 设计任务和设计条件

某炼油厂拟用原有在列管式换热器中回收柴油的热量。已知原油 流量为40000kg/h ,进口温度70℃,要求其出口温度不高于110℃;柴油流量为30000kg/h ,进口温度为175℃。设计一适当型号的换热器,已知物性数据:

二、 确定设计方案 ① 初选换热器的规格

当不计热损失时,换热器的热负荷为:

Q=W )(12t t c pc C =40000/3600××103×(110-70)=×105W 逆流过程如图所示:

T 2125℃ T 1175℃

t 170℃ t 2110℃ 逆流平均温度差:

m t =

8.5970

125110175ln

)

70125()110175( ℃

初估 值 R=

25.170110125

175

P=381.070

17570110

初步决定采用单壳程,偶数管程的固定板管式换热器。经查表得校正系数 =>,可行。 ∴

53.859.80.9 逆m m t t ℃ 初步估计传热系数K 估=200W/(㎡·℃), 则

A m 07.918

.53200108.9t 5

m 估估K Q

∴所设计换热器(固定板管式)的参数选择如下表:

② 计算(管、壳程的对流传热系数和压降): a. 管程: 流通面积 220175.04

222

002.044m N N d S P T i

i

柴油流速 s m S W u i i h i /666.00175.0715360030000

3600

Re 43

1049.110

64.0715

666.002.0

i

i

i i du 柴油被冷却,所以

)

/(701)133

.01064.01048.2(1490002.0133.0023.0Pr Re 023

.023.0338

.03

.0C m W d i

i i

i

i ? 管程压降为 2

)3(2

i i i i i u N f d l

P

取管壁粗糙度mm 15.0 ,0075.0/ d ,经查图可得摩擦系数 034.0 ∴

2

)3(2

i i i

i i u N f d l

P =Pa 421018.12715666.044.1)302.06034.0( b .壳程

选用缺口高度为25%的弓形挡板,取折流挡板板间距h 为300mm ,故折流挡板数为1913

.06

1

h

l

N B 流道面积 2000394.0)032

.0025

.01(6.03.0)1(m d hD S 原油流速 u s m S W c /346.00394

.0815360040000

3600000

正三角排列的当量直径为

0202.0025

.0)025.04032.023(4)423(

4220202

d d t d

e m Re 3

3

00109.110

3815346.00202.0

u d e 6.44148

.0103102.2Pr 330

p c 壳中原油被加热,取05.1)(

14

.0 W

,所以 14

.03

1055

.000

0)(

Pr )

(Re 36

.0W

e

d

=)/(62405.16.4419000202

.0148

.036.0231

55.0C m W ?

壳程压降

41.0190072.1Re 72.119.019

.00

Pa u d N D P e B 420

2

0001019.12

815346.00202.0)119(6.041.02)1(

③计算传热面积 传热系数

i

i i si m d d d d R d R K 000so 0d 1

1 计 取W C m R W C m R so si /001.0,/0002.02

2 ? ? ,忽略管壁热阻,则

0047.020

6752520250002.0001.062411 计K )m /(2132C W K ? 计

25

m m 5.858

.53213108.9t 计计K Q A

202.15

.858

.102

实A A 即传热面积有%的裕度。

三、换热器的主要结构尺寸和计算结果

设备结构参数

物料参数

计算结果

三、参考文献

1.陆美娟、张浩秦主编.化工原理(上册),第二版.北京:化

学工业出版社,2006

2.王志魁主编.化工原理,第3版.北京:化学工业出版社,

2005

3.柴诚敬,张国亮主编.化工流体流动与传热.北京:化学工

业出版社,2000

4.季阳萍主编.化工制图.北京:化学工业出版社,2007

列管式换热器说明书

目录 一、设计任务 (2) 二、概述与设计方案简介 (3) 2.1 概述 (3) 2.2设计方案简介 (4) 2.2.1 换热器类型的选择 (4) 2.2.2流径的选择 (6) 2.2.3流速的选择 (6) 2.2.4材质的选择 (6) 2.2.5管程结构 (6) 2.2.6 换热器流体相对流动形式 (7) 三、工艺及设备设计计算 (7) 3.1确定设计方案 (7) 3.2确定物性数据 (8) 3.3计算总传热系数 (8) 3.4计算换热面积 (9) 3.5工艺尺寸计算 (9) 3.6换热器核算 (11) 3.6.1传热面积校核 (11) 3.6.2.换热器压降的核算 (12) 四、辅助设备的计算及选型 (13) 4.1拉杆规格 (13)

4.2接管 (13) 五、换热器结果总汇表 (14) 六、设计评述 (15) 七、参考资料 (15) 八、主要符号说明 (15) 九、致 (16) 一、设计任务

二、概述与设计方案简介 2.1 概述 在工业生产中用于实现物料间热量传递的设备称为换热设备,即换热器。换热器是化工、动力、食品及其他许多部门中广泛采用的一种通用设备。 换热器的种类很多,根据其热量传递的方法的不同,可以分为3种形式,即间壁式、直接接触式、蓄热式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。 直接接触式换热器又称混合式换热器。在此类换热器中,冷、热流体相互接触,相互

固定管板式换热器使用中的注意事项及工作原理

固定管板式换热器的注意事项及工作原理 固定管板式换热器在运行中应注意事项有: (1)换热器在新安装或检修完之后必须进行试压后才能使用。 (2)换热器在开工时要先通冷流后通热流,在停工时要先停热流后停冷流。以防止不均匀的热胀冷缩引起泄漏或损坏。 (3)固定管板式换热器不允许单向受热,浮动式换热器管、壳两侧也不允许温差过大。 (4)启动过程中,排气阀应保持打开状态,以便排出全部空气,启动结束后应关闭。 (5)如果使用碳氢化合物,在装入碳氢化合物之前要用惰性气体驱除换热器中的空气,以免发生爆炸。 (6)停工吹扫时,引汽前必须放净冷凝水,并缓慢通气,防止水击。换热器一侧通气时,必须把另一侧的放空阀打开,以免弊压损坏,关闭换热器时,应打开排气阀及疏水阀,防止冷却形成真空损坏设备。 (7)空冷器使用时要注意部分流量均匀,确保冷却效果。 (8)经常注意监视防止泄漏。 固定管板式换热器的工作原理:

图1 [固定管板式换热器]为固定管板式换热器的构造。A流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体 (A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。

固定板管式换热器设计说明书

固定板管式换热器 设 计 说 明 书 系别: 班级: 姓名: 学号:

一、 设计任务和设计条件 某炼油厂拟用原有在列管式换热器中回收柴油的热量。已知原油 流量为40000kg/h ,进口温度70℃,要求其出口温度不高于110℃;柴油流量为30000kg/h ,进口温度为175℃。设计一适当型号的换热器,已知物性数据: 二、 确定设计方案 ① 初选换热器的规格 当不计热损失时,换热器的热负荷为: Q=W )(12t t c pc C =40000/3600×2.2×103×(110-70)=9.8×105W 逆流过程如图所示: T 2125℃ T 1175℃ t 170℃ t 2110℃ 逆流平均温度差: m t = 8.5970 125110175ln ) 70125()110175( ℃ 初估 值 R= 25.170110125 175 P= 381.070 17570 110 初步决定采用单壳程,偶数管程的固定板管式换热器。经查表得校

正系数 =0.9>0.8,可行。 ∴ 53.859.80.9 逆m m t t ℃ 初步估计传热系数K 估=200W/(㎡·℃), 则 A m 07.918 .53200108.9t 5 m 估估K Q ∴所设计换热器(固定板管式)的参数选择如下表: ② 计算(管、壳程的对流传热系数和压降): a. 管程: 流通面积 220175.04 222 002.044m N N d S P T i i 柴油流速 s m S W u i i h i /666.00175.0715360030000 3600 Re 4 3 1049.11064.0715666.002.0 i i i i du 柴油被冷却,所以 ) /(701)133 .01064.01048.2(1490002.0133.0023.0Pr Re 023 .023.0338 .03 .0C m W d i i i i i ?

固定管板换热器计算书

软件批准号:CSBTS/TC40/SC5-D01-1999 DATA SHEET OF PROCESS EQUIPMENT DESIGN

工程名: PROJECT 设备位号: ITEM 设备名称:原料气压缩机一级冷却器EQUIPMENT 图号:FXLSZ-02-00 DWG NO。 设计单位:抚顺新纪元炼化设备有限公司DESIGNER

固定管板换热器设计计算计算单位抚顺新纪元炼化设备有限公司 设计计算条件 壳程管程 设计压力p s 0.5MPa设计压力p t 1.8MPa 设计温度t s 50?C设计温度t t 150?C 壳程圆筒内径D i450mm管箱圆筒内径D i450mm 材料名称Q345R材料名称Q345R 简图 计算内容 壳程圆筒校核计算 前端管箱圆筒校核计算 前端管箱封头(平盖)校核计算 后端管箱圆筒校核计算 后端管箱封头(平盖)校核计算 管箱法兰校核计算 开孔补强设计计算 管板校核计算

前端管箱筒体计算 计算单位 计算所依据的标准 GB 150.3-2011 计算条件 筒体简图 计算压力 P c 1.80 MPa 设计温度 t 150.00 C 内径 D i 450.00 mm 材料 Q345R ( 板材 ) 试验温度许用应力 189.00 MPa 设计温度许用应力 189.00 MPa 试验温度下屈服点 s 345.00 MPa 钢板负偏差 C 1 0.30 mm 腐蚀裕量 C 2 2 mm 焊接接头系数 0.85 厚度及重量计算 计算厚度 = P D P c i t c 2[]σφ- = 2.54 mm 有效厚度 e =n - C 1- C 2= 9.7 mm 名义厚度 n = 12.00 mm 重量 123.05 Kg 压力试验时应力校核 压力试验类型 液压试验 试验压力值 P T = 1.25P [][]σσt = 2.2500 (或由用户输入) MPa 压力试验允许通过 的应力水平 T T 0.90 s = 310.50 MPa 试验压力下 圆筒的应力 T = p D T i e e .().+δδφ 2 = 71.39 MPa 校核条件 T T 校核结果 合格 压力及应力计算 最大允许工作压力 [P w ]= 2δσφ δe t i e []() D += 5.95649 MPa 设计温度下计算应力 t = P D c i e e () +δδ2= 48.55 MPa t 160.65 MPa 校核条件 t ≥ t 结论 筒体名义厚度大于或等于GB151中规定的最小厚度8.20mm,合格

管式冷却器使用说明

管式冷却器使用说明 一、概述 列管式冷却器是冶金、化工、机械、能源、交通、轻工、食品等工业部门普遍采用的热交换装置。它适用于冷却、冷凝、加热、蒸发、废热回收等不同工况。由于其结构坚固,使用弹性大,适应性强,近些年来又对结构、工艺和材料等方面作了大量改进,使它的技术性能更趋于合理与先进。因此,在门类众多的热交换器中,管式换热器仍居于重要位置。 二、结构与工作原理 列管式冷却器由外部壳体、内部冷却体两大部份组成。由于具体结构方式的不同,从外部连接形式分为管螺纹式和法兰式;从安装形式分为卧式和立式;从浮动形式分为浮动盘式和浮动头式;从冷却管结构分为螺管式和翅片管式;从折流的结构分为弓形折流板、矩形折流板、双堰形折流板和圆形折流板等多种结构形式,均按具体条件选用。 外部壳体包括:筒体、分水盖和回水盖。其上设有进、出油管和进、出水管,并附设排油、排水、排气螺塞、锌棒安装孔连温度计接口等。 冷却体由冷却管、定孔盘、动孔盘、折流板等组成。冷却管两端与定、动孔盘连接;定孔盘和外体法兰连接,动孔盘可在外体内自由伸缩,以消除温度对冷却管由于热胀冷缩而产生的影响。折流板起强化传热及支承冷却管的作用。 列管式冷却器的热介质是由筒体上的接管进口,顺序经各折流通道,曲折地流至接管出口。而冷却介质则采用双管程流动,即冷却介质由进水口经分水盖进入一半冷却管之后,再从回水盖流入另一半冷却管进入另一侧分水盖及出水管。冷介质在双管程流过程中,吸收热介质放出的余热由出水口排出,使工作介质保持额定的工作温度。 三、使用与操作 1、冷却器的基础必须足以使设备不发生下沉,在定孔盘头盖端应留足够的空间以便能从壳体内抽出管束,设备就位时应按吊装规范进行,待水平找正后拧紧地脚螺丝,连接冷热介质的进出管。

固定管板式换热器课设

江汉大学 课题名称: 固定管板式换热器设计 系别: 化学与环境工程学院 专业: 过控121班 学号: 122209104119 姓名: 库勇智 指导教师: 杨继军 时间: 2016年元月 课程设计任务书 设计题目:固定管板式换热器设计 一、设计目得: 1.实用国家最新压力容器标准、规范进行设计,掌握典型得过程装备 设计得全过程、 2.掌握查阅与综合分析文献资料得能力,进行设计方法与设计方案得 可行性研究与论证。 3.掌握软件强度设计计算,要求设计思路清晰,计算数据准确可靠,正 确掌握计算机操作与专业软件得实用。 4.掌握图纸得计算机绘图。 二、设计条件: 设计条件单

管口表 三、设计要求: 1。换热器机械设计计算及整体结构设计 2、绘制固定管板式换热器装配图(一张一号图纸) 3。管长与壳体内径之比在3-20之间 四、主要参考文献 1.国家质量监督检验检疫总局,GB150—2011《压力容器》,中国标

准出版社,2011。 2。国家质量监督检验检疫总局,TSG R0004-2009《固定式压力容器安全技术监察规程》,新华出版社,2009、 3.国家质量监督检验检疫总局,GB151—1999《管壳式换热器》,中国标准出版社,1999、 4、天津大学化工原理教研室,《化工原理》上册,姚玉英主编,天津科学技术出版社,2012、 5、郑津样,董其伍,桑芝富主编,《过程装备设计》,化学工业出版社,2010。 6。赵惠清,蔡纪宁主编,《化工制图》,化学工业出版社,2008。7.潘红良,郝俊文主编,《过程装备机械设计》,华东理工大学出版社,2006、 8。E.U、施林德尔主编,《换热器设计手册》第四卷,机械工业出版社,1989。 前言 换热设备就是用于两种或两种以上流体间、一种流体一种固体间、固体粒子间或者热接触且具有不同温度得同一种流体间热量(或焓)传递得装置。 换热器就是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确得设置,性能得改善关系各部门有关工艺得合理性、经济性以及能源得有效利用与节约,对国民经济有着十分重要得影响。在炼油、化工装置中换热器占总设备数量得40%左右,

浅谈换热器管板与换热管胀焊并用连接的制造工艺

浅谈换热器管板与换热管胀焊并用连接的制造工艺 GB151-1999标准中规定,强度胀接适用于设计压力≤4MPa、设计温度≤300℃、无剧烈振动、无过大温度变化及无应力腐蚀的场合;强度焊接适用于振动较小和无间隙腐蚀的场合;胀、焊并用适用于密封性能较高、承受振动或疲劳载荷、有间隙腐蚀、采用复合管板的场合。由此可见,单纯胀接或强度焊接的连接方式使用条件是有限制的。胀、焊并用结构由于能有效地阻尼管束振动对焊口的损伤,避免间隙腐蚀,并且有比单纯胀接或强度焊具有更高的强度和密封性,因而得到广泛采用。目前对常规的换热管通常采用“贴胀+强度焊”的模式;而重要的或使用条件苛刻的换热器则要求采用“强度胀+密封焊”的模式。胀、焊并用结构按胀接与焊接在工序中的先后次序可分为先胀后焊和先焊后胀两种。 1 先胀后焊 管子与管板胀接后,在管端应留有15mm长的未胀管腔,以避免胀接应力与焊接应力的迭加,减少焊接应力对胀接的影响,15mm的未胀管段与管板孔之间存在一个间隙。在焊接时,由于高温熔化金属的影响,间隙内气体被加热而急剧膨胀。据国外资料介绍,间隙腔内压力在焊接收口时可达到200~300MPa的超高压状态。间隙腔的高温高压气体在外泄时对强度胀的密封性能造成致命的损伤,且焊缝收口处亦将留下肉眼难以觉察的针孔。目前通常采用的机械胀接,由于对焊接裂纹、气孔等敏感性很强的润滑油渗透进入了这些间隙,焊接时产生缺陷的现象就更加严重。这些渗透进入间隙的油污很难清除干净,所以采用先胀后焊工艺,不宜采用机械胀的方式。由于贴胀是不耐压的,但可以消除管子与管板管孔的间隙,所以能有效的阻尼管束振动到管口的焊接部位。但是采用常规手工或机械控制的机械胀接无法达到均匀的贴胀要求,而采用由电脑控制胀接压力的液袋式胀管机胀接时可方便、均匀地实现贴胀要求。采用液袋式胀管机胀接时,为了使胀接结果达到理想效果,胀接前管子与管板孔的尺寸配合在设计制造上必须符合较为严格的要求。只有这样对于常规设计的“贴胀+强度焊”可采用先胀后焊的方式,而对特殊设计的“强度胀+强度焊”则可采用先贴胀,再强度焊,最后强度胀的方法。 2 先焊后胀 在制造过程中,一台换热器中有相当数量的换热管,其外径与管板管孔孔径之间存在着较大的间隙,且每根换热管其外径与管板管孔间隙沿轴向是不均匀的。当焊接完成后胀接时,管子中心线必须与管板管孔中心线相重合。当间隙很小时,上端15mm的未胀管段将可以减轻胀接变形对焊接的影响。当间隙较大时,由于管子的刚性较大,过大的胀接变形将越过15mm未胀区的缓冲而对焊接接头产生损伤,甚至造成焊口脱焊。所以对于先焊后胀工艺,控制管子与管板孔的精度及其配合为首要的问题。当管子与管板腔的间隙小到一定值后,胀接过程将不至于损伤到焊接接头的质量。有关资料显示,管口的焊接接头承受轴向力的能力是相当大的,即使是密封焊,焊接接头在做静态拉脱试验时,管子拉断了,焊口将不会拉脱。然而焊口承受切向剪力的能力相对较差,所以强度焊后,由于控制达不到要求,可能造成过胀失效或胀接对焊接接头的损伤。 3 合理的制造工艺 3.1 管子与管孔的公差控制 (1)换热管 在采购换热管时要求每台换热器所使用的换热管在冷拔加工时应采用同一坯料(炉批次)的原料,并在同一台经校验试验合格的拉管机上生产,这样才能保证每根换热管具有相同的材质、规格与精度。换热管外径的均匀一致能保证管子与管板管孔的间隙,内径的均匀一致能保证与液袋式胀管机胀头的匹配性,从而延长胀头的使用寿命。一般管子与管板管孔间隙要求控制在(0.3±0.05)mm范围内,而液袋式胀管机胀头外径与管子内径的公差也应控制在 (0.3±0.05)mm范围内。 (2)管板 为使换热器管板管孔与管子外径在同一公差范围内,首先必须根据到货换热管外径的实际精度尺寸决定管板管孔的加工精度,如上所述,管板管孔与已到货换热管实际均匀外径间隙仍应控制在(0.3土0.05)mm范围内。 3.2换热管与管板的加工及验收

固定管板式换热器

固定管板式换热器的设计 学生:库勇智,化学与环境工程学院 指导教师:王小雨,江汉大学 摘要 换热器是用来在流体间交换热量的装置,在化学专业中具有非常重要的地位,被使用于化工各行业中。由于其中固定管板式换热器管板和壳体是一体构造,具有结构简单、造价十分便宜的优点,所以被普遍的使用。 这篇设计说明书上面着重说明了换热器的换热面积、各个设计压力和设计温度以及接管等数据参数。根据上面所给的数据和换热器类型来对换热器的各个零部件,即换热管根数,尺寸、排列方式,壳体和管箱、封头等等,最后校核、压力试验,根据工艺结构选出材料,最后作图。 本设计说明书的每一部分都是完全参照GB150-2011《压力容器》和GB151-2014《热交换器》中固定管板式换热器的有关标准来计算、校核和选型的。 关键词 管壳式换热器;固定管板式换热器;加热器

Abstract Heat exchanger is a device for exchanging heat between the fluids and in chemistry has a very important position, is used in the chemical industry. Because of the fixed tube plate heat exchanger tube plate and the shell is an integral structure, with has the advantages of simple structure, low cost advantages, so be widely use. The design specification above illustrates the change of the heat exchange area of the heat exchanger, each design pressure and temperature and over data parameters. According to the data given above and the heat exchanger type heat exchanger parts, i.e. the heat exchange tube number, size, arrangement, shell and tube box, head, and so on, finally checking, pressure test, selected according to process structure materials. Finally, drawing. The design specification is strictly according to GB150-2011< pressure container > and heat GB151-2014< exchanger is > fixed tube plate heat exchanger of the relevant provisions of the calculation, selection and checking. Key words Shell and tube heat exchanger ;fixed tube heat exchanger ;heater

换热器的设计说明书

换热器的设计 换热器概述 换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有重要地位。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。由于使用条件的不同,换热设备又有各种各样的形式和结构。 换热器选型时需要考虑的因素是多方面的,主要有: ①热负荷及流量大小; ②流体的性质; ③温度、压力及允许压降的范围; ④对清洗、维修的要求; ⑤设备结构、材料、尺寸、重量; ⑥价格、使用安全性和寿命; 按照换热面积的形状和结构进行分类可分为管型、板型和其它型

式的换热器。其中,管型换热器中的管壳式换热器因制造容易、生产成本低、处理量大、适应高温高压等优点,应用最为广泛。 管型换热器主要有以下几种形式: (1)固定管板式换热器:当冷热流体温差不大时,可采用固定管板的结构型式,这种换热器的特点是结构简单,制造成本低。但由于壳程不易清洗或检修,管外物料应是比较清洁、不易结垢的。对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。 (2)浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。另一端管板不与壳体连接而可相对滑动,称为浮头端。因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。适用于冷热流体温差较大,壳程介质腐蚀性强、易结垢的情况。 (3)U形管式换热器换:热效率高,传热面积大。结构较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。 表1-1 换热器特点一览表

固定管板式换热器结构设计

固定管板式换热器的结构设计 摘要 换热器是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确的设置,性能的改善关系各部门有关工艺的合理性、经济性以及能源的有效利用与节约,对国民经济有着十分重要的影响。 换热器的型式繁多,不同的使用场合使用目的不同。其中常用结构为管壳式,因其结构简单、造价低廉、选材广泛、清洗方便、适应性强,在各工业部门应用最为广泛。 固定管板式换热器是管壳式换热器的一种典型结构,也是目前应用比较广泛的一种换热器。这类换热器具有结构简单、紧凑、可靠性高、适应性广的特点,并且生产成本低、选用的材料范围广、换热表面的清洗比较方便。固定管板式换热器能承受较高的操作压力和温度,因此在高温高压和大型换热器中,其占有绝对优势。 固定管板式换热器主要由壳体、换热管束、管板、前端管箱(又称顶盖或封头)和后端结构等部件组成。管束安装在壳体内,两端固定在管板上。管箱和后端结构分别与壳体两端的法兰用螺栓相连,检修或清洗时便于拆卸。换热器设计的优劣最终要看是否适用、经济、安全、运行灵活可靠、检修清理方便等等。一个传热效率高、紧凑、成本低、安全可靠的换热器的产生,要求在设计时精心考虑各种问题.准确的热力设计和计算,还要进行强度校核和符合要求的工艺制造水平。 关键词:换热器;固定管板式换热器;结构;设计

The Structural Design of Fixed Tube Plate Heat Exchanger Author : Chen Hui-juan Tutor : Li Hui Abstract Heat exchanger is one of the most important equipments which is used in the fields of chemical, oil, power, metallurgy, transportation, national defense industry. Its right setting and the improvements of performance play an important role in the rationality o technology, economy, energy utilization and saving, which has a very important impact on the national economy. The type of heat exchanger is various, the different use occasions and the purpose is are commonly used for the tube shell type structure, because of its simple structure, low cost and wide selection, easy to clean, strong adaptability, the most widely used in various industry departments. Fixed tube plate heat exchanger is a kind of typical structure of tube and shell heat exchanger, also is a kind of heat exchanger is applied more widely. This kind of heat exchanger has simple and compact structure, high reliability, the characteristics of wide adaptability, and the production of low cost, wide range of selection of materials, heat exchange surface cleaning more convenient. Fixed tube plate heat exchanger can operate under high pressure and temperature, therefore, the heat exchanger in high temperature and high pressure and large in its possession of absolute advantage. Fixed tube plate heat exchanger is mainly composed of shell, heat

换热器设计

换热器设计: 一:确定设计方案: 1、选择换热器的类型 两流体温度变化情况,热流体进口温度130°C,出口温度80°C;冷流体进口温度40°C,出口温度65°C。该换热器用自来水冷却柴油,油品压力0.9MP,考虑到流体温差较大以及壳程压强0.9MP,初步确定为浮头式的列管式换热器。2、流动空间及流速的确定 由于冷却水容易结垢,为便于清洗,应使水走管程,柴油走壳程。从热交换角度,柴油走壳程可以与空气进行热交换,增大传热强度。选用Φ25×2.5 mm 的10号碳钢管。 二、确定物性数据 定性温度:可取流体进口温度的平均值。 壳程柴油的定性温度为 T1=130°C,T2=80°C,t1=40°C,t2=65°C T=(130+80)/2=105(°C) 管程水的定性温度为 t=(40+65)/2=52.5(°C) 已知壳程和管程流体的有关物性数据 柴油105°C下的有关物性数据如下: ρ=840 kg/m3 密度 定压比热容C o=2.15 kJ/(kg·k) 导热系数λo=0.122 W/(m·k) 粘度μo=6.7×10-4N·s/m2 水52.5°C的有关物性数据如下: ρ=988 kg/m3 密度 i C=4.175 kJ/(kg·k) 定压比热容 i λ=0.65 W/(m·k) 导热系数 i

粘度 μi =4.9×10-4 N·s/m 2 三、计算总传热系数 1.热流量 m 0=95000(kg/h) Q 0= m 0C o Δt o =95000×2.15×(130-80)=10212500kJ/h=2836.8(kw) 2.平均传热温差 m t '?=(Δt 1-Δt 2 )/ln(Δt 1/Δt 2)=[(130-65)-(80-40)]/ln[(130-65)/(80-40)]=51.5(°C) 其中Δt 1=T 1-t 2,Δt 2=T 2-t 1。 3.水用量 W c =Q 0/(C i Δt i )=10212500/[4.175×(65-40)]=97844.3kg/h=27.18kg/s 平均温差 1 221t t T T R --= =406580 130--=2 1112t T t t P --= =40 1304065--=0.28 选择卧式冷凝器,冷凝在壳程,为一壳程四管程,查图可得t ??=0.88。 m t m t t '??=???=0.88×51.5=45.32°C 管子规格5.225?φ,L=3m 。 管束排列方式:正三角形排列。 一壳程四管程三角形管束排列方式285.2175.011==n K ,。 四、传热面积初值计算 取总传热系数K=335W/(m 2.°C) 18632 .45335108.28363 =??=?=m t K Q F m 2 一管子面积 3102031???==-ππL d F i =0.1884m 2 管子数 9871884 .01861=== F F N t 管子中心距 o d t 25.1==1.25×25=31.25mm ,取t=32mm

列管式换热器设计说明书

摘要: 列管式换热器属于间壁式换热器,冷热流体通过换热管壁进行热量的交换。参照任务书的任务量,需设计年冷却15000吨乙醇的列管式换热器,设计时先确定流体流程,壳程走乙醇,其进、出口温度都为80℃,相变放出潜热,井水走管程冷却乙醇,进口温度为32℃,出口温度为40℃。再进行热量衡算、传热系数校核,初选冷凝器的型号,然后通过进行设备强度校核等一系列的计算和选型,最终确定的设计方案为固定管板式换热器,所选用型号为BEM400-2.5-30-9/25-2 Ⅰ,换热器壳径为400mm,总换热面积为27.79m2,管程为2,管子总根数为60,管长6000 mm,管束为正三角排列,两端封头选取标准椭圆封头。 关键词:列管式换热器,乙醇,水,温度,固定管板式。 Abstract: The tube type heat exchanger is a dividing wall type heat exchanger, fluids with different temperatures exchange heat by means of tube wall’s heat transfer.According to the assignment, A tube type heat exchanger which has a process capacity of .?4 1510t/a is needed. The ethanol flow in the shell,the temperature in the entrance and exits is 80℃.The water which cool the ethanol flow in tubes, the inlet and outlet temperatures are 32℃and 40℃.Then by taking series calculating to confirm the module of the heat exchanger . After the design of intensity designing and a series calculating and choosing , the last result of our design is the fasten-board heat exchanger. The style of the heat exchange is 9 BEM400 2.530 2 25 Ⅰ ----, and the diameter of the receiver is 400mm ,The area of the heat exchange is 27.79 m2, The heat-exchanger in cludes two tube passes,one shell passes and 60 tubes.And the length of tubes is 6000mm . Tubes are ranked of the shape of triangle ,the envelops are oval-shaped.

固定管板式换热器课程设计

一 列管换热器工艺设计 1、根据已知条件,确定换热管数目和管程数: 选用.5225?φ的换热管 则换热管数目:5.737019 .014.35.2110 A 0≈??== d l n p π根 故738=n 根 管程数:对于固定板式换热器,可选单管程或双管程,为成本计,本设计采用单管程。 2、管子排列方式的选择 (1)采用正三角形排列 (2)选择强度焊接,由表1.1查的管心距t=25mm 。 表1.1 常用管心距 管外径/mm 管心距/mm 各程相邻管的管心距/mm 19 25 38 25 32 44 32 40 52 38 48 60 (3)采用正三角形排列,当传热管数超过127根,即正六边形的个数a>6时,最外层六边形和壳体间的弓形部分空间较大,也应该配置传热管。不同的a 值时,可排的管数目见表1.2。具体排列方式如图1,管子总数为779根。 表1.2 排管数目 正六角形的数目a 正三角形排列 六角形对角线上的管数b 六角形内的管数 每个弓形部分的管数 第一列 第二列 第三列 弓形部分的管数 管子总数 1 3 7 7 2 5 19 19 3 7 37 37 4 9 61 61 5 11 91 91 6 13 12 7 127 7 15 169 3 1 8 187 8 17 217 4 24 241 9 19 271 5 30 10 21

301 11 23 397 7 42 439 12 25 469 8 48 517 13 27 547 9 2 66 613 14 29 631 10 5 90 721 15 31 721 11 6 102 823 16 33 817 12 7 114 931 17 35 919 13 8 126 1045 18 37 1027 14 9 138 1165 19 39 1411 15 12 162 1303 20 41 1261 16 13 4 198 1459 21 43 1387 17 14 7 228 1616 22 45 1519 18 15 8 246 1765 23 47 1657 19 16 9 264 1921 图1.1折流板的管孔及换热管及拉杆分布 3、壳程选择 壳程的选择:简单起见,采用单壳程。 4、壳体内径的确定 换热器壳体内径与传热管数目、管心距和传热管的排列方式有关。壳体的内径需要圆整成标准尺寸。以400mm为基数,以100mm为进级档,必要时可以50mm为进级档。 对于单管程换热器,壳体内径公式0 b t+ - D d = ~ )3 2( )1 (

固定管板式换热器课程设计

固定管板式换热器设计

目录 第一章绪论 (3) 1.1什么是管壳式换热器······································3 1.2管壳式换热器的分类········································3 第二章总体结构设 计·············································4 2.1固定管板式换热器结构 (4) 第三章机械设计 (4) 3.1工艺条件··················································4 3.2设计计算 (4) (1)管子数 n···············································5 (2)换热管排列形式········································5(3)管间距的确定···········································5 (4)壳程选择···············································5 3.3 筒体 (6) (1)换热器壳体内径的确定··································6 (2)换热器封头的选择 (6) 3.4 折流板 (6) (1)折流板切口高度的确定 (6) (2)确定折流板间距........................................6(3)折流板的排列方式.. (7) (4)折流板外径的选择······································7(5)折流板厚度的确定······································7 (6)折流板的管孔确定 (7) 3.5 拉杆、定距管 (7) (1)拉杆的直径和数量 (7) (2)拉杆的尺寸 (8) (3)拉杆的布置············································9 (4)定距管 (9) 3.6、防冲

换热器管板孔沟槽刀的简易设计

换热器管板孔沟槽刀的简易设计 在换热器管束制造过程中,管板与换热管的连接方式主要有胀接、焊接、胀焊并用等方式。为了保证换热管与管板连接的密封性及抗拉脱强度,提高换热管与管板的胀接质量,通常采用在管孔上开槽的形式。原有管板挖槽依靠镗床利用手工摆动装有挖刀的芯轴来控制挖刀挖槽的深度,准确性差,造成槽的深度不一样,且挖槽后圆孔内壁出现很多毛剌难以消除,使管子胀接在管板的圆孔内后连接牢度低,密封性差。这种方式已不能完全满足批量管板沟槽的加工所以根据生产的实际需要我们设计了结构简单、经济耐用的沟槽刀具。 标签:换热管管板开槽沟槽刀简易设计 目前,管壳式热交换器(冷却器、加热器)广泛应用于石油、化工、轻工、制药能源等工业生产中。为了提高换热器的密封性能和增加拉脱力,越来越多的换热器采用了胀接(贴胀或强度胀)的密封形式,即在两端的管板孔内增加密封槽。其中对于薄管板(厚度小于25mm)一般开单槽,对于厚度大于25mm的一般设置两个沟槽,在一些有特殊要求的情况下有些设置三个沟槽。如图一。 其中δ为管板的厚度;K为槽的深度。 1 目前存在的问题 随着换热器的发展,换热器的换热面积及直径越来越大,一台管壳式换热器可能有几百根乃至上千根换热管,相应管板上就有成百上千个管孔。在每个管孔上加工两个沟槽,对机械加工带来很大的挑战。 1.1 用镗床加工如果采用在镗床上加工的方法,加工费用、加工精度以及进度都无法保证。 1.2 使用成型刀具加工如果采用外购的成型刀具,购买刀具的费用大巨大、且这种成型刀具不耐用,对中小型企业是一笔不小的开支。随着生产的换热器数量的增加,这种矛盾则更为突出。我们经过反复研究、试验、实践,设计了一款管板孔开沟槽刀具。该款刀具结构简单,并能保证沟槽的加工质量;操作过程简单,且价格低廉,适用于各种企业。目前我公司已成功用于批量生产。 2 设计原理 使用普通钻床,利用定位装置安装一活动刀头,运用钻床的上、下移动及转动来完成开槽工序。 该沟槽刀如图二所示,其组成分为刀头、刀杆、定心套、定位轴、调整螺栓、锥柄、刀体、限位螺栓、连接套等20个组件。其特点是,首先将刀杆与衬套及刀体三者利用定位轴固定为一体,工作时三者可同时转动;接着穿入定心套、轴

固定管板式换热器

固定管板式换热器 一 换热管 1换热管外径 取换热管外径为25*2.5。 2换热管数量及长度 *(0.1)A n d L π=- A 换热面积 D 换热管外径 l 换热管长度 A=402m 取安全系数1.125,1*1.12546A A == 140*1.125 248*(0.1) 3.14*0.02*(30.1)A n d L π==≈-- n=248 L=3

3布管 (1)换热管排列方式 采用正三角形排列 (2)换热管中心距 查阅课本139页表5-3确定换热管中心距是32mm 。 二换热器壳体 1换热器内径计算 0*(1)(2~3)*D t b d =-+ t 管心距 d 0 换热管外径 D 壳体内径 17.32281b === 0*(1)(2~3)*D t b d =-+ t=32mm 32*(17.322811)2*25572.32992 D =-+= 取D=600mm

2筒体壁厚计算 水蒸气工作压力1.27Mpa ,脱盐水工作压力1.28Mpa 。 材料选16MnR 工作温度T=150/170℃ 查阅课本32页确定设计设计温度T W =170/190℃ 脱盐水走壳程,水蒸气走管程。 *2*[]*c i t c p D p δσφ=- δ 圆筒的计算壁厚 c p 圆筒的计算压力 []t σ 许用应力 φ 焊接接头系数 []t σ 156 查阅课本32页确定c p =1.28+0.18=1.46Mpa GB150规定焊接接头系数容器受压元件焊接接头的工艺特点以及无损检测的抽查率确定,查阅课本38页确定φ=0.85。 * 1.46*600 3.322*[]*2*156*0.86 1.46 c i t c p D mm p δσφ==≈-- d C δδ=+ 查阅课本40也确定C 2=1.5mm 。 查阅课本39页确定C 1=0.3mm C= C 1 + C 2=1.8mm 3.321 1.8 5.121d C mm δδ=+=+= 元整后6n mm δ= (3)布管限定圆 查阅GB15132*L i D D b =-

列管式换热器设计课程设计说明

化工原理课程设计说明书列管式换热器设计 专业:过程装备与控制工程 学院:机电工程学院

化工原理课程设计任务书 某生产过程的流程如图3-20所示。反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。已知混合气体的流量为220301kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。 已知: 混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg =g ℃ 热导率10.0279w m λ=g ℃ 粘度51 1.510Pa s μ-=?g 循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg =g K 热导率10.624w m λ=g K 粘度310.74210Pa s μ-=?g

目录 1、确定设计方案 ............................................................................................. - 4 - 1.1选择换热器的类型 (4) 1.2流程安排 (4) 2、确定物性数据............................................................................................. - 4 - 3、估算传热面积............................................................................................. - 5 - 3.1热流量 (5) 3.2平均传热温差 (5) 3.3传热面积 (5) 3.4冷却水用量 (5) 4、工艺结构尺寸............................................................................................. - 5 - 4.1管径和管内流速 (5) 4.2管程数和传热管数 (5) 4.3传热温差校平均正及壳程数 (6) 4.4传热管排列和分程方法 (6) 4.5壳体内径 (6) 4.6折流挡板 (7) 4.7其他附件 (7) 4.8接管 (7) 5、换热器核算 ................................................................................................ - 8 - 5.1热流量核算 (8) 5.1.1壳程表面传热系数.......................................................................................... - 8 -5.1.2管内表面传热系数.......................................................................................... - 8 -5.1.3污垢热阻和管壁热阻...................................................................................... - 9 -5.1.4传热系数.......................................................................................................... - 9 -5.1.5传热面积裕度.................................................................................................. - 9 -5.2壁温计算. (9) 5.3换热器内流体的流动阻力 (10) 5.3.1管程流体阻力................................................................................................ - 10 -5.3.2壳程阻力........................................................................................................ - 11 - 5.3.3换热器主要结构尺寸和计算结果................................................................ - 11 - 6、结构设计 .................................................................................................. - 12 - 6.1浮头管板及钩圈法兰结构设计 (12) 6.2管箱法兰和管箱侧壳体法兰设计 (13) 6.3管箱结构设计 (13) 6.4固定端管板结构设计 (14) 6.5外头盖法兰、外头盖侧法兰设计 (14) 6.6外头盖结构设计 (14) 6.7垫片选择 (14)

相关文档
最新文档